Coarse-geometric perspective on negatively curved manifolds and groups

Alex Furman*

University of Illinois at Chicago, Chicago, IL 60607, USA

Abstract. Let (X,g) be a compact negatively curved Riemannian manifold with the fundamental group Γ . Restricting the lifted metric on the universal cover (\tilde{X},\tilde{g}) of (X,g) to a Γ -orbit Γx one obtains a left invariant metric $d_{g,x}$ on Γ , which is well defined up to a bounded amount, depending on the choice of the orbit Γx . Motivated by this geometric example, we study classes [d] of general left-invariant metrics d on general Gromov hyperbolic groups Γ , where $[d_1] = [d_2]$ if $d_1 - d_2$ is bounded. It turns out that many of the geometric objects associated with (X,g), such as: marked length spectrum, cross-ratio, Bowen-Margulis measure - can be defined in the general coarse-geometric setting. The main result of the paper is a characterization of the compact negatively curved locally symmetric spaces within this coarse-geometric setting.

1 Introduction

Compact connected Riemannian manifolds (X,g) with strictly negative sectional curvature are important and much studied objects in Riemannian geometry and Dynamics. Given such a manifold (X,g) consider the isometric action of the fundamental group $\Gamma = \pi_1(X)$ on the universal cover (\tilde{X},\tilde{g}) and let $d_{g,x}$ denote the following metric on Γ

$$d_{q,x}(\gamma_1, \gamma_2) := \operatorname{dist}_{\tilde{q}}(\gamma_1 x, \gamma_2 x) \tag{1}$$

where $x \in \tilde{X}$ is some fixed point. This is just a restriction of the path metric $\operatorname{dist}_{\tilde{g}}$ on \tilde{X} to the Γ -orbit Γx . As the Γ -action on $(\tilde{X},\operatorname{dist}_{\tilde{g}})$ is isometric, proper and cocompact, the metric $d_{g,x}$ on Γ is left-invariant and $(\Gamma,d_{g,x})$ is roughly-isometric to the universal cover $(\tilde{X},\operatorname{dist}_{\tilde{g}})$ (hereafter rough-isometry means a quasi-isometry with multiplicative constant one). Moreover, changing the base point x to y amounts to a bounded change in $d_{g,x}$, in fact

$$|d_{g,x}(\gamma_1,\gamma_2) - d_{g,y}(\gamma_1,\gamma_2)| \le 2 \operatorname{diam}_{\tilde{g}}(X)$$

Note also that as the Riemannian structure g on X varies, the metrics $d_{g,x}$ remain quasi-isometric (generally with non-trivial multiplicative constants) to each other and to any word metric on the Gromov hyperbolic group Γ .

In this paper we shall consider the following general *coarse-geometric* setup:

^{*} The author was partially supported by NSF grants DMS-9803607, 0049069 and CNRS.

- Γ is an infinite discrete non-elementary torsion-free Gromov hyperbolic group.
- D_{Γ} is the collection of all left invariant metrics d on Γ , which are quasiisometric to a word metric on Γ .
- \mathcal{D}_{Γ} the factor space of D_{Γ} consisting of equivalence classes $\delta = [d]$ of metrics $d \in D_{\Gamma}$, where $d, d' \in D_{\Gamma}$ belong to the same class $\delta = [d] = [d']$ if d d' is bounded.
- \mathcal{PD}_{Γ} is the projective version of \mathcal{D}_{Γ} , consisting of classes $\bar{\delta}$ where $d, d' \in D_{\Gamma}$ belong to the same class $\bar{\delta}$ if there exists a constant λ so that $d' \lambda \cdot d$ is bounded.

The basic object of this paper are Gromov hyperbolic groups Γ equipped with a class $\delta \in \mathcal{D}_{\Gamma}$ or $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ as above. Our discussion is motivated and guided by the geometric setup where $\Gamma = \pi_1(X)$ is a fundamental group of a compact manifold X which admits a negatively curved Riemannian structure g, and $\delta_g \in \mathcal{D}_{\Gamma}$ denotes the class $[d_{g,x}]$ as in (1). The Marked Length Rigidity Conjecture and the results cited below indicate that much, conjecturally all, of the Riemannian geometry of (X,g) is determined by $\delta_g \in \mathcal{D}_{\Gamma}$, because the marked length spectrum ℓ_g of (X,g) is an invariant of δ_g . However the general coarse-geometric framework of $\delta \in \mathcal{D}_{\Gamma}$ on Γ allows to consider other metrics and more general groups, including the following examples: metrics on hyperbolic groups $\Gamma = \pi_1(X)$ corresponding to general (not necessarily negatively curved) Riemannian or Finsler metrics on compact aspherical manifolds K with $K = \pi_1(K)$; Gromov hyperbolic groups K and metrics induced by convex cocompact isometric K-actions on K-actions on K-actions general Gromov hyperbolic groups with word metrics, etc.

Our goal in this paper is to present the coarse-geometric point of view on some known constructions and facts about compact negatively curved manifolds and try to generalize them to this broader coarse-geometric setup. The paper contains some basic constructions and results, with further analysis to be presented elsewhere.

2 The Geometric Setup

Let X be a compact connected manifold without boundary equipped with a Riemannian structure g on X with strictly negative sectional curvature. Let (\tilde{X}, \tilde{g}) denote the universal cover with the lifted Riemannian structure and $\Gamma = \pi_1(X)$ be the fundamental group of X acting by isometries of (\tilde{X}, \tilde{g}) . Let us recall some basic constructions and facts of this setup.

Marked Length Spectrum. For $\gamma \in \Gamma \setminus \{e\}$ denote by c_{γ} the corresponding conjugacy class in Γ . The set $\mathcal{C}_{\Gamma} = \{c_{\gamma} \mid \gamma \in \Gamma \setminus e\}$ parameterizes free homotopy classes of closed loops in X, with each such class containing a unique loop of minimal g-length (= a closed geodesic) on X. Denoting by

 $\ell_g(c_{\gamma})$ its length one obtains the function $\ell_g: \mathcal{C}_{\Gamma} \to \mathbb{R}_+$ which is called the marked length spectrum of (X,g).

MARKED LENGTH SPECTRUM RIGIDITY CONJECTURE ([BK] (3.1)) asserts that negatively curved Riemannian structure g on X is determined by the Marked Length Spectrum ℓ_g . More precisely, if g, g' are two negatively curved Riemannian structures on a compact X so that $\ell_g = \ell_{g'}$ then there exists a diffeomorphism $\phi: X \to X$ isotopic to the identity which carries g to g'.

The conjecture was stimulated by the deformation rigidity results of Guillemin and Kazhdan [GK]. J.-P. Otal [Ot1] and independently C. Croke [Cr] proved the conjecture (and more general results) for the case dim X=2, i.e. surfaces. In higher dimensions U. Hamenstädt [Ha] proved (using Besson-Courtios-Gallot results [BCG]) the conjecture for the case where one of the metrics, say g on X, is locally symmetric.

Busemann functions $\beta: \tilde{X} \times \tilde{X} \times \partial \tilde{X} \to \mathbb{R}$ and $B_x: \partial \tilde{X} \times \partial \tilde{X} \to \mathbb{R}_+ \cup \{\infty\}$ are defined as follows

$$\beta(x, y, \xi) := \lim_{z \to \xi} \left(\operatorname{dist}_{\tilde{g}}(x, z) - \operatorname{dist}_{\tilde{g}}(y, z) \right) \tag{2a}$$

$$B_x(\xi,\eta) := \beta(x,w,\xi) + \beta(x,w,\eta)$$
(2b)

where w in (2b) is an arbitrary point on the geodesic line $[\xi, \eta]$ connecting ξ and η . As soon as one verifies that these functions are well defined, it is easy to deduce that for any isometry γ of (\tilde{X}, \tilde{g})

$$B_{\gamma x}(\gamma \cdot \xi, \gamma \cdot \eta) = B_x(\xi, \eta) \tag{3a}$$

$$B_x(\xi,\eta) - B_y(\xi,\eta) = \beta(x,y,\xi) + \beta(x,y,\eta) \tag{3b}$$

Cross-Ratio. The classical notion of the cross-ratio on $S^1 = \mathbb{R} \cup \{\infty\} \cong \partial \mathbb{H}^2$ can be generalized (see J.-P. Otal [Ot2] and Hamnestädt [Ha]) as follows: given a negatively curved (X,g) with the universal cover (\tilde{X},\tilde{g}) and the associated Busemann functions B_x define the (so called symplectic) cross-ratio on the boundary $\partial \tilde{X}$ by

$$[\xi, \eta, \xi', \eta']_g := \frac{1}{2} \left(B_x(\xi, \eta) + B_x(\xi', \eta') - B_x(\xi', \eta) - B_x(\xi, \eta') \right) \tag{4}$$

It follows from (3b) that the cross-ratio does not depend on the choice of $x \in \tilde{X}$, and (3a) implies that the cross-ratio is preserved under the natural action by any isometry γ of (\tilde{X}, \tilde{g}) . One of the results (Thm 2.2) in [Ot2] states that for two negatively curved Riemannian structures g, g' on a compact manifold X the conditions $\ell_g = \ell_{g'}$ and $[\cdot, \cdot, \cdot]_g = [\cdot, \cdot, \cdot]_{g'}$ are equivalent.

Bowen-Margulis measure. The geodesic flow $\Phi = \{\Phi^t\}$ on the unit tangent bundle SX to X (associated to the metric g) is a topologically mixing Anosov

flow. Its topological entropy $h_{top}(SX, \Phi^1)$ equals to the volume growth

$$h_g := \lim_{R \to \infty} \frac{1}{R} \log \operatorname{Vol}_{\tilde{g}} \mathsf{B}(x, R) \tag{5}$$

(the limit exists and does not depend on $x \in \tilde{X}$). For such flows Bowen [Bow] showed that the topological entropy is achieved by the measure-theoretical entropy of a unique Φ -invariant probability measure, which can be constructed as the weak limit of periodic orbits (i.e. closed geodesics) weighted according to their lengths $\ell_g(c_{\gamma})$. This measure μ_{BM} , known as Bowen-Margulis measure, was constructed in a different form by Margulis [Mar] in his proof of the asymptotic

$$\#\{c_{\gamma} \in \mathcal{C}'_{\Gamma} \mid \ell_g(c_{\gamma}) \le t\} \sim \frac{e^{h_g t}}{h_g t}$$

of the number of *primitive* closed geodesics corresponding to the *indivisible* conjugacy classes $\mathcal{C}_{\Gamma}' \subset \mathcal{C}_{\Gamma}$. The key property of Margulis' construction of μ_{BM} , needed in his proof, is a uniform (by a factor of $e^{\pm h_g \cdot t}$) expansion/contraction of the conditional measures of μ_{BM} along unstable/stable foliations of the geodesic flow $\{\Phi^t\}$ on SX.

Paterson-Sullivan measures. Given a point $x \in \tilde{X}$ consider the Poincaré series

$$\Pi(x,s) := \sum_{\gamma \in \Gamma} e^{-s \cdot \operatorname{dist}_{\mathfrak{g}}(x,\gamma x)} \tag{6}$$

which are readily seen to converge for $s > h_g$ and to diverge for $s < h_g$, and, in our setting, the series diverges at the critical exponent $s = h_g$. For $x \in \tilde{X}$ the Patterson-Sullivan measure ν_x is constructed as a weak limit, as $s \searrow h_g$, of the probability measures

$$\nu_{x,s} := \frac{1}{\Pi(x,s)} \sum_{\gamma \in \Gamma} e^{-s \cdot \operatorname{dist}_{\tilde{g}}(x,\gamma x)} \operatorname{Dirac}(\gamma x) \tag{7}$$

on the compactification $\bar{X} \subset \tilde{X} \cup \partial \tilde{X}$. Due to the divergence of (6) at $s = h_g$, the weak limits are supported on $\partial \tilde{X}$. In fact, the weak limit ν_x is unique, has no atoms and has supp $(\nu_x) = \partial \tilde{X}$. All ν_x , $x \in \tilde{X}$, are in the same measure class $[\nu_*]$ and satisfy

$$\frac{d\nu_x}{d\nu_y}(\xi) = e^{-h_g \cdot \beta(x,y,\xi)} \tag{8a}$$

$$\gamma_* \nu_x = \nu_{\gamma_x} \tag{8b}$$

for all isometries γ of (\tilde{X}, \tilde{g}) . The Radon measure m on $\partial^2 \tilde{X}$ defined by

$$dm(\xi,\eta) := e^{-h_g B_x(\xi,\eta)} d\nu_x(\xi) d\nu_x(\eta)$$
(9)

does not depend on the choice of $x \in \tilde{X}$ (this follows from (8a) and (3b)), and is invariant under the diagonal Γ -action (follows from (8b) and (3a)). Moreover, the Γ -action on $(\partial^2 \tilde{X}, m)$ is *ergodic*. Clearly any positive multiple of such a measure shares the same properties.

Geodesic currents, introduced by Bonahon [Bon], are Radon measures on the space $\partial^2 \tilde{X} := \{(\xi,\eta) \mid \xi \neq \eta \in \partial \tilde{X}\}$ of pairs of distinct points on the boundary $\partial \tilde{X}$ of \tilde{X} , which are invariant for the diagonal Γ -action $\gamma : (\xi,\eta) \mapsto (\gamma \cdot \xi, \gamma \cdot \eta)$ and the flip $F : (\xi,\eta) \mapsto (\eta,\xi)$. The space $\partial^2 \tilde{X}$ is naturally identified with the space of geodesic lines $[\xi,\eta]$ connecting $\xi \neq \eta \in \partial \tilde{X}$. Geodesic currents come about in the following consideration: the geodesic flow $\tilde{\Phi} = \{\tilde{\Phi}^t\}$ on the unit tangent bundle $S\tilde{X}$ of the universal cover \tilde{X} commutes with the Γ -action. The natural $\{\tilde{\Phi}^t\}$ -action on the quotient $S\tilde{X}/\Gamma \cong SX$ gives the geodesic flow (SX,Φ^t) ; while the quotient $S\tilde{X}/\tilde{\Phi}$, being naturally identified with the space of geodesic lines and hence with $\partial^2 \tilde{X}$, has a natural Γ -action on $S\tilde{X}/\tilde{\Phi}$ corresponding to the (diagonal) Γ -action on $\partial^2 \tilde{X}$.

This amounts to a natural affine correspondence between the cones of (i) Φ -invariant finite measures on SX, (ii) $\tilde{\Phi} \times \Gamma$ -invariant Radon measures on $S\tilde{X}$, (iii) Γ -invariant Radon measures on $\partial^2 \tilde{X}$. Therefore finite (positive) measures on SX which are invariant under the geodesic flow Φ (and time reversal) stand with one-to-one correspondence with (positive) geodesic currents on $\partial^2 \tilde{X}$. In [Ka] Kaimanovich identified the geodesic currents corresponding to the natural geodesic-flow invariant measures on SX (the Lebesgue-Liouville measure, the harmonic measure and the Bowen-Margulis measure), in particular showing that the geodesic current corresponding to the Bowen-Margulis measure μ_{BM} on SX is precisely a positive multiple $C \cdot m$ of the measure m on $\partial^2 \tilde{X}$ defined in (9), where the constant C is chosen according to the normalization $\mu_{BM}(SX) = 1$.

Locally symmetric manifolds. If (X,g) is a locally symmetric negatively curved manifold, then (\tilde{X},\tilde{g}) is a symmetric space \mathbb{H} (= $\mathbb{H}^n_{\mathbb{R}}$, $\mathbb{H}^k_{\mathbb{C}}$, $\mathbb{H}^l_{\mathbb{Q}}$ or $\mathbb{H}^2_{\mathbb{Q}}$) of a simple real rank-one Lie group $G = \mathrm{Isom}_+(\tilde{X},\tilde{g})$ ($\cong \mathrm{PO}(n,1)$, $\mathrm{PU}(k,1)$, $\mathrm{PSp}(l,1)$, or F^4_{-20}) and $\Gamma = \pi_1(X)$ is a cocompact torsion free lattice in G. In the constant curvature case $\mathbb{H} = \mathbb{H}^n_{\mathbb{R}}$, $\Gamma \subset G = \mathrm{PO}(n,1)$, and identifying the sphere at infinity $\partial \mathbb{H}^n = S^{n-1}$ with $\mathbb{R}^{n-1} \cup \{\infty\}$ via the stereographic projection, the cross-ratio $[\cdot,\cdot,\cdot]_g$ above is proportional to the logarithm of the "usual" cross-ratio

$$[x, y, x', y'] := \log \frac{\|x - y\| \cdot \|x' - y'\|}{\|x' - y\| \cdot \|x - y'\|} \qquad (x, y, x', y' \in \mathbb{R}^{n-1})$$

while the measure m on $\partial^2 \mathbb{H}^n$ can be written as $dm(x,y) = dx \, dy/\|x-y\|^2$. Moreover the ambient Lie group G can be identified (see Sullivan [Su]) as follows

$$G = \{ h \in \text{Homeo}(\partial \mathbb{H}^n) \mid [,,,]_g \circ h = [,,,]_g \}$$

$$\tag{10a}$$

$$= \{ h \in \operatorname{Homeo} \left(\partial \mathbb{H}^n \right) \mid (h \times h)_* m = m \} \tag{10b}$$

The latter characterizations remain valid in other locally symmetric spaces.

2.1 Preliminaries on Gromov hyperbolic groups

The ideal boundary $\partial \Gamma$. Gromov hyperbolic group Γ acts by homeomorphisms on its ideal boundary $\partial \Gamma$. Assuming that Γ is non-elementary and torsion free, the Γ -action is faithful and every $\gamma \in \Gamma$ has two fixed points $\gamma_- \neq \gamma_+$ on $\partial \Gamma$ so that: $\{\gamma^n, n \to \infty\}$ contract $\partial \Gamma \setminus \{\gamma_-\}$ to γ_+ , and $\{\gamma^n, n \to -\infty\}$ contract $\partial \Gamma \setminus \{\gamma_+\}$ to γ_- , uniformly on compact sets. These general properties can be formulated and proved without any reference to a specific metric $d \in D_\Gamma$ or a class $\delta \in \mathcal{D}_\Gamma$. For a positive integer p denote by $\partial^p \Gamma \subset (\partial \Gamma)^p$ the set of distinct p-tuples of points on the boundary $\partial \Gamma$, which is always a locally compact space, but not compact one unless p=1. The Γ -action on $\partial^1 \Gamma = \partial \Gamma$ is minimal; the (diagonal) Γ -action on $\partial^2 \Gamma$ is topologically transitive; and the Γ -action on $\partial^3 \Gamma$ is proper and cocompact. In fact, there exist Γ -equivariant proper maps $\pi : \partial^3 \Gamma \to \Gamma$ (equivariance implies that such a map is surjective).

Gromov product and Gromov metric. Fix a $d \in D_{\Gamma}$, so that (Γ, d) is a Gromov-hyperbolic space with a transitive isometric action of Γ . Recall the notion of the Gromov product $(x \mid y)_q$ on (Γ, d) relative to some $g \in \Gamma$:

$$(x \mid y)_g := \frac{1}{2} (d(x,g) + d(y,g) - d(x,y))$$
 (11)

which extends to the boundary $\partial \Gamma$ by

$$(\xi \mid \eta)_g := \inf\{ \liminf_{i \to \infty} (x_i \mid y_i)_g \mid x_i \to \xi, \ y_i \to \eta \}$$

In [Gr] Gromov constructs a family ρ_g^{ϵ} of metrics on $\partial \Gamma$, where ϵ belongs to some non-trivial range $(0, \epsilon_0)$, so that for each $\epsilon \in (0, \epsilon_0)$ the metric ρ_g^{ϵ} induces the "standard" compact topology on $\partial \Gamma$. The metrics ρ_g^{ϵ} and $\rho_{\gamma g}^{\epsilon}$ are related by $\rho_{\gamma g}^{\epsilon}$ $(\gamma \cdot \xi, \gamma \cdot \eta) = \rho_g^{\epsilon}$ (ξ, η) , so it suffices to understand ρ_e^{ϵ} , and it turns out that

$$C^{-1} e^{-\epsilon \cdot (\xi|\eta)_e} \le \rho_e^{\epsilon}(\xi, \eta) \le C e^{-\epsilon \cdot (\xi|\eta)_e}$$
(12)

for some constant $C = C(\epsilon)$.

Patterson-Sullivan measures. A version of Patterson-Sullivan theory for Gromov hyperbolic groups was carried out by Coornaert [Co]. Let us summarize some of his results which are needed below.

The Poincaré series $\Pi_d(s) := \sum_{\gamma \in \Gamma} e^{-s \cdot d(\gamma, e)}$ converge for all $s > h_d$ and diverge for all $s < h_d$, where the *critical exponent* h_d is given by the *growth*

$$h_d := \lim_{R \to \infty} \frac{1}{R} \log \# \{ \gamma \in \Gamma \mid d(\gamma, e) \le R \}$$
 (13)

In fact, Coornaert shows that there exist constants $0 < C_1 \le C_2 < \infty$ so that

$$C_1 e^{h_{\delta} R} \le \#\{\gamma \in \Gamma \mid d(\gamma, e) \le R\} \le C_2 e^{h_{\delta} R}$$

$$\tag{14}$$

which in particular implies that $\Pi_d(h_d) = \infty$. Denote by $PS(\Gamma, d)$ the set of all weak limits, as $s \searrow h_{\delta}$, of the probability measures

$$\nu_s := \frac{1}{\Pi_d(s)} \sum_{\gamma \in \Gamma} e^{-s \cdot d(\gamma, e)} \operatorname{Dirac}(\gamma)$$

on $\bar{\Gamma} = \Gamma \cup \partial \Gamma$. Due to the divergence of the Poincaré series at the critical exponent h_d , the limit measures $\nu \in PS(\Gamma, d)$ are supported on $\partial \Gamma$. Although in this general setup there is no claim of uniqueness for the limit measure $\nu \in PS(\Gamma, d)$, all such limit measures are in the same measure class $[\nu_*]$ and have bounded Radon-Nikodym derivatives with respect to each other. Furthermore, every $\nu \in PS(\Gamma, d)$ has no atoms and has full support on $\partial \Gamma$. For $\nu \in PS(\Gamma, d)$, the measure m_{ν} on $\partial^2 \Gamma$ defined by

$$dm_{\nu}(\xi,\eta) = e^{2h_{\delta} \cdot (\xi|\eta)_e} d\nu(\xi) d\nu(\eta)$$
(15)

is locally finite and quasi-invariant for the diagonal Γ -action. In fact, the Radon-Nikodym derivatives $\frac{d(\gamma \times \gamma)_*^{-1} m_{\nu}}{dm_{\nu}}$ are uniformly bounded. The diagonal Γ -action on $(\partial^2 \Gamma, m_{\nu})$ is ergodic.

3 Basic Notions of the Coarse-geometric setup

Let Γ be a Gromov hyperbolic group and $\delta \in \mathcal{D}_{\Gamma}$ be a class of left-invariant metrics as defined in the introduction. Fix some metric $d \in \mathcal{D}_{\Gamma}$ from $\delta \in \mathcal{D}_{\Gamma}$. Noting that the growth h_d does not really depend on d but only on δ , hereafter we shall denote it by h_{δ} . Associated with δ there is also the *stable length* function $\ell_{\delta} : \mathcal{C} \to \mathbb{R}_{+}$ defined by

$$\ell_{\delta}(c_{\gamma}) := \lim_{n \to \infty} \frac{d(\gamma^n, e)}{n} \tag{16}$$

Observe that $\ell_{\delta}: \mathcal{C}_{\Gamma} \to \mathbb{R}_{+}$ is well defined, i.e. the limits exist and are independent of the choices of $d \in \delta$ and $\gamma \in c_{\gamma}$. Moreover, ℓ_{δ} is homogeneous in $c \in \mathcal{C}_{\Gamma}$, namely $\ell_{\delta}(c_{\gamma^{n}}) = |n| \cdot \ell_{\delta}(c_{\gamma})$ so that ℓ_{δ} is determined by its values on the subset $\mathcal{C}'_{\Gamma} \subset \mathcal{C}_{\Gamma}$ of the indivisible classes.

Observe that ℓ_{δ} can be considered as a generalization of the marked length spectrum, because in the geometric case of compact negatively curved manifold (X,g) and $\Gamma=\pi_1(X)$ the marked length spectrum can also be computed as

$$\ell_g(c_\gamma) = \lim_{n \to \infty} \frac{\operatorname{dist}_{\tilde{g}}(\gamma^n x, x)}{n}$$

Proposition 1 To every $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ one can canonically associate a geodesic current, i.e. Γ - and flip-invariant locally finite measure, $m_{\bar{\delta}}$ on $\partial^2 \Gamma$, of the form

$$dm_{\bar{\delta}}(\xi,\eta) = e^{2h_{\delta} \cdot f_{\nu}(\xi,\eta)} \, d\nu(\xi) \, d\nu(\eta) \tag{17}$$

where $\nu \in \mathcal{P}(\partial \Gamma)$ is a Patterson-Sullivan measure corresponding to some $d \in \delta$ and $f_{\nu} : \partial^{2}\Gamma \to \mathbb{R}_{+}$ is a symmetric Borel function, uniquely defined up to sets of $\nu \times \nu$ -measure zero. Moreover such measurable function f_{ν} is within bounded distance from the functions $(\xi \mid \eta)_{e}$ and $\epsilon^{-1} \cdot \log \rho_{\epsilon}^{e}(\xi, \eta)$.

Note that the ergodic geodesic current $m_{\bar{\delta}}$ in the Proposition depends only on $\bar{\delta}$ and not on the choices of $d \in \delta$ or $\nu \in PS(\Gamma, d)$. In the geometric context where $\Gamma = \pi_1(X)$ is a fundamental group of a compact negatively curved manifold (X,g) with $d=d_{g,x}$ and $\nu=\nu_x$ being the Patterson-Sullivan measure, one has $f_{\nu}=B_x(\xi,\eta)=2$ ($\xi\mid\eta)_e$ and the geodesic current $m_{\bar{\delta}_g}$ on $\partial^2\Gamma\cong\partial^2\tilde{X}$ corresponds precisely to the Bowen-Margulis measure μ_{BM} on SX (including the normalization, which is explained below). Hence for general $\bar{\delta}\in\mathcal{PD}_{\Gamma}$ we shall refer to $m_{\bar{\delta}}$ as a (generalized) Bowen-Margulis geodesic current associated to $\bar{\delta}\in\mathcal{PD}_{\Gamma}$.

Proof of Proposition 1. Fix a $\delta \in \mathcal{D}_{\Gamma}$ and choose a representative $d \in D_{\Gamma}$ of δ and a Patterson-Sullivan measure $\nu \in PS(\Gamma, d)$. Since ν has no atoms, the measure class $[\nu \times \nu]$ on $\partial^2 \Gamma$ can be considered on $\partial \Gamma \times \partial \Gamma$. This measure class contains an *invariant* measure for the diagonal Γ -action iff there is a $[\nu \times \nu]$ -measurable solution $f_{\nu}(\xi, \eta)$ to the cohomological equation:

$$2h_{\delta} \cdot [f_{\nu}(\gamma \cdot \xi, \gamma \cdot \eta) - f_{\nu}(\xi, \eta)] = \sigma_{\nu}(\gamma, \xi) + \sigma_{\nu}(\gamma, \eta)$$
 (18)

where $\sigma_{\nu}(\gamma,\xi) = \log \frac{d\gamma^{-1}\nu}{d\nu}(\xi)$ is the logarithmic Radon-Nikodym cocycle. Recall that Coornaert shows that $f_0(\xi,\eta) = (\xi \mid \eta)_e$ "almost" satisfies (18) in the sense that the cocycle

$$\Delta(\gamma, (\xi, \eta)) := \sigma_{\nu}(\gamma, \xi) + \sigma_{\nu}(\gamma, \eta) - 2h_{\delta} \cdot [f_0(\gamma \cdot \xi, \gamma \cdot \eta) - f_0(\xi, \eta)]$$

is bounded in $L^{\infty}([\nu \times \nu])$ uniformly over Γ . It is a general fact that every uniformly bounded measurable cocycle $\Delta: \Gamma \times \Omega \to \mathbb{R}$ over any group action (Ω, Γ) with a quasi-invariant measure is an L^{∞} -coboundary. Indeed taking

$$\phi(\omega) := \sup_{\gamma' \in \Gamma} \Delta(\gamma', \omega)$$

one verifies that $\Delta(\gamma, \omega) = \phi(\omega) - \phi(\gamma \cdot \omega)$ using the cocycle equation

$$\Delta(\gamma'\gamma,\omega) = \Delta(\gamma',\gamma\cdot\omega) + \Delta(\gamma,\omega)$$

Hence, the cohomological equation (18) has a solution f_{ν} which is within bounded L^{∞} distance from $f_0(\xi,\eta) = (\xi \mid \eta)_{e}$, which in turn is within

bounded distance from $\epsilon^{-1} \cdot \log \rho_e^{\epsilon}(\xi, \eta)$ by (12). This proves the existence of Γ -invariant measures m in the class $[\nu \times \nu]$. Due to the ergodicity such a solution f_{ν} is unique up to an additive constant, and therefore all such measures m are positively proportional i.e. form a ray $\overline{m} := \{\lambda \cdot m\}_{\lambda>0}$. Observe that the choices of the scaling for δ in $\overline{\delta}$ and of the representatives $d \in \delta$ and $\nu \in PS(\Gamma, d)$ have no effect on the measure classes $[\nu]$ and $[\nu \times \nu]$, so that the ray \overline{m} of Γ -invariant measures in the class $[\nu \times \nu]$ is independent of these choices. In the proposition we have singled out a particular measure $m_{\overline{\delta}} \in \overline{m}$. This is done by an appropriate normalization which will be explained below (the normalization is not entirely obvious because \overline{m} consists of infinite measures).

The abstract Geodesic Flow of $\delta \in \mathcal{D}_{\Gamma}$. Let $m \in \bar{m}$ be one of the measures constructed above. It is of the form $dm = e^{2h_{\delta} \cdot f_{\nu}} \nu \times \nu$. Consider the space $\tilde{Y} = \partial^{2}\Gamma \times \mathbb{R}$ equipped with the locally finite measure $d\tilde{m} = dm(\xi, \eta) dt$ and let Γ -act on (\tilde{Y}, \tilde{m}) by

$$\gamma: (\xi, \eta, t) \mapsto \left(\gamma \cdot \xi, \ \gamma \cdot \eta, \ t + \frac{1}{h_{\delta}} \sigma_{\nu}(\gamma, \xi)\right)$$

where $\sigma_{\nu}(\gamma, \xi) = \log(d\gamma^{-1}\nu/d\nu(\xi))$ is the logarithmic Radon-Nikodym cocycle of ν . This is a measure-preserving Γ -action, which commutes with the following \mathbb{R} -flow $\tilde{\Phi} = \{\tilde{\Phi}^t\}$ acting only in the \mathbb{R} -coordinate

$$\tilde{\varPhi}^s : (\xi, \eta, t) \mapsto (\xi, \eta, t + s)$$

Observe that although the choice of ν and hence that of σ_{ν} needed for the definition of the Γ -action on \tilde{Y} are not canonical, the measure class $[\nu]$ is uniquely determined (by $\bar{\delta}$). Therefore any other measure ν' in the class $[\nu]$ would define a *cohomologous* Radon-Nikodym cocycle

$$\sigma_{\nu'}(\gamma, \xi) = \sigma_{\nu}(\gamma, \xi) + \phi(\gamma \cdot \xi) - \phi(\xi)$$

where $\phi = \log(d\nu'/d\nu)$, and the Γ -action on \tilde{Y} defined using $\sigma_{\nu'}$ would be measurably isomorphic to the one for σ_{ν} by the isomorphism $(\xi, \eta, t) \mapsto (\xi, \eta, t + \phi(\xi))$, which commutes with $\tilde{\Phi}$. Therefore, in the measure-theoretical sense the $\Gamma \times \tilde{\Phi}$ -actions on (\tilde{Y}, \tilde{m}) are canonically defined.

The coarse-geometric interpretation of σ_{ν} being (roughly) a h_{δ} -multiple of a "Busemann function" β (in the general coarse-geometric context the latter can be defined only roughly) allows to show that the Γ -action on \tilde{Y} admits a bounded fundamental domain $Y \subset \tilde{Y}$. Therefore $0 < \tilde{m}(Y) < \infty$ and \tilde{m} , and hence m on $\partial^2 \Gamma$, can be canonically normalized by $\tilde{m}(Y) = 1$. It is this normalization of $m \in \bar{m}$ which is denoted by $m_{\bar{\delta}}$ in Proposition 1.

With thus normalized $m_{\bar{\delta}}$ on $\partial^2 \Gamma$ (and $\bar{m}_{\bar{\delta}}$ on \tilde{Y}) one can define (measure-theoretically) the "geodesic flow" $\Phi = \{\Phi^t\}$ on Y as the quotient of the

 $\tilde{\Phi}$ -action on \tilde{Y} by Γ , so that the restriction μ_{δ} of $\tilde{m}_{\bar{\delta}}$ to Y becomes a Φ -invariant probability measure on Y. In fact, (Y, m_{δ}, Φ^t) is an ergodic flow, because $m_{\bar{\delta}}$ was Γ -ergodic, and moreover one can show that the metric entropy $h(Y, \mu_{\delta}, \Phi^1)$ of this flow is precisely h_{δ} . (Note that μ_{δ} depends on h_{δ} and is therefore scale dependent, although $m_{\bar{\delta}}$ is not).

In the geometric context, where $\Gamma = \pi_1(X)$ and $\delta = [d_{g,x}]$ arise from a negatively curved Riemannian structure g on X, one has by (8a) $\sigma_{\nu}(\gamma, \xi) = h_{\delta} \cdot \beta(x, \gamma x, \xi)$ and $(Y, \mu_{\delta}, \Phi^t)$ is naturally (measurably) isomorphic to the usual geodesic flow (SX, μ_{BM}, Φ^t) with the Bowen-Margulis measure μ_{BM} .

Let us also point out, that the geodesic current $m_{\bar{\delta}}$ admits an alternative construction, analogous to the Bowen's definition of μ_{BM} , namely as the weak limit $m_{\bar{\delta}} = \lim_{t \to \infty} m_t$ of the atomic geodesic currents

$$m_{t} := \left(\sum_{\ell_{\delta}(c_{\gamma}) < t} \ell_{\delta}(c_{\gamma})\right)^{-1} \cdot \sum_{\{\gamma \in \Gamma \mid \ell_{\delta}(c_{\gamma}) < t\}} \ell_{\delta}(c_{\gamma}) \cdot \operatorname{Dirac}(\gamma_{-}, \gamma_{+})$$
(19)

which precisely correspond to the closed geodesics in the geometric context of Bowen's construction. We shall not pursue this analogy here, however.

The Cross-Ratio. Let us generalize the notion of the (symplectic) cross-ratio to the coarse-geometric setup as follows. Given a hyperbolic group Γ and $\delta \in \mathcal{D}_{\Gamma}$ write the associated Bowen-Margulis geodesic current $m_{\bar{\delta}}$ in the form (17) and define the cross-ratio to be the measurable function $[,,,]_{\bar{\delta}}: \partial^4 \Gamma \to \mathbb{R}_+$

$$[\xi, \eta, \xi', \eta']_{\delta} := f_{\nu}(\xi, \eta) + f_{\nu}(\xi', \eta') - f_{\nu}(\xi, \eta') - f_{\nu}(\xi', \eta) \tag{20}$$

First let us check that the definition depends only on δ and not on ν . If ν' is a measure on $\partial\Gamma$ so that $dm_{\bar{\delta}}(\xi,\eta) = \exp(2h_{\delta} \cdot f_{\nu'}(\xi,\eta)) d\nu'(\xi) d\nu'(\eta)$ then ν' and ν are in the same measure class and $f_{\nu'}$ is a measurable solution to the cohomological equation

$$2h_{\delta} \left[f_{\nu'}(\gamma \cdot \xi, \gamma \cdot \eta) - f_{\nu'}(\xi, \eta) \right] = \sigma_{\nu'}(\gamma, \xi) + \sigma_{\nu'}(\gamma, \eta)$$

$$= \sigma_{\nu}(\gamma, \xi) + \sigma_{\nu}(\gamma, \eta) + \phi(\gamma \cdot \xi) - \phi(\xi) + \phi(\gamma \cdot \eta) - \phi(\eta)$$

$$= 2h_{\delta} \cdot \left[f_{\nu}(\gamma \cdot \xi, \gamma \cdot \eta) + \phi(\gamma \cdot \xi) + \phi(\gamma \cdot \eta) - \phi(\eta) \right]$$

$$- f_{\nu}(\xi, \eta) - \phi(\xi) - \phi(\eta) \right]$$

where $\phi = \log(d\nu'/d\nu)$. By ergodicity such a solution $f_{\nu'}$ is unique up to a constant, and one deduces that $\nu \times \nu$ -a.e.

$$f_{\nu'}(\xi, \eta) = f_{\nu}(\xi, \eta) + \phi(\xi) + \phi(\eta) + C.$$

Now one easily verifies that the substitution of $f_{\nu'}$ instead of f_{ν} in (20) does not change the value of the expression. Therefore the cross-ratio $[,,,]_{\delta}: \partial^4 \Gamma \to \mathbb{R}$ is well defined, up to ν^4 -null sets. From Proposition 1 the cross-ratio $[\xi,\eta,\xi',\eta']_{\delta}$ stays within bounded distance from

$$(\xi \mid \eta)_e + (\xi' \mid \eta')_e - (\xi' \mid \eta)_e - (\xi \mid \eta')_e$$

One can also prove the standard identities for the cross-ration $[,,,]_{\delta}$, and verify that $[,,,]_{\delta}$ is Γ -invariant.

Let us point out that in the geometric context of a compact negatively curved manifold (X, g) or, more generally, in the case of δ arising from an isometric convex cocompact Γ -action on a CAT(-1) space, the cross-ratio is a continuous function on $\partial^4 \Gamma$, since it can be defined using the Busemann function $B_x(\xi, \eta)$ which is *continuous*. However in the general situation above, our definition of the cross-ratio gives only a measurable function.

4 Some Results

Theorem 2 For Γ and $\delta, \delta' \in \mathcal{D}_{\Gamma}$ the following are equivalent:

- (a) $m_{\bar{\delta}}$ and $m_{\bar{\delta}'}$ are not mutually singular.
- (b) $m_{\bar{\delta}} = m_{\bar{\delta}'}$.
- (c) $h_{\delta} \cdot \ell_{\delta}(c_{\gamma}) = h_{\delta'} \cdot \ell_{\delta'}(c_{\gamma})$ for $\gamma \in \Gamma$.
- (d) $h_{\delta} \cdot \delta = h_{\delta'} \cdot \delta'$ in \mathcal{D}_{Γ} .
- (e) $\bar{\delta} = \bar{\delta}' \text{ in } \mathcal{P} \mathcal{D}_{\Gamma}$.

Note that in the geometric setup, where X is a compact manifold, g and g' are two negatively curved Riemannian structures on X, $\Gamma = \pi_1(X)$ and $\delta = \delta_g$, $\delta' = \delta_{g'}$ in \mathcal{D}_{Γ} , the Theorem asserts that the condition $\ell_g = \ell_{g'}$ (which by [Ot2] Thm 2.2 is equivalent to $[,,,]_g = [,,,]_{g'}$) is also equivalent to: $\operatorname{dist}_{\tilde{g}} - \operatorname{dist}_{\tilde{g}'}$ being bounded on \tilde{X} . Hence the following is a reformulation of the Marked Length Spectrum Rigidity Conjecture:

For a compact manifold X with negatively curved Riemannian metrics g and g' the universal covers (\tilde{X}, \tilde{g}) and (\tilde{X}, \tilde{g}') are roughly isometric if and only if they are isometric.

Proof of Theorem 2. The implications (e) \Leftrightarrow (d) \Rightarrow (c) are straightforward, the equivalence (a) \Leftrightarrow (b) follows from the ergodicity of the corresponding "geodesic flows", while (c) \Rightarrow (b) follows from (19). Here let us show that (b) \Rightarrow (d). After a rescaling we can assume that $h_{\delta} = h_{\delta'} = 1$, which together with $m_{\bar{\delta}} = m_{\bar{\delta}'}$ yields $[\xi_1, \eta_1, \xi_2, \eta_2]_{\delta} = [\xi_1, \eta_1, \xi_2, \eta_2]_{\delta'}$. Now choose metrics $d \in \delta$ and $d' \in \delta'$ and let $(\cdot | \cdot)_e$ and $(\cdot | \cdot)'_e$ denote the associated Gromov products. Since $[\cdot, \cdot, \cdot]_{\delta}$ and $[\cdot, \cdot, \cdot]_{\delta'}$ can be uniformly approximated by the four term expressions in the corresponding Gromov products we conclude that for a.e. ξ, ξ_0, η, η_0 the difference

$$\begin{split} \left[\left(\xi \mid \eta \right)_{e} - \left(\xi \mid \eta \right)_{e}' \right] + \\ + \left[\left(\xi_{0} \mid \eta_{0} \right)_{e} - \left(\xi_{0} \mid \eta_{0} \right)_{e}' \right] - \left[\left(\xi_{0} \mid \eta \right)_{e} - \left(\xi_{0} \mid \eta \right)_{e}' \right] - \left[\left(\xi \mid \eta_{0} \right)_{e} - \left(\xi \mid \eta_{0} \right)_{e}' \right] \end{split}$$

is uniformly bounded. Fix $\xi_0 \neq \eta_0$ and focus on ξ , η away from some fixed small neighborhoods of ξ_0 and η_0 . Then the three difference, except the one in the first line above, are bounded, and therefore $|(\xi \mid \eta)_e - (\xi \mid \eta)_e'|$ is bounded

for such ξ, η . Applying this argument to another pair $\xi_0 \neq \eta_0$ which has "excluded" neighborhoods which do not overlap with those of the previous ξ_0, η_0 , we conclude that there is C so that for all $\xi \neq \eta$

$$\left| (\xi \mid \eta)_e - (\xi \mid \eta)_e' \right| \le C \tag{21}$$

Now recall that there exist Γ -equivariant (hence onto) proper maps $\pi: \partial^3 \Gamma \to \Gamma$. We claim that on $\partial^3 \Gamma$ the difference

$$d(e, \pi(\xi_1, \xi_2, \xi_3)) - \max_{i \neq j \in \{1, 2, 3\}} (\xi_i \mid \xi_j)_e$$
 (22)

is uniformly bounded (look at the case of a tree as a convincing example). Hence the bound (21) on Gromov-products together with (22) imply that $d(e,\gamma)-d'(e,\gamma)$ is bounded. Since d and d' are left invariant we deduce that d-d' is bounded and $\delta=\delta'$.

Theorem 3 Given Γ , $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ and $m_{\bar{\delta}}$ on $\partial^2 \Gamma$ as above, let $H_{\bar{\delta}}$ denote the topological group

$$H_{\bar{\delta}} := \{ h \in \operatorname{Homeo}(\partial \Gamma) | (h \times h)_* m_{\bar{\delta}} = m_{\bar{\delta}} \}$$

with the open-compact topology induced from Homeo ($\partial \Gamma$). Then $H_{\bar{\delta}}$ is a locally compact group which contains Γ as a cocompact lattice.

Remark 4 Fix a non-elementary torsion free Gromov hyperbolic group Γ , and consider the collection \mathcal{H}_{Γ} of the locally compact groups $H_{\bar{\delta}}$ and the cocompact lattice embeddings $j_{\bar{\delta}}: \Gamma \hookrightarrow H_{\bar{\delta}}$, for all $\bar{\delta} \in \mathcal{PD}_{\Gamma}$. It can be shown that \mathcal{H}_{Γ} is the universal object for Γ in the following sense: given any embedding $i: \Gamma \hookrightarrow L$ of Γ in a locally compact group L as a cocompact lattice, there exists $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ and a continuous homomorphism $p: L \to H_{\bar{\delta}}$, so that Ker p is a compact normal subgroup in L disjoint from $i(\Gamma)$, and $p(L) \subseteq H_{\bar{\delta}}$ is a closed cocompact subgroup containing $j_{\bar{\delta}}(\Gamma)$, and furthermore $p \circ i = j_{\bar{\delta}}$. This can be shown by choosing a left-invariant proper quasi-metric d on L and restricting it to Γ to form $d \in D_{\Gamma}$ and $\delta = [d]$. Then one can apply the arguments from [Fu1] producing a Γ -equivariant continuous homomorphism $p: L \to \mathrm{Homeo}\,(\partial \Gamma)$ with locally compact image p(L) and compact kernel, and verifying that p(L) preserves $m_{\bar{\delta}}$.

Examples 5 (i) Let (X, g_0) be a locally symmetric negatively curved manifold, so that (\tilde{X}, \tilde{g}_0) is a symmetric space \mathbb{H} , $G = \operatorname{Isom}_+(\mathbb{H})$ is a simple connected real Lie group and $\bar{G} = \operatorname{Isom}(\mathbb{H})$ contains G as a subgroup of index two. Then $\Gamma = \pi_1(X)$ is a cocompact lattice in G acting on \mathbb{H} $(X = \mathbb{H}/\Gamma)$. Let $\delta_0 = [d_{x,g_0}] \in \mathcal{D}_{\Gamma}$ be the corresponding class of metrics on Γ . Then there is a natural isomorphism between $H_{\bar{\delta_0}}$ and \bar{G} under which $\Gamma \subset H_{\bar{\delta_0}}$ corresponds to the embedding of Γ in $G \subset \bar{G}$.

(ii) Let $\Gamma = F_k$ be a free group on $1 < k < \infty$ free generators $\gamma_1, \ldots, \gamma_k$, and $w = (w_1, \ldots, w_k)$ be some positive numbers. Denote by d_w the weighted left invariant word metric on Γ , defined by $d_w(\gamma, \gamma \gamma_i^{\pm 1}) = w_i$, and denote $\delta_w = [d_w] \in \mathcal{D}_{\Gamma}$. Then the group $H_{\bar{\delta}_w}$ can be naturally identified with the group Isom (T_w) of the isometries of the metric tree T_w which is the Cayley graph of F_k where the edges $(\gamma, \gamma \gamma_i^{\pm 1})$ have length w_i . Observe that Isom (T_w) is a totally disconnected locally compact group containing F_k as a cocompact lattice (since F_k acts transitively on T_w the quotient Isom $(T_w)/F_k$ can be identified with the stabilizer of a vertex $o \in T_w$ which is a compact group). If $w_1 = w_2 = \ldots = w_k$ then $H_{\bar{\delta}_w}$ is Aut (T) automorphism group of the 2k-regular tree. The classification of locally compact groups containing F_k as a cocompact lattice obtained by Mosher-Sageev-Whyte [MSW] basically shows that that the above examples of $H_{\bar{\delta}_w}$ describe all possible $H_{\bar{\delta}}$ for the free group $\Gamma = F_k$.

Proof of Theorem 3. Since $h \in H_{\bar{\delta}}$ preserve $m_{\bar{\delta}} = e^{2h_{\bar{\delta}} \cdot f_{\nu}} \nu \times \nu$ the measure ν is $H_{\bar{\delta}}$ -quasi-invariant and the logarithmic Radon-Nikodym cocycle $\sigma_{\nu} : H_{\bar{\delta}} \times (\partial \Gamma, \nu) \to \mathbb{R}$ defined by $\sigma_{\nu}(h, \xi) = \log \frac{dh^{-1}\nu}{d\nu}(\xi)$ satisfies the cohomological equation

$$2h_{\delta} \cdot [f_{\nu}(h \cdot \xi, h \cdot \eta) - f_{\nu}(\xi, \eta)] = \sigma_{\nu}(h, \xi) + \sigma_{\nu}(h, \eta) \tag{23}$$

Recall that the functions $f_{\nu}(\xi, \eta)$, $(\xi \mid \eta)_{e}$ and $\epsilon^{-1} \cdot \log \rho_{e}^{\epsilon}(\xi, \eta)$ differ by at most bounded amount, which gives the estimate

$$\frac{\rho_e^{\epsilon} (h \cdot \xi, h \cdot \eta)}{\rho_e^{\epsilon} (\xi, \eta)} \simeq \left(e^{\sigma_{\nu}(h, \xi) + \sigma_{\nu}(h, \eta)} \right)^{\epsilon/2h_{\delta}} \tag{24}$$

for $\nu \times \nu$ -a.e. (ξ, η) . Thus if $h \in H_{\bar{\delta}}$ has a finite norm $\|h\|_{\sigma} := \|\sigma_{\nu}(h, \cdot)\|_{\infty}$ it is (a ν -a.e. and hence everywhere by continuity) Lipschitz map of $(\partial \Gamma, \rho_e^{\epsilon})$. Moreover every subset $V \subset H_{\bar{\delta}}$ with $\sup_{h \in V} \|h\|_{\sigma} < \infty$ has a uniformly bounded Lipschitz norm and is therefore precompact in Homeo $(\partial \Gamma)$ by Arzela-Ascoli theorem. We claim that for r > 0 sufficiently small, the neighborhood

$$V_r := \{ h \in H_{\bar{\delta}} \mid \forall \xi \in \partial \Gamma : \ \rho_e^{\epsilon} (h \cdot \xi, \xi) < r \}$$

of the identity in $H_{\bar{\delta}}$ satisfies $\sup_{h \in V_r} \|h\|_{\sigma} < \infty$. By the previous argument this would imply that V_r is precompact, and as $H_{\bar{\delta}}$ is a closed subgroup of the complete group Homeo $(\partial \Gamma)$ it would follow that $H_{\bar{\delta}}$ is locally compact. For t > 0 let $E_t := \{(\xi, \eta) \in \partial^2 \Gamma \mid \rho_e^{\epsilon}(\xi, \eta) > t\}$. Observe that $(\xi \mid \eta)_e$ and hence $f_{\nu}(\xi, \eta)$ is bounded, say by $c_1(t)$, on E_t . The triangle inequality implies that $h \in V_r$ map E_{3r} into E_r , which gives the bound

$$|f_{\nu}(h \cdot \xi, h \cdot \eta) - f_{\nu}(\xi, \eta)| \le c_2(r) := c_1(3r) + c_1(r)$$

for $\nu \times \nu$ -a.e. $(\xi, \eta) \in E_{3r}$. In view of (23) for $h \in V_r$ we have

$$|\sigma_{\nu}(h,\xi) + \sigma_{\nu}(h,\eta)| \le c_3(r) := 2h_{\delta}c_2(r)$$
 (25)

 $\nu \times \nu$ -a.e. on E_{3r} . For $\xi \in \partial \Gamma$ and t > 0 denote $A_t(\xi) = \{\eta \mid \rho_e^{\epsilon}(\xi, \eta) > t\}$. Since ν has no atoms and has full support on $\partial \Gamma$, the function $a(\xi) := \nu(A_{3r}(\xi))$ is continuous and positive, so that $\alpha := \min_{\xi} a(\xi) > 0$. Hence for ν -a.e. ξ

$$\frac{1}{\alpha} \ge \frac{1}{\nu(A_{3r}(\xi))} \ge \frac{\nu(hA_{3r}(\xi))}{\nu(A_{3r}(\xi))} \ge \frac{1}{\nu(A_{3r}(\xi))} \int_{A_{3r}(\xi)} e^{\sigma_{\nu}(h,\eta)} d\nu(\eta)
\ge \inf_{\eta \in A_{3r}(\xi)} e^{\sigma_{\nu}(h,\eta)} \ge e^{-c_3(r) - \sigma_{\nu}(h,\xi)}$$

This shows that for $h \in V_r$ and ν -a.e. $\xi \in \partial \Gamma$ one has $\sigma_{\nu}(h, \cdot) \geq \log \alpha - c_3(r)$ which, combined with (25), gives $\sup_{h \in V_r} \|h\|_{\sigma} < \infty$. This proves that $H_{\bar{\delta}}$ is a locally compact group.

Finally, since Γ is a discrete subgroup of $\operatorname{Homeo}(\partial\Gamma)$ which preserves $m_{\bar{\delta}}$, it forms a discrete subgroup of $H_{\bar{\delta}}$, and it remains to show that $H_{\bar{\delta}}/\Gamma$ is compact. Recalling that the Γ -action on $\partial^3\Gamma$ is cocompact (and proper as well) it suffices to verify that the $H_{\bar{\delta}}$ -action on $\partial^3\Gamma$ is proper. This readily follows from the already established characterization: $h_n \to \infty$ in $H_{\bar{\delta}}$ if (and only if) $\|h_n\|_{\sigma} \to \infty$, and the relation (24).

Examples 5 and Theorem 3 suggest interesting lattice embeddings of hyperbolic groups in locally compact groups of the form $H_{\bar{\delta}}$. However it seems that such examples are rare and, moreover can be used to single out rank one lattices Γ (i.e. fundamental groups of locally symmetric negatively curved manifolds) among other groups, and among all possible left invariant metrics $\bar{\delta} \in \mathcal{D}_{\Gamma}$ on such Γ to single out the metrics coming from the corresponding symmetric space. This is maid precise in the following Theorems 6 and 7.

Let X be a compact manifold which admits a locally symmetric negatively curved Riemannian metric g_0 . Then the universal Riemannian cover (\tilde{X}, \tilde{g}_0) is a symmetric rank-one space \mathbb{H} and the natural $\Gamma = \pi_1(X)$ action on \mathbb{H} gives rise to an embedding $\Gamma \subset G = \operatorname{Isom}_+(\mathbb{H})$. The embedding depends on the choice of a base point (a change of the base point amounts to a conjugation of Γ in G) but does not effect the class $\delta_{g_0} \in \mathcal{D}_{\Gamma}$. Furthermore the projective class $\bar{\delta}_{g_0} \in \mathcal{PD}_{\Gamma}$ is not sensitive to the scaling of the locally symmetric metric g_0 on X. If dim X > 2 then by Mostow rigidity there is a unique, up to conjugation, embedding $\Gamma \subset G$ and therefore a unique $\bar{\delta}_{g_0} \in \mathcal{PD}_{\Gamma}$; while in the case of surfaces $G = \operatorname{PSL}_2(\mathbb{R})$ and there is a moduli space of "symmetric" $\bar{\delta}_{g_0} \in \mathcal{PD}_{\Gamma}$ on the surface group Γ .

Theorem 6 Let $\Gamma = \pi_1(X)$ be a fundamental group of a compact manifold X which admits a locally symmetric negatively curved Riemannian metric. Then for $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ the associated group $H_{\bar{\delta}}$ is discrete and contains Γ as a finite index subgroup, unless $\bar{\delta} = \bar{\delta}_{g_0}$ where g_0 is a locally symmetric Riemannian metric on X. In the latter case there is an isomorphism $H_{\bar{\delta}} \cong G = \mathrm{Isom}(\tilde{X}, \tilde{g}_0)$ which is compatible with the embeddings of Γ in $H_{\bar{\delta}}$ and in $\mathrm{Isom}(\tilde{X}, \tilde{g}_0)$. Furthermore, for any Riemannian metric g on X the

associated $\bar{\delta}_g \in \mathcal{PD}_{\Gamma}$ has non-discrete $H_{\bar{\delta}_g}$ iff the metric g is locally symmetric.

Hence non-triviality of $H_{\bar{\delta}}$ (in the sense of not being non-discrete) characterizes locally symmetric metrics on X in \mathcal{PD}_{Γ} .

Theorem 6 will be deduced from the following

Theorem 7 Let Γ be a Gromov hyperbolic group, $\bar{\delta} \in \mathcal{PD}_{\Gamma}$ and $H_{\bar{\delta}}$ be as in Theorem 3. Assume condition (*) below. Then one of the following two alternatives holds:

- (A) either $H_{\bar{\delta}}$ is a discrete group containing Γ as a finite index subgroup, or
- (B) Γ is a torsion free cocompact lattice in a rank-one group $\bar{G} = \mathrm{Isom}\,(\mathbb{H})$ where \mathbb{H} is a negatively curved symmetric space, $H_{\bar{\delta}} \cong \bar{G}$ and $\bar{\delta} = \bar{\delta}_{g_0}$ corresponds to a \bar{G} -invariant metric on the symmetric space \mathbb{H} .

The assumption (*) in Theorem 7 stands for " $H_{\bar{\delta}}$ has No Small Subgroups (NSS) property", which means that there is a neighborhood U of the identity in $H_{\bar{\delta}}$ which contains no non-trivial subgroups. This assumption can be verified in the following cases:

- (i) Γ is a cocompact lattice in a real Lie group G of rank one. This allows to deduce Theorem 6 from the one above.
- (ii) $\Gamma = \pi_1(X)$ where X is a compact n-manifold, $\delta = \delta_g$ where g is a negatively curved Riemannian metric on X satisfying the following pinching condition

$$p(g) \le 1 + \frac{2}{n-1} \tag{26}$$

where p(g) = b/a with $-b^2 \le K_g \le -a^2 < 0$ are bounds on the sectional curvature of g.

(iii) Γ is quasi-isometric to a fundamental group Γ' of a compact n-manifold X which admits a negatively curved Riemannian structure g so that

$$\lambda(\overline{\delta}, \overline{\delta_g'}) \cdot p(g) \le 1 + \frac{2}{n-1} \tag{27}$$

where p(g)=b/a is a bound on the pinching $-b^2 \leq K_g \leq -a^2 < 0$ of the sectional curvatures of g, and $\lambda(\overline{\delta}, \overline{\delta_g'}) = \lambda_2/\lambda_1$ is a bound on the multiplicative constants λ_1 λ_2

$$\lambda_1 \cdot d(\gamma_1, \gamma_2) - C \le d'(q(\gamma_1), q(\gamma_2)) \le \lambda_2 \cdot d(\gamma_1, \gamma_2) + C \tag{28}$$

of representatives $d \in D_{\Gamma}$, $d' \in D_{\Gamma'}$ for $\bar{\delta}$ and $\overline{\delta'_g}$ and the given quasi-isometry $q: \Gamma \to \Gamma'$.

Let us recall the following generalization of Hilbert's 5-th problem

Conjecture 8 (Hilbert-Smith) A locally compact group acting faithfully by homeomorphisms on a topological manifold has No Small Subgroups.

Hilbert-Smith Conjecture implies that assumption (*) in Theorem 7 is satisfied whenever the boundary $\partial \Gamma$ of Γ is a topological manifold, in particular in the case of fundamental groups $\Gamma = \pi_1(X)$ of compact manifolds X which admit negatively curved Riemannian structure (in which case $\partial \Gamma = \partial \tilde{X}$ is homeomorphic to a sphere). Hilbert-Smith Conjecture has been proven for actions by C^1 -diffeomorphisms (Bochner Montgomery [BM]), and more recently for actions by Lipschitz maps (Repovš and Ščepin [RS]), and Hölder homeomorphisms with exponent dim $X/(\dim X + 2)$ (Maleshich [Mal]). This is used below.

Before proving Theorem 7 let us deduce condition (*) (i.e. $H_{\bar{\delta}}$ has NSS) in cases (i)-(iii). In case (i) Γ is a cocompact lattice both in a rank-one Lie group $\bar{G} = \text{Isom}(\mathbb{H})$ and in $H_{\bar{\delta}}$. The general structure of locally compact groups H containing Γ as a cocompact lattice is described in [Fu1] Theorems B and C and it follows that in our particular situation where $H_{\bar{\delta}} \subseteq \text{Homeo}(\partial \Gamma)$ such $H_{\bar{\delta}}$ is either discrete or is isomorphic to $\text{Isom}(\mathbb{H})$ or $\text{Isom}_{+}(\mathbb{H})$. In all these cases it has the NSS property.

Consider case (iii), which contains (ii) as a particular case. The quasiisometry q defines a homeomorphism $\partial q:\partial\Gamma\to\partial\Gamma'\cong\partial\tilde{X}$ which is a topological sphere S^{n-1} . Choose d, d' left invariant metrics on Γ and Γ' as in (28), and choose $\epsilon>0$, $\epsilon'>0$ so that one can form Gromov metrics $\rho:=\rho_e^\epsilon$ and $\rho':=\rho_e^\epsilon$ on $\partial\Gamma$ and $\partial\Gamma'$, respectively. Let us identify these boundaries with the sphere S^{n-1} and let ρ_0 denote the standard round metric on S^{n-1} . These metrics are related by the following inequalities

$$C^{-1}\rho_0^{b/\epsilon'} \leq \rho' \leq C \cdot \rho_0^{a/\epsilon'} \qquad C^{-1}\rho^{\lambda_2\epsilon/\epsilon'} \leq \rho' \leq C \cdot \rho^{\lambda_1\epsilon/\epsilon'}$$

where the first one follows from comparison theorems and the second from (12) and (28). Combining these inequalities and the fact that a neighborhood V of the identity in $H_{\bar{\delta}}$ acts by Lipschitz homeomorphisms with respect to the metric ρ , one estimates

$$\rho_{0}(h \cdot \xi, h \cdot \eta) \leq C_{1} \cdot \rho'(h \cdot \xi, h \cdot \eta)^{\epsilon'/b} \leq C_{2} \cdot \rho(h \cdot \xi, h \cdot \eta)^{(\epsilon'/b) \cdot (\lambda_{1} \epsilon/\epsilon')}
\leq C_{3} \cdot \rho(\xi, \eta)^{\epsilon \lambda_{1}/b} \leq C_{4} \cdot \rho'(\xi, \eta)^{(\epsilon \lambda_{1}/b) \cdot (\epsilon'/\lambda_{2} \epsilon)}
\leq C_{5} \cdot \rho_{0}(\xi, \eta)^{(a/b) \cdot (\lambda_{1}/\lambda_{2})}$$

The result [Mal] of Maleshich proving Hilbert-Smith conjecture for $\frac{k}{k+2}$ -Hölder actions on a compact k-manifold, which is S^{n-1} in our case, combined with condition (27) guarantees that the locally compact group $H_{\bar{\delta}}$ has NSS.

Proof of Theorem 7. Recall that Γ acts minimally and strongly proximally on $\partial \Gamma$, which means that for any $\mu \in \mathcal{P}(\partial \Gamma)$ and any $\xi \in \partial \Gamma$ there is a sequence $\gamma_n \in \Gamma$ so that the point measure $\mathrm{Dirac}(\xi)$ is a weak limit of $(\gamma_n)_*\mu$. These properties of minimality and strong proximality are inherited by the locally compact group $H_{\bar{\delta}} \supset \Gamma$, which still acts faithfully on the space $X = \partial \Gamma$. Such actions are discussed in [Fu2], and it follows from the results there that if $H_{\bar{\delta}}$

is assumed to have No Small Subgroups, then either (A) $H_{\bar{\delta}}$ is a countable discrete group, or (B) $H_{\bar{\delta}}$ is, up to index two, a simple connected rank-one Lie group G with trivial center. In the first case (A), the discrete group $H_{\bar{\delta}}$ has to contain Γ as a finite index subgroup, because Γ is a lattice in $H_{\bar{\delta}}$.

In case (B) Γ is a cocompact lattice in $G \cong \operatorname{Isom}_+(\mathbb{H})$ where $\mathbb{H} \cong G/K$ is the corresponding symmetric space, and Γ can be thought of a fundamental group $\pi_1(X)$ of the locally symmetric space $X = \mathbb{H}/\Gamma$. Let $\delta_0 \in \mathcal{D}_{\Gamma}$ be the (class of) metrics corresponding to the symmetric metric on \mathbb{H} and the given embedding $\Gamma \subset H_{\bar{\delta}} \simeq \operatorname{Isom}_+(\mathbb{H})$, and let $m_{\bar{\delta}_0}$ denote the corresponding Bowen-Margulis current which can be written as

$$dm_{\bar{\delta}_0} = e^{h_0 \cdot B_o(\xi, \eta)} \, d\nu_o(\xi) \, d\nu_o(\eta)$$

where ν_o is the (geometric) Patterson-Sullivan measure of $o \in \mathbb{H}$. This measure $m_{\bar{\delta}_0}$ is preserved by all of Isom (\mathbb{H}) $\supset G$. Moreover, ν_o is preserved by the maximal compact subgroup $K_o = \{g \in G \mid go = o\}$. The original measure $m_{\bar{\delta}} = \exp{(2h_{\bar{\delta}} \cdot f_{\nu})} \ \nu \times \nu$ is preserved by $G \subseteq H_{\bar{\delta}}$, and ν is G-quasi-invariant. Since G (already K_o) acts transitively on $\partial \Gamma \cong \partial \mathbb{H}$ the measures ν and ν_o are in the same measure class, and therefore $m_{\bar{\delta}}$ and $m_{\bar{\delta}_0}$ are absolutely continuous with respect to each other. Hence Theorem 2 gives $\bar{\delta} = \bar{\delta}_0$.

References

[BCG] G. Besson, G. Courtois, S. Gallot, Minimal entropy and Mostow's rigidity theorems, *Ergod. Th. Dynam. Syst.* **16** (1996), no. 4, 623–649.

[BM] S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math. (2) 47 (1946), 639–653.

[Bon] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1, 71–158.

[Bow] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. **94** (1972), 1–30.

[BK] K. Burns and A. Katok, Manifolds with non-positive curvature, Ergod. Th. Dynam. Sys. 5 (1985), 307-317.

[Co] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), no. 2, 241–270.

[Cr] C. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990), no. 1, 150–169.

[Fu1] A. Furman, Mostow-Margulis rigidity with locally compact targets, Geom. and Funct. Anal. 11 (2001), 30-59.

[Fu2] A. Furman, On minimal, strongly proximal actions of locally compact groups, preprint (2000).

[Gr] M. Gromov, Asymptotic invariants of infinite groups, (Geometric group theory 2), LMS Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge.

[GK] V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds, Topology 19 (1980), 301–312.

- [Ha] U. Hamenstädt, Cocycles, symplectic structures and intersection, Geom. and Funct. Anal. 9 (1999), 90–140.
- [Ka] V. Kaimanovich, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), no. 4, 361–393.
- [Mal] I. Maleshich, The Hilbert-Smith conjecture for Hölder actions, Russian Math. Surveys 52 (1997), no. 2, 407–408.
- [Mar] G. A. Margulis, Applications of ergodic theory to investigation of manifolds of negative curvature, Functional Anal. Appl. 3 (1969), 335–336.
- [MSW] L. Mosher, M. Sageev, K. Whyte, Quasi-actions on trees I: Bounded valence, preprint (2000).
- [Ot1] J.-P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative. Ann. of Math. (2) 131 (1990), no. 1, 151–162.
- [Ot2] J.-P. Otal, Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative. Rev. Mat. Iberoamericana 8 (1992), no. 3, 441-456.
- [RS] D. Repovš and E. Sčepin, A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps, *Math. Ann.* **308** (1997), no. 2, 361–364.
- [Su] D. Sullivan, Descrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. 6, No 1 (1982), 57–73.