RIGIDITY OF GROUP ACTIONS

1. Introduction to Super-Rigidity

Alex Furman
(University of Illinois at Chicago)

February 28, 2007
For some $\Gamma < G$ representations $\rho : \Gamma \longrightarrow H$ extend to G:

$$
\begin{array}{c}
\Gamma \\
\downarrow \rho \\
H \\
\downarrow \bar{\rho} \\
G
\end{array}
$$
The Super-rigidity Phenomenon

For some $\Gamma < G$ representations $\rho : \Gamma \rightarrow H$ extend to G:

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{\rho} & H \\
\downarrow & & \downarrow \bar{\rho} \\
G & \xrightarrow{\bar{\rho}} & \end{array}
\]

provided

G is a “higher rank” lcsc group
The Super-rigidity Phenomenon

For some $\Gamma < G$ representations $\rho : \Gamma \rightarrow H$ extend to G:

\[
\begin{array}{c}
\frac{\Gamma}{\rho} \quad H \\
\downarrow \quad \downarrow \\
\bar{\rho} \\
G
\end{array}
\]

provided

- G is a “higher rank” lcsc group
- $\Gamma < G$ – an (irreducible) lattice
The Super-rigidity Phenomenon

For some $\Gamma < G$ representations $\rho : \Gamma \rightarrow H$ extend to G:

\[
\begin{array}{c}
\Gamma \\
\downarrow \\
G
\end{array}
\begin{array}{c}
\rho \rightarrow H \\
\downarrow \\
\bar{\rho}
\end{array}
\begin{array}{c}
\rightarrow \\
\downarrow \\
\rho
\end{array}
\]

provided

- G is a “higher rank” lcsc group
- $\Gamma < G$ – an (irreducible) lattice
- $\rho : \Gamma \rightarrow H$ with $\rho(\Gamma)$ “non-elementary” in H.
Lattices

Definition
Γ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.
Lattices

Definition
$\Gamma \lhd G$ is a lattice if Γ is discrete and $\text{Haar}(G/\Gamma) < \infty$.
$\Gamma \lhd G = \prod_{i=1}^{n} G_i$ is irreducible if $\text{pr}_i(\Gamma)$ dense in G_i.

Examples (Arithmetic)
$\Gamma = \mathbb{Z}^n$ in $G = \mathbb{R}^n$
$\Gamma = \text{SL}_n(\mathbb{Z})$ in $G = \text{SL}_n(\mathbb{R})$
$\Gamma = \mathbb{Z}(\sqrt{2})$ in $G = \mathbb{R}^2$ with $(a + b\sqrt{2}, a - b\sqrt{2})$

Example (Geometric)
Lattices

Definition
Γ < G is a \textit{lattice} if Γ is discrete and Haar(G/Γ) < ∞.
Γ < G = \prod_{i=1}^{n} G_i is \textit{irreducible} if pr_i(Γ) dense in G_i.

Examples (Arithmetic)

- Γ = \mathbb{Z}^n in G = \mathbb{R}^n
Lattices

Definition
\(\Gamma \lhd G \) is a lattice if \(\Gamma \) is discrete and \(\text{Haar}(G/\Gamma) < \infty \).
\(\Gamma \lhd G = \prod_{i=1}^{n} G_i \) is irreducible if \(\text{pr}_i(\Gamma) \) dense in \(G_i \).

Examples (Arithmetic)

- \(\Gamma = \mathbb{Z}^n \) in \(G = \mathbb{R}^n \)
- \(\Gamma = \text{SL}_n(\mathbb{Z}) \) in \(G = \text{SL}_n(\mathbb{R}) \)
Lattices

Definition
\(\Gamma < G \) is a lattice if \(\Gamma \) is discrete and \(\text{Haar}(G/\Gamma) < \infty \).
\(\Gamma < G = \prod_{i=1}^{n} G_i \) is irreducible if \(\text{pr}_i(\Gamma) \) dense in \(G_i \).

Examples (Arithmetic)

- \(\Gamma = \mathbb{Z}^n \) in \(G = \mathbb{R}^n \)
- \(\Gamma = \text{SL}_n(\mathbb{Z}) \) in \(G = \text{SL}_n(\mathbb{R}) \)
- \(\Gamma = \mathbb{Z}(\sqrt{2}) \) in \(G = \mathbb{R}^2 \) with \((a + b\sqrt{2}, a - b\sqrt{2}) \)
Lattices

Definition
\(\Gamma < G \) is a \textit{lattice} if \(\Gamma \) is discrete and \(\text{Haar}(G/\Gamma) < \infty \).
\(\Gamma < G = \prod_{i=1}^{n} G_i \) is \textit{irreducible} if \(\text{pr}_i(\Gamma) \) dense in \(G_i \).

Examples (Arithmetic)

- \(\Gamma = \mathbb{Z}^n \) in \(G = \mathbb{R}^n \)
- \(\Gamma = \text{SL}_n(\mathbb{Z}) \) in \(G = \text{SL}_n(\mathbb{R}) \)
- \(\Gamma = \mathbb{Z}(\sqrt{2}) \) in \(G = \mathbb{R}^2 \) with \((a + b\sqrt{2}, a - b\sqrt{2})\)
- “similar” construction of \(\Gamma \) in \(G = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \)
Lattices

Definition

Γ < G is a lattice if Γ is discrete and Haar(G/Γ) < ∞.

Γ < G = ∏^n_{i=1} G_i is irreducible if pr_i(Γ) dense in G_i.

Examples (Arithmetic)

- Γ = Z^n in G = R^n
- Γ = SL_n(Z) in G = SL_n(R)
- Γ = Z(√2) in G = R^2 with (a + b√2, a − b√2)
- “similar” construction of Γ in G = SL_2(R) × SL_2(R)

Example (Geometric)

Γ = π_1(M) for M – loc. symmetric, compact (or vol(M) < ∞) is a lattice in G = Isom(˜M).
Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)
Assume

\[G = \prod G_i \] is semi-simple Lie group with \(\text{rk}(G) \geq 2 \)

\(H \) is simple and center free

\(\Gamma \triangleleft G \) is an irreducible lattice

\(\rho : \Gamma \rightarrow H \) with \(\rho(\Gamma) \) Zariski dense in \(H \).

Theorem (Arithmeticity, Margulis 1970s)
In higher rank all irreducible lattices are arithmetic!
Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)

Assume
\[G = \prod G_i \text{ – semi-simple Lie group with } \operatorname{rk}(G) \geq 2 \]
\[H \text{ – simple and center free} \]
\[\Gamma < G \text{ – an irreducible lattice} \]
\[\rho : \Gamma \rightarrow H \text{ with } \rho(\Gamma) \text{ Zariski dense in } H. \]

Then
- either \(\rho(\Gamma) \) precompact in \(H \)
- or \(\rho : \Gamma \rightarrow H \) extends to \(G \xrightarrow{\bar{\rho}} H \).
Margulis’ Higher rank Super-rigidity

Theorem (Superrigidity, Margulis 1970s)
Assume
\[G = \prod G_i \text{ – semi-simple Lie group with } \text{rk}(G) \geq 2 \]
\[H \text{ – simple and center free} \]
\[\Gamma < G \text{ – an irreducible lattice} \]
\[\rho : \Gamma \rightarrow H \text{ with } \rho(\Gamma) \text{ Zariski dense in } H. \]
Then

- either \(\rho(\Gamma) \) precompact in \(H \)
- or \(\rho : \Gamma \rightarrow H \) extends to \(G \overset{\bar{\rho}}{\rightarrow} H. \)

Theorem (Arithmeticity, Margulis 1970s)

In higher rank all irreducible lattices are arithmetic!
Measurable Cocycles

G, H – lcsc groups, $G \curvearrowright (X, \mu)$ – prob. m.p. action
Measurable Cocycles

G, H – lcsc groups, $G \curvearrowright (X, \mu)$ – prob. m.p. action

Cocycles: measurable maps $c : G \times X \rightarrow H$ s.t.

$$\forall g_1, g_2 \in G : \quad c(g_1 g_2, x) = c(g_1, g_2.x) \cdot c(g_2, x)$$
Measurable Cocycles

G, H – lcsc groups, $G \curvearrowright (X, \mu)$ – prob. m.p. action

Cocycles: measurable maps $c : G \times X \to H$ s.t.

$$\forall g_1, g_2 \in G : \quad c(g_1 g_2, x) = c(g_1, g_2.x) \cdot c(g_2, x)$$

Cohomologous cocycles: $c \sim c'$ if $\exists f : X \to H$ s.t.

$$c'(g, x) = f(g.x)c(g, x)f(x)^{-1}$$
Measurable Cocycles

G, H – lcsc groups, $G \acts (X, \mu)$ – prob. m.p. action

Cocycles: measurable maps $c : G \times X \to H$ s.t.

$$\forall g_1, g_2 \in G : \quad c(g_1 g_2, x) = c(g_1, g_2.x) \cdot c(g_2, x)$$

Cohomologous cocycles: $c \sim c'$ if $\exists f : X \to H$ s.t.

$$c'(g, x) = f(g.x)c(g, x)f(x)^{-1}$$

Examples

- $c(g, x) = \rho(g)$ for some hom $\rho : G \to H$.
Measurable Cocycles

G, H – lcsc groups, $G \curvearrowright (X, \mu)$ – prob. m.p. action

Cocycles: measurable maps $c : G \times X \rightarrow H$ s.t.

$$\forall g_1, g_2 \in G : \quad c(g_1 g_2, x) = c(g_1, g_2.x) \cdot c(g_2, x)$$

Cohomologous cocycles: $c \sim c'$ if $\exists f : X \rightarrow H$ s.t.

$$c'(g, x) = f(g.x)c(g, x)f(x)^{-1}$$

Examples

- $c(g, x) = \rho(g)$ for some hom $\rho : G \rightarrow H$.
- $\sigma : G \times G/\Gamma \rightarrow \Gamma$ – the “canonical” cocycle
Measurable Cocycles

G, H – lcsc groups, $G \curvearrowright (X, \mu)$ – prob. m.p. action

Cocycles: measurable maps $c : G \times X \to H$ s.t.

$$\forall g_1, g_2 \in G : \quad c(g_1 g_2, x) = c(g_1, g_2. x) \cdot c(g_2, x)$$

Cohomologous cocycles: $c \sim c'$ if $\exists f : X \to H$ s.t.

$$c'(g, x) = f(g.x) c(g, x) f(x)^{-1}$$

Examples

- $c(g, x) = \rho(g)$ for some hom $\rho : G \to H$.
- $\sigma : G \times G/\Gamma \to \Gamma$ – the “canonical” cocycle

Observation

$$\{\rho : \Gamma \to H\}/\text{conj} \cong \{c : G \times G/\Gamma \to H\}/\sim.$$
Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidity, Zimmer 1981)

Let $G = \prod G_i$ be a semi-simple Lie group with $\text{rk}(G) \geq 2$. $G \curvearrowright (X, \mu)$ a prob. m.p. action with each G_i ergodic.

Remarks
Margulis' super-rigidity corresponds to $X = G / \Gamma$. Proofs combine Algebraic groups with Ergodic Theory. G-boundary $(B, \nu) = (G / \mathcal{P}, \text{Haar})$ plays a key role.
Theorem (Cocycle Super-rigidity, Zimmer 1981)

Let $G = \prod G_i$ be a semi-simple Lie group with $\text{rk}(G) \geq 2$. $G \acts (X, \mu)$ a prob. m.p. action with each G_i ergodic. H – simple center free, $c : G \times X \to H$ Zariski dense cocycle.
Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidity, Zimmer 1981)

Let $G = \prod G_i$ be a semi-simple Lie group with $\text{rk}(G) \geq 2$. $G \ltimes (X, \mu)$ a prob. m.p. action with each G_i ergodic. H – simple center free, $c : G \times X \to H$ Zariski dense cocycle. Then

- either $c \sim c_0 : G \times X \to K$ with K – compact subgrp in H
- or $c \sim \rho : G \to H$: $c(g, x) = f(g.x)\rho(g)f(x)^{-1}$.

Remarks

Margulis' super-rigidity corresponds to $X = G/\Gamma$.

Proofs combine Algebraic groups with Ergodic Theory.

G-boundary $(B, \nu) = (G/P, \text{Haar})$ plays a key role.
Zimmer’s Cocycle Super-rigidity

Theorem (Cocycle Super-rigidity, Zimmer 1981)

Let $G = \prod G_i$ be a semi-simple Lie group with $\text{rk}(G) \geq 2$. $G \curvearrowright (X, \mu)$ a prob. m.p. action with each G_i ergodic. H – simple center free, $c : G \times X \rightarrow H$ Zariski dense cocycle. Then

- either $c \sim c_0 : G \times X \rightarrow K$ with K – compact subgrp in H
- or $c \sim \rho : G \rightarrow H$: $c(g, x) = f(g.x)\rho(g)f(x)^{-1}$.

Remarks

- Margulis’ super-rigidity corresponds to $X = G/\Gamma$
Zimmer’s Ccocycle Super-rigidity

Theorem (Cocycle Super-rigidity, Zimmer 1981)

Let \(G = \prod G_i \) be a semi-simple Lie group with \(\text{rk}(G) \geq 2 \).
\(G \rtimes (X, \mu) \) a prob. m.p. action with each \(G_i \) ergodic.
\(H \) – simple center free, \(c : G \times X \to H \) Zariski dense cocycle.

Then

- either \(c \sim c_0 : G \times X \to K \) with \(K \) – compact subgrp in \(H \)
- or \(c \sim \rho : G \to H: c(g, x) = f(g.x)\rho(g)f(x)^{-1} \).

Remarks

- Margulis’ super-rigidity corresponds to \(X = G/\Gamma \)
- Proofs combine Algebraic groups with Ergodic Theory
 \(G\)-boundary \((B, \nu) = (G/P, \text{Haar}) \) plays a key role
Cocycles: where from and what for?

- Volume preserving Actions on Manifolds
 \[\rho : \Gamma \rightarrow \text{Diff}(M, \text{vol}) \]
Cocycles: where from and what for?

Volume preserving Actions on Manifolds

\[\rho : \Gamma \to \text{Diff}(M, \text{vol}) \]

\[\Gamma \curvearrowright TM \cong \mathbb{R}^d \times M \text{ where } d = \dim M \]

\[\sim \quad \alpha : \Gamma \times M \to \text{GL}_d(\mathbb{R}) \text{ or } \alpha : \Gamma \times M \to \text{SL}_d(\mathbb{R}). \]
Cocycles: where from and what for?

- **Volume preserving Actions on Manifolds**
 \(\rho : \Gamma \to \text{Diff}(M, \text{vol}) \)
 \(\Gamma \curvearrowleft TM \cong \mathbb{R}^d \times M \) where \(d = \dim M \)
 \(\sim \alpha : \Gamma \times M \to \text{GL}_d(\mathbb{R}) \) or \(\alpha : \Gamma \times M \to \text{SL}_d(\mathbb{R}) \).

- **Orbit Equivalence in Ergodic Theory**
 \(\Gamma \curvearrowleft (X, \mu) \) and \(\Lambda \curvearrowleft (Y, \nu) \) free erg. actions
Cocycles: where from and what for?

- **Volume preserving Actions on Manifolds**
 \[\rho : \Gamma \rightarrow \text{Diff}(M, \text{vol}) \]
 \[\Gamma \curvearrowright TM \cong \mathbb{R}^d \times M \text{ where } d = \dim M \]
 \[\sim \alpha : \Gamma \times M \rightarrow \text{GL}_d(\mathbb{R}) \text{ or } \alpha : \Gamma \times M \rightarrow \text{SL}_d(\mathbb{R}). \]

- **Orbit Equivalence in Ergodic Theory**
 \[\Gamma \curvearrowright (X, \mu) \text{ and } \Lambda \curvearrowright (Y, \nu) \text{ free erg. actions} \]
 OE is \[T : (X, \mu) \cong (Y, \nu) \text{ with } T(\Gamma.x) = \Lambda. T(x) \]
Cocycles: where from and what for?

- **Volume preserving Actions on Manifolds**
 \[\rho : \Gamma \longrightarrow \text{Diff}(M, \text{vol}) \]
 \[\Gamma \curvearrowright TM \cong \mathbb{R}^d \times M \text{ where } d = \dim M \]
 \(\sim \) \[\alpha : \Gamma \times M \rightarrow \text{GL}_d(\mathbb{R}) \text{ or } \alpha : \Gamma \times M \rightarrow \text{SL}_d(\mathbb{R}). \]

- **Orbit Equivalence in Ergodic Theory**
 \[\Gamma \curvearrowright (X, \mu) \text{ and } \Lambda \curvearrowright (Y, \nu) \text{ free erg. actions} \]
 OE is \(T : (X, \mu) \cong (Y, \nu) \text{ with } T(\Gamma.x) = \Lambda.T(x) \)
 \(\sim \) \[\alpha_T : \Gamma \times X \rightarrow \Lambda \text{ by } T(\gamma.x) = \alpha(g, x).T(x) \]
Theorem (S. Popa 2006)

Let \(\Gamma \) have \((T)\) and \(\Gamma \acts X = (X_0, \mu_0)^\Gamma \) be a Bernoulli action.
Popa’s Ccocycle Super-rigidity

Theorem (S. Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma$ be a Bernoulli action. Then for any discrete or compact Λ every cocycle $\alpha : \Gamma \times X \to \Lambda$ is cohomologous to a homomorphism $\rho : \Gamma \to \Lambda$.

Remark ▶ Λ arbitrary discrete or compact or in U_{fin}! ▶ No assumptions on α! All cocycles \sim to homs in Λ! ▶ "deformation-rigidity": malleability - spectral assumption (T) ▶ The assumption on the action $\Gamma \curvearrowright X$ rather than on G or Γ ▶ leads to "von Neumann rigidity"
Popa’s Cocycle Super-rigidity

Theorem (S. Popa 2006)

Let Γ have (T) and $\Gamma \bowtie X = (X_0, \mu_0)^\Gamma$ be a Bernoulli action. Then for any discrete or compact Λ every cocycle $\alpha : \Gamma \times X \to \Lambda$ is cohomologous to a homomorphism $\rho : \Gamma \to \Lambda$.

Remark

▶ Λ arbitrary discrete or compact (or in U_{fin})!
Popa’s Ccocycle Super-rigidity

Theorem (S.Popa 2006)

Let \(\Gamma \) have (T) and \(\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma \) be a Bernoulli action. Then for any discrete or compact \(\Lambda \) every cocycle \(\alpha : \Gamma \times X \to \Lambda \) is cohomologous to a homomorphism \(\rho : \Gamma \to \Lambda \).

Remark

- \(\Lambda \) arbitrary discrete or compact (or in \(\mathcal{U}_{\text{fin}} \)) !
- No assumptions on \(\alpha \) ! All cocycles \(\sim \) to homs in \(\Lambda \) !
Theorem (S.Popa 2006)

Let \(\Gamma \) have \((T)\) and \(\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma \) be a Bernoulli action. Then for any discrete or compact \(\Lambda \) every cocycle \(\alpha : \Gamma \times X \to \Lambda \) is cohomologous to a homomorphism \(\rho : \Gamma \to \Lambda \).

Remark

- \(\Lambda \) arbitrary discrete or compact (or in \(\mathcal{U}_{\text{fin}} \)) !
- No assumptions on \(\alpha \) ! All cocycles \(\sim \) to homs in \(\Lambda \) !
- “deformation-rigidity”: malleability - spectral assumption \((T)\)
Popa’s Cocycle Super-rigidity

Theorem (S. Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma$ be a Bernoulli action. Then for any discrete or compact Λ every cocycle $\alpha : \Gamma \times X \to \Lambda$ is cohomologous to a homomorphism $\rho : \Gamma \to \Lambda$.

Remark

- Λ arbitrary discrete or compact (or in U_{fin})!
- No assumptions on α! All cocycles \sim to homs in Λ!
- “deformation-rigidity”: malleability - spectral assumption (T)
- The assumption on the action $\Gamma \curvearrowright X$ rather than on G or Γ
Popa’s Cocycle Super-rigidity

Theorem (S. Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma$ be a Bernoulli action. Then for any discrete or compact Λ every cocycle $\alpha : \Gamma \times X \to \Lambda$ is cohomologous to a homomorphism $\rho : \Gamma \to \Lambda$.

Remark

- Λ arbitrary discrete or compact (or in \mathcal{U}_{fin})!
- No assumptions on α! All cocycles \sim to homs in Λ!
- “deformation-rigidity”: malleability - spectral assumption (T)
- The assumption on the action $\Gamma \curvearrowright X$ rather than on G or Γ
- leads to “von Neumann rigidity”
Popa’s Cocycle Super-rigidity

Theorem (S. Popa 2006)

Let Γ have (T) and $\Gamma \acts X = (X_0, \mu_0)\Gamma$ be a Bernoulli action. Then for any discrete or compact Λ every cocycle $\alpha : \Gamma \times X \to \Lambda$ is cohomologous to a homomorphism $\rho : \Gamma \to \Lambda$.

Remark

- Λ arbitrary discrete or compact (or in U_{fin})!
- No assumptions on α! All cocycles \sim to homs in Λ!
- “deformation-rigidity”: malleability - spectral assumption (T)
- The assumption on the action $\Gamma \acts X$ rather than on G or Γ
- leads to “von Neumann rigidity”
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>????(1)</th>
<th>????(2)</th>
<th>????(3)</th>
<th>????(4)</th>
<th>????(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \leq G_{\text{alg}}$ alg $G \times X$</td>
<td>Margulis</td>
<td>Zimmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma \leq \Lambda \leq G$</td>
<td>Margulis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G_{\text{alg}} G \times X$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td>Margulis</td>
<td>Zimmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$\mathbf{H}(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>?????</th>
<th>?????</th>
<th>?????</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G$ alg alg $G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Adams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>???</th>
<th>???</th>
<th>???</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G$ alg</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td>Furst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alg $G \times X$</td>
<td>Zimmer</td>
<td>Adams</td>
<td>Adams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)

Adams ETDS (1996)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$\mathbf{H}(k)$</th>
<th>$\text{CAT}(-1)$</th>
<th>δ-Hyp</th>
<th>Mod_g</th>
<th>????</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \vartriangleleft G$ alg alg $G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mze Adams</td>
<td>Furst Adams</td>
<td>K-M</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \vartriangleleft \Lambda \vartriangleleft G$</td>
<td>Margulis</td>
<td>Bu-Mze</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)
Adams ETDS (1996)
Kaimanovich-Masur Invent. (1996)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>$\sim S^1$</th>
<th>Mod_g</th>
<th>?? ? ? ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G \text{ alg alg } G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys</td>
<td>K-M</td>
<td></td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)
Ghys Inven. (1999)
Adams ETDS (1996)
Kaimanovich-Masur Invent. (1996)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$\mathcal{H}(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>$\sim S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < \mathbf{G}_{\text{alg}} , \mathbf{alg} , \mathbf{G} \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys</td>
<td>K-M (T) (T)</td>
<td>Shalom</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < \mathbf{G}$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma < \prod G_i , \prod G_i \times X$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sh (Shalom)</td>
<td></td>
</tr>
</tbody>
</table>

More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>$\sim S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G$ alg alg $G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys Wi-Zi</td>
<td>K-M (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td>Shalom</td>
</tr>
<tr>
<td>$\Gamma < \prod G_i$ \hspace{1cm} $\prod G_i \times X$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sh (Shalom)</td>
</tr>
</tbody>
</table>

More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>$\text{CAT}(-1)$</th>
<th>δ-Hyp</th>
<th>ϖS^1</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G_{\text{alg}} G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys Wi-Zi</td>
<td>K-M (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td>Shalom</td>
</tr>
<tr>
<td>$\Gamma < \prod G_i$</td>
<td>Md-Sh and H-K</td>
<td>M-M-S and H-K</td>
<td></td>
<td></td>
<td></td>
<td>Sh (Shalom)</td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)
Ghys Inven. (1999)
Mineev-Monod-Shalom Top.(2004)
Adams ETDS (1996)
Kaimanovich-Masur Invent. (1996)
Shalom Inven. (2000)
Monod-Shalom JDG (2004)
Hjorth-Kechris Mem.AMS (2005)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$\mathbf{H}(k)$</th>
<th>$\text{CAT}(-1)$</th>
<th>δ-Hyp</th>
<th>$\simeq S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \lhd G \text{ alg alg } G \times X$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td>Furst</td>
<td>Ghys</td>
<td>K-M</td>
<td>(T)</td>
</tr>
<tr>
<td></td>
<td>Zimmer</td>
<td>Adams</td>
<td>Adams</td>
<td>Wi-Zi</td>
<td></td>
<td>(T)</td>
</tr>
<tr>
<td>$\Gamma \lhd \Lambda \lhd G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td>Shalom</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \lhd \prod G_i \mid \prod G_i \times X$</td>
<td>Monod</td>
<td>Md-Sh and H-K</td>
<td>M-M-S and H-K</td>
<td></td>
<td>Sh Md (Shalom)</td>
<td></td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)
Ghys Inven. (1999)
Mineev-Monod-Shalom Top.(2004)
Monod JAMS (2006)
Adams ETDS (1996)
Kaimanovich-Masur Invent. (1996)
Shalom Inven. (2000)
Monod-Shalom JDG (2004)
Hjorth-Kechris Mem.AMS (2005)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>$\text{CAT}(-1)$</th>
<th>δ-Hyp</th>
<th>$\ltimes S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G$ alg $G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys Wi-Zi</td>
<td>K-M</td>
<td>(T) (T)</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td></td>
<td>Shalom</td>
</tr>
<tr>
<td>$\Gamma < \prod G_i \text{ and } H-K$</td>
<td>Monod (F-Md)</td>
<td>Md-Sh</td>
<td>M-M-S and H-K</td>
<td></td>
<td></td>
<td>Sh Md (Shalom)</td>
</tr>
</tbody>
</table>

Margulis (1974)
Burger-Mozes JAMS (1996)
Furstenberg Bull.AMS (1967)
Ghys Inven. (1999)
Mineev-Monod-Shalom Top.(2004)
Monod JAMS (2006)
Adams ETDS (1996)
Kaimanovich-Masur Invent. (1996)
Shalom Inven. (2000)
Monod-Shalom JDG (2004)
Hjorth-Kechris Mem.AMS (2005)
Furman-Monod (2007)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$H(k)$</th>
<th>$\text{CAT}(-1)$</th>
<th>δ-Hyp</th>
<th>$\rightsquigarrow S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G \text{ alg } \Gamma \text{ alg } G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys Wi-Zi</td>
<td>K-M</td>
<td>(T) (T)</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td></td>
<td></td>
<td>B-F-S</td>
<td>Shalom</td>
</tr>
<tr>
<td>$\Gamma < \prod G_i \text{ alg } \prod G_i \times X$</td>
<td>Monod (F-Md) and H-K</td>
<td>Md-Sh and H-K</td>
<td>M-M-S and H-K</td>
<td>B-F-S</td>
<td>B-F-S</td>
<td>Sh Md (Shalom)</td>
</tr>
<tr>
<td>$\Gamma \rightsquigarrow \tilde{A}_2$</td>
<td>Monod</td>
<td></td>
<td></td>
<td>B-F-S</td>
<td>B-F-S</td>
<td>(T) (T)</td>
</tr>
<tr>
<td>$\Gamma \times X$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Margulis (1974)
- Burger-Mozes JAMS (1996)
- Furstenberg Bull.AMS (1967)
- Ghys Inven. (1999)
- Mineev-Monod-Shalom Top.(2004)
- Monod JAMS (2006)
- Bader-Furman-Shaker (2006)
- Adams ETDS (1996)
- Shalom Inven. (2000)
- Hjorth-Kechris Mem.AMS (2005)
- Furman-Monod (2007)
More Margulis-Zimmer like Super-rigidity results

<table>
<thead>
<tr>
<th>Targets H</th>
<th>$\mathbf{H}(k)$</th>
<th>CAT(-1)</th>
<th>δ-Hyp</th>
<th>$\curvearrowright S^1$</th>
<th>Mod_g</th>
<th>$\text{Isom}(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma < G$ alg. $G \times X$</td>
<td>Margulis Zimmer</td>
<td>Bu-Mzs Adams</td>
<td>Furst Adams</td>
<td>Ghys Wi-Zi</td>
<td>K-M (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>$\Gamma < \Lambda < G$</td>
<td>Margulis</td>
<td>Bu-Mzs</td>
<td>B-F</td>
<td>B-F-S</td>
<td>Shalom</td>
<td></td>
</tr>
<tr>
<td>$\Gamma < \prod G_i \prod G_i \times X$</td>
<td>Monod (F-Md) and H-K</td>
<td>Md-Sh and H-K</td>
<td>M-M-S and H-K</td>
<td>B-F-S</td>
<td>Sh M (Shalom)</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \curvearrowright \tilde{A}_2$</td>
<td>B-F</td>
<td>B-F</td>
<td>B-F</td>
<td>B-F-S</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \times X$</td>
<td>B-F</td>
<td>B-F</td>
<td>B-F</td>
<td>B-F-S</td>
<td>(T)</td>
<td></td>
</tr>
</tbody>
</table>

Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

G – a general lcsc grp.
A G-boundary is a msbl G-space $(B, [\nu])$ so that

- $G \act (B, [\nu])$ is amenable
- $G \act (B \times B, [\nu \times \nu])$ erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a G-boundary (B, ν) let $W_{G, B} = \text{Aut}(B \times B, [\nu \times \nu])$.

Examples

- G-ss alg, $B = G/P$ then $W_{G, B}$ – the classical Weyl (e.g. $G = \text{SL}_n \rightarrow W = \text{S}_n$)
- G hyperbolic-like
- G amenable, can take trivial B and W
- $G = \prod_n G_i$ with non-amenble factors, $(Z/2Z)^n < W_{G, B_i}$.
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

G – a general lcsc grp.
A G-boundary is a msbl G-space $(B, [\nu])$ so that

- $G \curvearrowright (B, [\nu])$ is amenable
- $G \curvearrowright (B \times B, [\nu \times \nu])$ erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a G-boundary (B, ν) let $W_{G, B} = \text{Aut} (B \times B, [\nu \times \nu])^G$.
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

G – a general lcsc grp.
A G-boundary is a msbl G-space $(B, [\nu])$ so that

- $G \curvearrowright (B, [\nu])$ is amenable
- $G \curvearrowright (B \times B, [\nu \times \nu])$ erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a G-boundary (B, ν) let $W_{G,B} = \text{Aut} (B \times B, [\nu \times \nu])^G$.

Examples

- G -ss alg, $B = G/P$ then $W_{G,B}$ – the classical Weyl
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

\(G \) – a general lcsc grp.
A \(G \)-boundary is a msbl \(G \)-space \((B,[\nu])\) so that

- \(G \acts (B,[\nu]) \) is amenable
- \(G \acts (B \times B,[\nu \times \nu]) \) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a \(G \)-boundary \((B,\nu)\) let \(W_{G,B} = \text{Aut}(B \times B,[\nu \times \nu])^G \).

Examples

- \(G \)-ss alg, \(B = G/P \) then \(W_{G,B} \) – the classical Weyl
 (e.g. \(G = \text{SL}_n \leadsto W = S_n \))
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

\(G \) – a general lcsc grp.
A \(G \)-boundary is a msbl \(G \)-space \((B, [\nu])\) so that

- \(G \curvearrowright (B, [\nu]) \) is amenable
- \(G \curvearrowright (B \times B, [\nu \times \nu]) \) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a \(G \)-boundary \((B, \nu)\) let \(W_{G,B} = \text{Aut}(B \times B, [\nu \times \nu])^{G} \).

Examples

- \(G \)-ss alg, \(B = G/P \) then \(W_{G,B} \) – the classical Weyl
 (e.g. \(G = \text{SL}_n \leadsto W = S_n \))
- \(G \) hyperbolic-like \(W = \mathbb{Z}/2\mathbb{Z} \)
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)
\[G \text{ – a general lcsc grp.} \]
A G-boundary is a msbl G-space \((B, [\nu])\) so that
- \(G \bowtie (B, [\nu])\) is amenable
- \(G \bowtie (B \times B, [\nu \times \nu])\) erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))
Given a G-boundary \((B, \nu)\) let \(W_{G,B} = \text{Aut}(B \times B, [\nu \times \nu])^G\).

Examples
- \(G\) ss alg, \(B = G/P\) then \(W_{G,B}\) – the classical Weyl
 (e.g. \(G = \text{SL}_n \leadsto W = S_n\))
- \(G\) hyperbolic-like \(W = \mathbb{Z}/2\mathbb{Z}\)
- \(G\) amenable, can take trivial \(B\) and \(W\)
Boundary and the Weyl group

Definition (G-Boundaries, after Burger-Monod)

G – a general lcsc grp.
A G-boundary is a msbl G-space $(B, [\nu])$ so that

- $G \curvearrowright (B, [\nu])$ is amenable
- $G \curvearrowright (B \times B, [\nu \times \nu])$ erg with Unitary Coefficients

Definition (Weyl Group, (Bader-F, Bader-F-Shaker))

Given a G-boundary (B, ν) let $W_{G,B} = \Aut(B \times B, [\nu \times \nu])^G$.

Examples

- G -ss alg, $B = G/P$ then $W_{G,B}$ – the classical Weyl
 (e.g. $G = \SL_n \leadsto W = S_n$)
- G hyperbolic-like $W = \mathbb{Z}/2\mathbb{Z}$
- G amenable, can take trivial B and W
- $G = \prod^n G_i$ with non-amenable factors, $(\mathbb{Z}/2\mathbb{Z})^n < W_{G,\prod B_i}$.