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Abstract. Let (X, g) be a compact negatively curved Riemannian manifold with
the fundamental group I'. Restricting the lifted metric on the universal cover (X ,9)
of (X, g) to a I'-orbit I'z one obtains a left invariant metric dg,, on I', which is
well defined up to a bounded amount, depending on the choice of the orbit I'z.
Motivated by this geometric example, we study classes [d] of general left-invariant
metrics d on general Gromov hyperbolic groups I', where [di] = [d2] if d1 — d2 is
bounded. It turns out that many of the geometric objects associated with (X, g),
such as: marked length spectrum, cross-ratio, Bowen-Margulis measure - can be
defined in the general coarse-geometric setting. The main result of the paper is a
characterization of the compact negatively curved locally symmetric spaces within
this coarse-geometric setting.

1 Introduction

Compact connected Riemannian manifolds (X, g) with strictly negative sec-
tional curvature are important and much studied objects in Riemannian ge-
ometry and Dynamics. Given such a manifold (X, g) consider the isometric
action of the fundamental group I" = m;(X) on the universal cover (X, §)
and let dg ; denote the following metric on I’

dyg,z(71,72) := distz(y1z, y2r) (1)

where z € X is some fixed point. This is just a restriction of the path metric
dist; on X to the I'-orbit I'z. As the I'-action on (X,dist;) is isometric,
proper and cocompact, the metric dy , on I" is left-invariant and (I, dy,;) is
roughly-isometric to the universal cover (X, dist;) (hereafter rough-isometry
means a quasi-isometry with multiplicative constant one). Moreover, chang-
ing the base point z to y amounts to a bounded change in d, ;, in fact

Idg,z(71,72) — dg,y(71,72)| < 2diamz(X)

Note also that as the Riemannian structure g on X varies, the metrics dg
remain quasi-isometric (generally with non-trivial multiplicative constants)
to each other and to any word metric on the Gromov hyperbolic group I'.
In this paper we shall consider the following general coarse-geometric
setup:
* The author was partially supported by NSF grants DMS-9803607, 0049069 and
CNRS.
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e [' is an infinite discrete non-elementary torsion-free Gromov hyperbolic
group.

e Dy is the collection of all left invariant metrics d on I', which are quasi-
isometric to a word metric on I

e Dr the factor space of Dr consisting of equivalence classes § = [d] of
metrics d € D, where d,d' € Dr belong to the same class 6 = [d] = [d']
if d — d' is bounded.

e PDr is the projective version of Dy, consisting of classes § where d, d’ €
Dr belong to the same class § if there exists a constant A so that d' — \-d
is bounded.

The basic object of this paper are Gromov hyperbolic groups I' equipped
with a class § € Dr or § € PDr as above. Our discussion is motivated and
guided by the geometric setup where I' = 7 (X) is a fundamental group of a
compact manifold X which admits a negatively curved Riemannian structure
g, and 6, € D denotes the class [d, ;] as in (1). The Marked Length Rigidity
Conjecture and the results cited below indicate that much, conjecturally all,
of the Riemannian geometry of (X, g) is determined by d, € Dr, because
the marked length spectrum ¢, of (X, g) is an invariant of §,. However the
general coarse-geometric framework of 6 € D on I allows to consider other
metrics and more general groups, including the following examples: metrics
on hyperbolic groups I" = m(X) corresponding to general (not necessari-
ly negatively curved) Riemannian or Finsler metrics on compact aspherical
manifolds X with I' = 71 (X); Gromov hyperbolic groups I" and metrics in-
duced by convex cocompact isometric I'-actions on C AT (—1) spaces; general
Gromov hyperbolic groups with word metrics, etc.

Our goal in this paper is to present the coarse-geometric point of view
on some known constructions and facts about compact negatively curved
manifolds and try to generalize them to this broader coarse-geometric setup.
The paper contains some basic constructions and results, with further analysis
to be presented elsewhere.

2 The Geometric Setup

Let X be a compact connected manifold without boundary equipped with a
Riemannian structure g on X with strictly negative sectional curvature. Let
(X, 3) denote the universal cover with the lifted Riemannian structure and
I' = m(X) be the fundamental group of X acting by isometries of (X, 3).
Let us recall some basic constructions and facts of this setup.

Marked Length Spectrum. For v € I'\ {e} denote by c, the corresponding
conjugacy class in I'. The set Cr = {c, | v € I'\ e} parameterizes free
homotopy classes of closed loops in X, with each such class containing a
unique loop of minimal g-length (= a closed geodesic) on X. Denoting by
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£4(cy) its length one obtains the function ¢, : Cr — Ry which is called the
marked length spectrum of (X, g).

MARKED LENGTH SPECTRUM RiciDITY CONJECTURE ([BK] (3.1)) as-
serts that negatively curved Riemannian structure g on X is determined by
the Marked Length Spectrum f,. More precisely, if g, ¢ are two negatively
curved Riemannian structures on a compact X so that £, = £, then there
exists a diffeomorphism ¢ : X — X isotopic to the identity which carries g
to g'.

The conjecture was stimulated by the deformation rigidity results of Guillemin
and Kazhdan [GK]. J.-P. Otal [Ot1] and independently C. Croke [Cr] proved
the conjecture (and more general results) for the case dim X = 2, i.e. surfaces.
In higher dimensions U. Hamenstiddt [Ha] proved (using Besson-Courtios-
Gallot results [BCG]) the conjecture for the case where one of the metrics,
say g on X, is locally symmetric.

Busemann functions : X x X x 9X = R and B, : 9X x dX — R, U{oo}
are defined as follows

By (&m) == Bz, w, &) + Bz, w,n) (2b)

where w in (2b) is an arbitrary point on the geodesic line [£,7] connecting &
and 7. As soon as one verifies that these functions are well defined, it is easy
to deduce that for any isometry « of (X, §)

Bya(v-&7v-m) = Bx(§,m) (3a)
Bz(é-an) _By(faﬂ) :ﬂ(m7y7€)+ﬂ($ay7n) (3b)

Cross-Ratio. The classical notion of the cross-ratio on S' = RU {oo} = §H?
can be generalized (see J.-P. Otal [Ot2] and Hamnestddt [Ha]) as follows:
given a negatively curved (X,g) with the universal cover (X,§) and the
associated Busemann functions B, define the (so called symplectic) cross-
ratio on the boundary X by

67,611y = 5 (Bel&m) + Bal€on)) = Bul€m) = Bol&n))  (4)

It follows from (3b) that the cross-ratio does not depend on the choice of
z € X, and (3a) implies that the cross-ratio is preserved under the natural
action by any isometry v of (X, §). One of the results (Thm 2.2) in [Ot2] states
that for two negatively curved Riemannian structures g,g’ on a compact
manifold X the conditions £, = £, and [,,,], =[,,,], are equivalent.

Bowen-Margulis measure. The geodesic flow & = {#!} on the unit tangent
bundle SX to X (associated to the metric g) is a topologically mixing Anosov
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flow. Its topological entropy hiop(SX, ®') equals to the volume growth

1
hy := lim —logVol;B(x, R) (5)

R—o00

(the limit exists and does not depend on z € X). For such flows Bowen [Bow]
showed that the topological entropy is achieved by the measure-theoretical en-
tropy of a unique $-invariant probability measure, which can be constructed
as the weak limit of periodic orbits (i.e. closed geodesics) weighted according
to their lengths ¢4(c,). This measure ppar, known as Bowen-Margulis mea-
sure, was constructed in a different form by Margulis [Mar] in his proof of
the asymptotic

ehat

hyt

of the number of primitive closed geodesics corresponding to the indivisi-
ble conjugacy classes C. C Cr. The key property of Margulis’ construction
of ppur, needed in his proof, is a uniform (by a factor of e*"s') expan-
sion/contraction of the conditional measures of upar along unstable/stable
foliations of the geodesic flow {#'} on SX.

#{c, € Cr| Ly(cy) <t} ~

Paterson-Sullivan measures. Given a point z € X consider the Poincaré
series
H(.’L‘,S) — Z efs-distg(z,'yz) (6)

yerl'

which are readily seen to converge for s > hy and to diverge for s < hy, and,
in our setting, the series diverges at the critical exponent s = hy. For x € X
the Patterson-Sullivan measure v, is constructed as a weak limit, as s \, by,
of the probability measures

1

— —s-distz(z,yz) )3
Vg,s = m’yezpe (@ )Dlrac(’yx) (7)

on the compactification X C X U&X. Due to the divergence of (6) at s = hy,
the weak limits are supported on dX. In fact, the weak limit v, is unique, has
no atoms and has supp(v,) = 8X. All v,, z € X, are in the same measure
class [v,] and satisfy

dv, b Bl

E(E) — e~ heB(z.9:8) (8a)
Y
’Y*Va: = nyz (Sb)

for all isometries v of (X, §). The Radon measure m on 82X defined by

dm(&,n) := e~ s B=EM dy, (&) dv, (n) 9)
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does not depend on the choice of z € X (this follows from (8a) and (3b)),
and is invariant under the diagonal I'-action (follows from (8b) and (3a)).
Moreover, the I'-action on (82X, m) is ergodic. Clearly any positive multiple
of such a measure shares the same properties.

Geodesic currents, introduced by Bonahon [Bon], are Radon measures on
the space 92X := {(&,1) | £ # n € dX} of pairs of distinct points on the
boundary X of X, which are invariant for the diagonal I'-action 7y : (£,7) —
(y- &7 -n) and the flip F : (€£,1) — (,€). The space 92X is naturally
identified with the space of geodesic lines [€,7] connecting & # 1 € 0X.
Geodesic currents come about in the following consideration: the geodesic flow
& = {$*} on the unit tangent bundle SX of the universal cover X commutes
with the I'-action. The natural {$'}-action on the quotient SX/I' = SX
gives the geodesic flow (SX,®"); while the quotient SX /&, being naturally
identified with the space of geodesic lines and hence with 82X, has a natural
I-action on SX/® corresponding to the (diagonal) I'action on 82X.

This amounts to a natural affine correspondence between the cones of
(i) @-invariant finite measures on SX, (ii) ¢ x I-invariant Radon mea-
sures on SX, (iii) I-invariant Radon measures on 9?X. Therefore finite
(positive) measures on SX which are invariant under the geodesic flow &
(and time reversal) stand with one-to-one correspondence with (positive)
geodesic currents on 82X. In [Ka] Kaimanovich identified the geodesic cur-
rents corresponding to the natural geodesic-flow invariant measures on SX
(the Lebesgue-Liouville measure, the harmonic measure and the Bowen-Margulis
measure), in particular showing that the geodesic current corresponding to
the Bowen-Margulis measure ppyr on SX is precisely a positive multiple
C - m of the measure m on 92X defined in (9), where the constant C is
chosen according to the normalization ppp(SX) = 1.

Locally symmetric manifolds. If (X,g) is a locally symmetric negatively
curved manifold, then (X, j) is a symmetric space H (= HE, HE, Hf, or HZ)
of a simple real rank-one Lie group G = Isom 4 (X, 3) (2 PO(n, 1), PU(k, 1),
PSp(l,1), or F4,,) and I' = m;(X) is a cocompact torsion free lattice in G.
In the constant curvature case HH = H, I' C G = PO(n, 1), and identifying
the sphere at infinity OH" = S™~! with R"~! U {oo} via the stereographic
projection, the cross-ratio [, ,], above is proportional to the logarithm of the
“usual” cross-ratio

llz —yll - ll=" — ¢l
' —yll - llz — o'
while the measure m on &?H" can be written as dm(z,y) = dz dy/||z — y||>.

Moreover the ambient Lie group G can be identified (see Sullivan [Su]) as
follows

[mayaxlayl] :=log (way;mlayl € Rnil)

G = {h € Homeo (OH") | [,,,]g o h =1,,,]¢} (10a)
= {h € Homeo (OH") | (h x h).m = m} (10b)
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The latter characterizations remain valid in other locally symmetric spaces.

2.1 Preliminaries on Gromov hyperbolic groups

The ideal boundary OI'. Gromov hyperbolic group I' acts by homeomor-
phisms on its ideal boundary OI'. Assuming that I" is non-elementary and
torsion free, the I'-action is faithful and every v € I' has two fixed points
Y- # 74 on OI so that: {y",n — oo} contract 8I" \ {7-} to <4, and
{y™,n = —oo} contract OI" \ {v+} to v, uniformly on compact sets. These
general properties can be formulated and proved without any reference to a
specific metric d € Dr or a class § € Dr. For a positive integer p denote
by OPI" C (OI')? the set of distinct p-tuples of points on the boundary oI,
which is always a locally compact space, but not compact one unless p = 1.
The I-action on &'I" = OI" is minimal; the (diagonal) I'-action on 921 is
topologically transitive; and the I'-action on 03I is proper and cocompact.
In fact, there exist I'-equivariant proper maps 7 : 8°I" — I' (equivariance
implies that such a map is surjective).

Gromov product and Gromov metric. Fix a d € Dp, so that (I',d) is a

Gromov-hyperbolic space with a transitive isometric action of I'. Recall the
notion of the Gromov product (z | y), on (I, d) relative to some g € I™:

(d(z, g) +d(y, g) — d(z,y)) (11)

DN | =

(z]y), =
which extends to the boundary 0I" by
(| m)y = inf{ liminf (z; [ y;), | =i = & i = 0}
71— 00

In [Gr] Gromov constructs a family p; of metrics on OI', where € belongs
to some non-trivial range (0,¢€o), so that for each € € (0,¢) the metric pj
induces the “standard” compact topology on 0I'. The metrics p§ and pf, are
related by pS, (v-&,v-n) = pj (§,n), so it suffices to understand pg, and it
turns out that

CtemcEIme < pe(£,n) < CemcEM. (12)

for some constant C = C'(e).

Patterson-Sullivan measures. A version of Patterson-Sullivan theory for Gro-
mov hyperbolic groups was carried out by Coornaert [Co]. Let us summarize
some of his results which are needed below.

The Poincaré series II4(s) := 3_ e~*47¢) converge for all s > hy and
diverge for all s < hg, where the critical exponent hg is given by the growth

1
hg := lim —log#{y € I'[d(y,e) < R} (13)
R—oco R
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In fact, Coornaert shows that there exist constants 0 < €y < Cz < 0o so that
Cre® <#{yeI|dy,e) <R} < Chet (14)

which in particular implies that II4(hq) = co. Denote by PS(I,d) the set of
all weak limits, as s \( hg, of the probability measures

1 —s:d(7,0) Dy
Vs 1= Ze s 47¢) Dirac(y)
Ma(s) .

on I' = ' UOT. Due to the divergence of the Poincaré series at the critical
exponent hg, the limit measures v € PS(I,d) are supported on OI". Although
in this general setup there is no claim of uniqueness for the limit measure
v € PS(I,d), all such limit measures are in the same measure class [v.]
and have bounded Radon-Nikodym derivatives with respect to each other.
Furthermore, every v € PS(I',d) has no atoms and has full support on oI
For v € PS(I',d), the measure m, on 8T defined by

dm, (&,n) = 2" €M dy (&) dv(n) (15)

is locally finite and quasi-invariant for the diagonal I'-action. In fact, the
-1

Radon-Nikodym derivatives W

T-action on (8%I',m,,) is ergodic.

~ are uniformly bounded. The diagonal

3 Basic Notions of the Coarse-geometric setup

Let I" be a Gromov hyperbolic group and § € Dr be a class of left-invariant
metrics as defined in the introduction. Fix some metric d € Dy from é € Dy-.
Noting that the growth h4 does not really depend on d but only on d, hereafter
we shall denote it by hs. Associated with § there is also the stable length
function 5 : C — Ry defined by

. d0"e)
l5(cy) = nanéo — (16)
Observe that £5 : Cr — R4 is well defined, i.e. the limits exist and are
independent of the choices of d € § and v € c,. Moreover, {5 is homogeneous
in ¢ € Cr, namely £5(cy») = |n| - £5(c,) so that {5 is determined by its values
on the subset C- C Cr of the indivisible classes.

Observe that £5 can be considered as a generalization of the marked length
spectrum, because in the geometric case of compact negatively curved mani-
fold (X, g) and I = 71 (X)) the marked length spectrum can also be computed
as
distz (y"z, z)

by(cy) = nh—{%o "
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Proposition 1 To every § € PDr one can canonically associate a geodesic
current, i.e. I'- and flip-invariant locally finite measure, ms on 0°I, of the

form
dmy(&,m) = €' &N dy(€) dv(n) (17)

where v € P(OI") is a Patterson-Sullivan measure corresponding to some
d € and f, : 0°T — R, is a symmetric Borel function, uniquely defined
up to sets of v X v-measure zero. Moreover such measurable function f, is
within bounded distance from the functions (¢ | n), and €' -log p¢ (€,7).

Note that the ergodic geodesic current mj in the Proposition depends only
on § and not on the choices of d € § or v € PS(I',d). In the geometric
context where I' = m1(X) is a fundamental group of a compact negatively
curved manifold (X, g) with d = d, , and v = v, being the Patterson-Sullivan

measure, one has f, = B;({,n) = 2 ({|n), and the geodesic current mg,
on 8I" = 32X corresponds precisely to the Bowen-Margulis measure pg
on SX (including the normalization, which is explained below). Hence for

general 6 € PDr we shall refer to ms as a (generalized) Bowen-Margulis
geodesic current associated to d € PDp.

Proof of Proposition 1. Fix a § € Dr and choose a representative d € D of
0 and a Patterson-Sullivan measure v € PS(I,d). Since v has no atoms, the
measure class [v x v] on 82T can be considered on OI" x OI'. This measure
class contains an invariant measure for the diagonal I'-action iff there is a
[v x v]-measurable solution f,(,n) to the cohomological equation:

2hs - [fu(y- &) = fu(§sm)] = 0u(7,€) + 0w (7,m) (18)

where 0,(v,€) = log id%lv(,g) is the logarithmic Radon-Nikodym cocycle.
Recall that Coornaert shows that fo(€,n) = (£|n), “almost” satisfies (18)
in the sense that the cocycle

Ay, (€m) = 0u(7,8) +au(v,m) — 2hs - [fo(v - & v -n) — fo(&, )]

is bounded in L ([v x v]) uniformly over I'. It is a general fact that every
uniformly bounded measurable cocycle A : I' x {2 — R over any group action
(£2,I') with a quasi-invariant measure is an L®-coboundary. Indeed taking

p(w) := sup A(y',w)
y'er

one verifies that A(vy,w) = ¢(w) — ¢(7y - w) using the cocycle equation
A'v,w) = Ay, v w) + Ay, w)

Hence, the cohomological equation (18) has a solution f, which is with-
in bounded L* distance from fo(&,n) = (£|n),, which in turn is within
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bounded distance from =1 - log p¢ (£,m) by (12). This proves the existence
of I'-invariant measures m in the class [v x v]. Due to the ergodicity such a
solution f, is unique up to an additive constant, and therefore all such mea-
sures m are positively proportional i.e. form a ray m := {\-m} s0. Observe
that the choices of the scaling for § in § and of the representatives d € § and
v € PS(I',d) have no effect on the measure classes [v] and [v X v], so that
the ray m of I'-invariant measures in the class [v x v] is independent of these
choices. In the proposition we have singled out a particular measure mz € m.
This is done by an appropriate normalization which will be explained below
(the normalization is not entirely obvious because m consists of infinite mea-
sures). 0

The abstract Geodesic Flow of 6 € Dr. Let m € m be one of the measures
constructed above. It is of the form dm = e***'/» v x v. Consider the space
Y = 82" x R equipped with the locally finite measure din = dm(&,n) dt and
let I-act on (Y, 1) by

7=@m¢%+<7ff%nJ+7%0A%®)

where o, (7,€) = log(dy 1v/dv(€)) is the logarithmic Radon-Nikodym cocy-
cle of v. This is a measure-preserving ['-action, which commutes with the
following R-flow & = {®!} acting only in the R-coordinate

& (&m,t) = (6t +5)

Observe that although the choice of v and hence that of ¢, needed for the
definition of the I'-action on Y are not canonical, the measure class [v] is
uniquely determined (by §). Therefore any other measure ¢/ in the class [v]
would define a cohomologous Radon-Nikodym cocycle

ou (7,8) = 0u(7,8) + (v - &) — ¢(£)

where ¢ = log(dv'/dv), and the I-action on Y defined using o, would be
measurably isomorphic to the one for ¢, by the isomorphism (&,7,t) +—
(€,m,t+ $(€)), which commutes with &. Therefore, in the measure-theoretical
sense the I' x $-actions on (Y, 7) are canonically defined.

The coarse-geometric interpretation of o, being (roughly) a hs-multiple of
a “Busemann function” 8 (in the general coarse-geometric context the latter
can be defined only roughly) allows to show that the I'-action on Y admits
a bounded fundamental domain ¥ C V. Therefore 0 < m(Y) < oo and 7,
and hence m on I, can be canonically normalized by m(Y) = 1. It is this
normalization of m € m which is denoted by mj in Proposition 1.

With thus normalized mjz on 8*I" (and ;5 on Y) one can define (measure-
theoretically) the “geodesic flow” & = {®'} on Y as the quotient of the
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d-action on Y by I, so that the restriction ps of ms to Y becomes a -
invariant probability measure on Y. In fact, (Y, ms,®!) is an ergodic flow,
because ms was I'-ergodic, and moreover one can show that the metric en-
tropy h(Y, us,®!) of this flow is precisely hs. (Note that us depends on hs
and is therefore scale dependent, although mj is not).

In the geometric context, where I' = 71 (X) and § = [d,,;] arise from a
negatively curved Riemannian structure g on X, one has by (8a) 0, (v,£) =
hs - B(z,vyz, &) and (Y, us,P?) is naturally (measurably) isomorphic to the
usual geodesic flow (SX, upar, ) with the Bowen-Margulis measure ppas.

Let us also point out, that the geodesic current mjz admits an alternative
construction, analogous to the Bowen’s definition of upar, namely as the
weak limit ms = lim;_,, m: of the atomic geodesic currents

-1

mp=| Y b)) - Y. sley) Dirac(y-,ny)  (19)

Ls(ey)<t {rvelts(cy)<t}

which precisely correspond to the closed geodesics in the geometric context
of Bowen’s construction. We shall not pursue this analogy here, however.

The Cross-Ratio. Let us generalize the notion of the (symplectic) cross-ratio
to the coarse-geometric setup as follows. Given a hyperbolic group I' and
0 € Dr write the associated Bowen-Margulis geodesic current mj in the form
(17) and define the cross-ratio to be the measurable function [,,,]s : 0*" —

Ry

[§ana Elanl]é = fu(ga "7) + fl/(é-la 77') - fV(é.a 77') - fV(é-la 77) (20)
First let us check that the definition depends only on § and not on v. If /' is
a measure on 0I" so that dmz(§,n) = exp(2hs - f,(§,m)) dv'(€) dv'(n) then v/’
and v are in the same measure class and f, is a measurable solution to the
cohomological equation

2hs [ fur(v-&v-n) = fur(&m)] = 0w (7,€) + 0w (7,m)
=0,(7,€) +o.(v,n) + d(v - &) — (&) + ¢(v-n) — d(n)
=2hs - [fu(v-&v-m) + o(v- &) + oy -m)
—fu(&m) — d(&) — d(n)]

where ¢ = log(dv'/dv). By ergodicity such a solution f,+ is unique up to a
constant, and one deduces that v X v-a.e.

fo(&m) = Fu(&m) + 6(8) + o(n) + C.

Now one easily verifies that the substitution of f,, instead of f, in (20)
does not change the value of the expression. Therefore the cross-ratio [,,,]s :
O*T" — Ris well defined, up to v*-null sets. From Proposition 1 the cross-ratio
[£,7m,&,n']s stays within bounded distance from

Elme+ & 1), =& 1m), = (&),



Coarse-geometric perspective 11

One can also prove the standard identities for the cross-ration [,,,]s, and
verify that [,,,]s is I'-invariant.

Let us point out that in the geometric context of a compact negatively
curved manifold (X, g) or, more generally, in the case of § arising from an
isometric convex cocompact I-action on a CAT(-1) space, the cross-ratio is
a continuous function on 8*I', since it can be defined using the Busemann
function B, (£, n) which is continuous. However in the general situation above,
our definition of the cross-ratio gives only a measurable function.

4 Some Results

Theorem 2 For I' and 0,0' € Dr the following are equivalent:

) m(; and mg are not mutually singular.

(a

(b) ms =mg.

(C) &;(cy) = hg - g (C’Y) fOT 0 AS I.
(d) hs -6 =

(e)

hs - 8" in Dr.
I m PD[‘
Note that in the geometric setup, where X is a compact manifold, g and
g’ are two negatively curved Riemannian structures on X, I' = 71 (X) and
0 = 64, ' = dy in Dr, the Theorem asserts that the condition £, = £,
(which by [Ot2] Thm 2.2 is equivalent to [,,,]g = [,,,]s) is also equivalent
to: dist; —disty being bounded on X. Hence the following is a reformulation
of the Marked Length Spectrum Rigidity Conjecture:
For a compact manifold X with negatively curved Riemannian metrics g
and g' the universal covers (X,3) and (X,§') are roughly isometric if and
only if they are isometric.

hé
hs -
o=

Proof of Theorem 2. The implications (e¢) < (d) = (c) are straightforward,
the equivalence (a) < (b) follows from the ergodicity of the corresponding
”geodesic flows”, while (¢) = (b) follows from (19). Here let us show that
(b) = (d). After a rescaling we can assume that hs = hy = 1, which
together with mz = mg, yields [&1,m1,&2,m2]s = [€1,m1, &2,m2]s5. Now choose
metrics d € § and d' € §' and let (- |-), and (-|-). denote the associated
Gromov products. Since [,,,]s and [,,,]s can be uniformly approximated by
the four term expressions in the corresponding Gromov products we conclude
that for a.e. £, &y, n,no the difference

[ 1m), = (€l m).] +
+ [(50 [70)e — (§o | no)le] - [(50 [m)e — (%o | 77);] - [(§ [10)e — (£ 770):3]
is uniformly bounded. Fix & # 1o and focus on &, n away from some fixed

small neighborhoods of & and 79. Then the three difference, except the one in
the first line above, are bounded, and therefore |(.f |n), — (€] n);| is bounded
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for such &,n. Applying this argument to another pair & # 7o which has
“excluded” neighborhoods which do not overlap with those of the previous
&o, Mo, we conclude that there is C so that for all £ # n

(€Elm),—(E[m),] <C (21)
Now recall that there exist I'-equivariant (hence onto) proper maps 7 :
0TI = I'. We claim that on 03I the difference

d(e’ﬂ-(€13§27§3)) - (é.z | gj)e (22)

max
i#je{1,2,3}

is uniformly bounded (look at the case of a tree as a convincing example).
Hence the bound (21) on Gromov-products together with (22) imply that
d(e,v) —d'(e,7) is bounded. Since d and d' are left invariant we deduce that
d —d' is bounded and § = ¢'. 0

Theorem 3 Given I', § € PDr and mz on 8°I" as above, let Hs denote the
topological group

H; = {h € Homeo (0I')| (h x h).mz = mz}

with the open-compact topology induced from Homeo (0I"). Then Hj is a lo-
cally compact group which contains I' as a cocompact lattice.

Remark 4 Fix a non-elementary torsion free Gromov hyperbolic group I,
and consider the collection Hp of the locally compact groups H; and the
cocompact lattice embeddings j5 : I' < Hj, for all § € PDr. It can be
shown that Hr is the universal object for I' in the following sense: given any
embedding 7 : I' < L of I' in a locally compact group L as a cocompact
lattice, there exists § € PDr and a continuous homomorphism p : L — Hj,
so that Kerp is a compact normal subgroup in L disjoint from i(I"), and
p(L) C Hj is a closed cocompact subgroup containing j3(I"), and furthermore
poi = jz. This can be shown by choosing a left-invariant proper quasi-metric
d on L and restricting it to I' to form d € Dy and § = [d]. Then one
can apply the arguments from [Ful] producing a I'-equivariant continuous
homomorphism p : L — Homeo (8I") with locally compact image p(L) and
compact kernel, and verifying that p(L) preserves mg.

Examples 5 (i) Let (X, go) be a locally symmetric negatively curved man-
ifold, so that (X, o) is a symmetric space H, G' = Isom | (H) is a simple
connected real Lie group and G = Isom (H) contains G as a subgroup
of index two. Then I' = 7 (X) is a cocompact lattice in G acting on H
(X =H/TI'). Let 0o = [dz,4,] € Dr be the corresponding class of metrics
on I'. Then there is a natural isomorphism between Hy and G under
which I' C Hj, corresponds to the embedding of I in G C G.
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(ii) Let I' = Fy be a free group on 1 < k < oo free generators 7y, . . ., V&, and
w = (w1, ..., ws) be some positive numbers. Denote by d,, the weighted
left invariant word metric on I', defined by dy, (v, vy:') = w;, and denote
0w = [dw] € Dr. Then the group Hy can be naturally identified with
the group Isom (7,) of the isometries of the metric tree T}, which is the
Cayley graph of Fj where the edges (’y,'y'y;tl) have length w;. Observe
that Isom (T,) is a totally disconnected locally compact group containing
Fy, as a cocompact lattice (since Fy acts transitively on Ty, the quotient
Isom (T,)/Fy, can be identified with the stabilizer of a vertex o € T,
which is a compact group). If wy = ws = ... = wy then Hs_is Aut (T) -
automorphism group of the 2k-regular tree. The classification of locally
compact groups containing F}, as a cocompact lattice obtained by Mosher-
Sageev-Whyte [MSW] basically shows that that the above examples of
Hj  describe all possible Hj for the free group I' = Fy.

Proof of Theorem 3. Since h € Hj preserve mz = e?"s'f» y x v the measure v
is Hsz-quasi-invariant and the logarithmic Radon-Nikodym cocycle o, : Hz x
(0I,v) — R defined by o,(h,£) = log dhd—_ul"(.{) satisfies the cohomological
equation

2hs - [fu(h-& h-n) = fu(§m)] = 0u(h, &) + ou(h,m) (23)

Recall that the functions f,(&,n), (£ |n), and e~ - log p¢ (£, n) differ by at
most bounded amount, which gives the estimate

pe(h-&h-n) (h&) 4o (hn) | /215
-7 = (eSO 24
pe (&m) ( ) @)

for v x v-a.e. (§,7n). Thus if h € H; has a finite norm ||h||y := ||o(h, )]0 it
is (a v-a.e. and hence everywhere by continuity) Lipschitz map of (9T p¢).
Moreover every subset V C Hjz with sup,cy ||h|l, < oo has a uniform-
ly bounded Lipschitz norm and is therefore precompact in Homeo (8I") by
Arzela-Ascoli theorem. We claim that for » > 0 sufficiently small, the neigh-
borhood

Ve:={h € H5 |V, €dI': pS(h-£&) <r}

of the identity in Hj satisfies supycy;, |||, < co. By the previous argument
this would imply that V,. is precompact, and as Hj is a closed subgroup of
the complete group Homeo (0I") it would follow that Hj is locally compact.
For t > 0 let E; := {(&,m) € 8T | p& (€,m) > t}. Observe that (¢ |n), and
hence f,(&,7) is bounded, say by ¢;(t), on E;. The triangle inequality implies
that h € V. map Ej3, into E,, which gives the bound

lfo(h-& h-m) = fu(€,m)] < ca(r) := 1 (37) + ca(r)
for v x v-a.e. (§,m) € E3,. In view of (23) for h € V. we have
o (h, &) + 00 (R )| < c3(r) := 2hsca(r) (25)
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v x v-a.e. on Es,.. For £ € 0I' and t > 0 denote A:(§) = {n | p< (&, n) > t}.
Since v has no atoms and has full support on 9I', the function a(§) :=
v(As-(£)) is continuous and positive, so that o := ming a(§) > 0. Hence for
v-a.e. &

1 v(hAs.(€)) 1 ou(hm) gy
@) = v ©) (A @) /As,@e " dv(m)

> inf % (M) > gmcs(r)—ou(hg)
T n€As.(8) -

\YJ

1
a

This shows that for h € V. and v-a.e. £ € I one has o, (h,-) > loga — c3(r)
which, combined with (25), gives supjcy; ||h|lc < co. This proves that Hj is
a locally compact group.

Finally, since I" is a discrete subgroup of Homeo (0I') which preserves
mj, it forms a discrete subgroup of Hj, and it remains to show that Hz/I"
is compact. Recalling that the I'-action on 8°I" is cocompact (and proper as
well) it suffices to verify that the Hs-action on 8°I" is proper. This readily
follows from the already established characterization: h,, — oo in Hj if (and
only if) ||hy|le = 00, and the relation (24). 0

Examples 5 and Theorem 3 suggest interesting lattice embeddings of hy-
perbolic groups in locally compact groups of the form Hj. However it seems
that such examples are rare and, moreover can be used to single out rank one
lattices I' (i.e. fundamental groups of locally symmetric negatively curved
manifolds) among other groups, and among all possible left invariant metrics
d € Dr on such I to single out the metrics coming from the corresponding
symmetric space. This is maid precise in the following Theorems 6 and 7.

Let X be a compact manifold which admits a locally symmetric negatively
curved Riemannian metric go. Then the universal Riemannian cover (X, §o) is
a symmetric rank-one space H and the natural I' = 7, (X)) action on H gives
rise to an embedding I' C G = Isom 4 (H). The embedding depends on the
choice of a base point (a change of the base point amounts to a conjugation
of I in G)) but does not effect the class d,, € Dr. Furthermore the projective
class d,, € PDy is not sensitive to the scaling of the locally symmetric
metric go on X. If dim X > 2 then by Mostow rigidity there is a unique,
up to conjugation, embedding I' C G and therefore a unique &,, € PDr;
while in the case of surfaces G = PSLy(R) and there is a moduli space of
“symmetric” Sgo € PDr on the surface group I'.

Theorem 6 Let I' = 71 (X) be a fundamental group of a compact mani-
fold X which admits a locally symmetric negatively curved Riemannian met-
ric. Then for § € PDr the associated group Hj is discrete and contains
I' as a finite index subgroup, unless § = Sgo where go is a locally symmet-
ric Riemannian metric on X. In the latter case there is an isomorphism
Hs = G = Tsom (X, §o) which is compatible with the embeddings of I' in Hy
and in Isom (X' ,00). Furthermore, for any Riemannian metric g on X the
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associated 59 € PDr has non-discrete Hs_ iff the metric g is locally symmet-
Tic.

Hence non-triviality of Hs (in the sense of not being non-discrete) character-
izes locally symmetric metrics on X in PDr.
Theorem 6 will be deduced from the following

Theorem 7 Let I' be a Gromov hyperbolic group, 6 € PDr and Hj be as
in Theorem 8. Assume condition (*) below. Then one of the following two
alternatives holds:

(A) either Hj is a discrete group containing I' as a finite index subgroup, or

(B) I is a torsion free cocompact lattice in a rank-one group G = Isom (H)
where H s a negatively curved symmetric space, Hy = G and § = 590
corresponds to a G-invariant metric on the symmetric space H.

The assumption (*) in Theorem 7 stands for “Hs has No Small Subgroups
(NSS) property”, which means that there is a neighborhood U of the iden-
tity in Hz which contains no non-trivial subgroups. This assumption can be
verified in the following cases:

(i) I' is a cocompact lattice in a real Lie group G of rank one. This allows
to deduce Theorem 6 from the one above.

(i) I' = m(X) where X is a compact n-manifold, § = 6, where g is a nega-
tively curved Riemannian metric on X satisfying the following pinching
condition

plg) <1+ (26)

n—1
where p(g) = b/a with —b? < K, < —a? < 0 are bounds on the sectional
curvature of g.

(iii) I is quasi-isometric to a fundamental group I’ of a compact n-manifold
X which admits a negatively curved Riemannian structure g so that

AE) plg) <1+ (27)

where p(g) = b/a is a bound on the pinching —b* < K, < —a® < 0 of
the sectional curvatures of g, and A(d,d}) = A2/A; is a bound on the
multiplicative constants Ay Ay

A -d(m,72) = C < d'(g(n), q(2)) < X2 -d(y,72) +C (28)

of representatives d € D, d' € Dy for 6 and &, and the given quasi-
isometry ¢ : I' — I".

Let us recall the following generalization of Hilbert’s 5-th problem

Conjecture 8 (Hilbert-Smith) A locally compact group acting faithfully
by homeomorphisms on a topological manifold has No Small Subgroups.
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Hilbert-Smith Conjecture implies that assumption (*) in Theorem 7 is satis-
fied whenever the boundary 0I" of I" is a topological manifold, in particular
in the case of fundamental groups I' = 71 (X)) of compact manifolds X which
admit negatively curved Riemannian structure (in which case 8I' = 8X is
homeomorphic to a sphere). Hilbert-Smith Conjecture has been proven for
actions by C!-diffeomorphisms (Bochner Montgomery [BM]), and more re-
cently for actions by Lipschitz maps (Repovs and Séepin [RS]), and Holder
homeomorphisms with exponent dim X/(dim X + 2) (Maleshich [Mal]). This
is used below.

Before proving Theorem 7 let us deduce condition (*) (i.e. H5 has NSS) in
cases (i)-(iii). In case (i) I is a cocompact lattice both in a rank-one Lie group
G = Isom (H) and in Hjz. The general structure of locally compact groups H
containing I" as a cocompact lattice is described in [Ful] Theorems B and C
and it follows that in our particular situation where Hy C Homeo (8I") such
Hj is either discrete or is isomorphic to Isom (H) or Isom 4 (H). In all these
cases it has the NSS property.

Consider case (iii), which contains (ii) as a particular case. The quasi-
isometry ¢ defines a homeomorphism dq : 8I' — AI" = 9X which is a
topological sphere S™~!. Choose d, d' left invariant metrics on I" and I’ as
in (28), and choose € > 0, € > 0 so that one can form Gromov metrics p := p¢
and p' := pgl, on OI" and OI", respectively. Let us identify these boundaries
with the sphere S”~! and let py denote the standard round metric on S™?~1.
These metrics are related by the following inequalities

Cl  <p<Cpgl ol < <Ol

where the first one follows from comparison theorems and the second from
(12) and (28). Combining these inequalities and the fact that a neighborhood
V of the identity in Hjz acts by Lipschitz homeomorphisms with respect to
the metric p, one estimates

polh-&h-m) < Cu-p/(h-&h-m)/" < Co - plh- & ) (/P P/
< Oy p(&m)™/* < Cu- pf (€)X /D (/220
< Cs - po(&,m)(/r(a/22)
The result [Mal] of Maleshich proving Hilbert-Smith conjecture for % —Holder
actions on a compact k-manifold, which is S»~! in our case, combined with
condition (27) guarantees that the locally compact group Hz has NSS.

Proof of Theorem 7. Recall that I" acts minimally and strongly prozimally on
Or', which means that for any p € P(90I') and any £ € OI" there is a sequence
Yn € I' so that the point measure Dirac(§) is a weak limit of (7,)«u. These
properties of minimality and strong proximality are inherited by the locally
compact group Hz D I', which still acts faithfully on the space X = 0I". Such
actions are discussed in [Fu2], and it follows from the results there that if H;
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is assumed to have No Small Subgroups, then either (A) Hjs is a countable
discrete group, or (B) Hj is, up to index two, a simple connected rank-one
Lie group G with trivial center. In the first case (A), the discrete group Hj
has to contain I" as a finite index subgroup, because I" is a lattice in Hj.

In case (B) I' is a cocompact lattice in G 2 Isom 4 (H) where H = G/ K is
the corresponding symmetric space, and I" can be thought of a fundamental
group 71 (X) of the locally symmetric space X = H/I'. Let 6 € Dr be
the (class of) metrics corresponding to the symmetric metric on H and the
given embedding I' C Hz ~ Isom 4 (H), and let mj, denote the corresponding
Bowen-Margulis current which can be written as

dms, = PPN du, (€)doy ()

where v, is the (geometric) Patterson-Sullivan measure of o € H. This mea-
sure mg, is preserved by all of Isom (H) > G. Moreover, v, is preserved by
the maximal compact subgroup K, = {g € G | go = o}. The original measure
mz = exp (2hs - f,) v x v is preserved by G C Hj, and v is G-quasi-invariant.
Since G (already K,) acts transitively on 0I' = OH the measures v and
v, are in the same measure class, and therefore ms and mg, are absolutely
continuous with respect to each other. Hence Theorem 2 gives § = dp.

O
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