Orbit Equivalence since
Zimmer’s Cocycle Superrigidity Theorem

Alex Furman
University of Illinois at Chicago

September 8, 2007
Orbit Structures of \mathbb{II}_1 Group Actions

\mathbb{II}_1 actions (X, μ, Γ):

- Γ – discrete countable group
- (X, \mathcal{B}, μ) – std prob space $\cong ([0, 1], \text{Borel}, \text{Lebesgue})$
- $\Gamma \curvearrowright (X, \mu)$ – ergodic m.p. ($\gamma_*\mu = \mu, \quad \forall \gamma \in \Gamma$)

Orbit Equivalence (X, μ, Γ) $\text{OE} \cong (Y, \nu, \Lambda)$ if

$\exists T : (X, \mu) \sim (Y, \nu)$ s.t. $T(\Gamma \cdot x) = \Lambda \cdot T(x)$

Denoting by $R_\Gamma, X = \{ (x, y) \in X \times X | \Gamma \cdot x = \Gamma \cdot y \}$ the orbit relation

$T : (X, \mu, \Gamma)$ $\text{OE} \cong (Y, \nu, \Lambda) \Leftrightarrow T \times T (R_\Gamma, X) \sim = R_{\Lambda, Y}$

Stable, or weak, OE: (X, μ, Γ) $\text{sOE} \cong (Y, \nu, \Lambda)$

$X \supset A \overset{T}{\rightarrow} B \subset Y$ $T \times T (R_X, \Gamma | A \times A) \sim = R_{Y, \Lambda | B \times B}$
Orbit Structures of \mathbb{II}_1 Group Actions

\mathbb{II}_1 actions (X, μ, Γ):

- Γ – discrete countable group
- (X, B, μ) – std prob space $\cong ([0, 1], \text{Borel, Lebesgue})$
- $\Gamma \curvearrowright (X, \mu)$ – ergodic m.p. ($\gamma_*\mu = \mu, \quad \forall \gamma \in \Gamma$)

Orbit Equivalence

$(X, \mu, \Gamma) \overset{OE}{\sim} (Y, \nu, \Lambda)$ if $\exists T : (X, \mu) \cong (Y, \nu)$ s.t. $T(\Gamma.x) = \Lambda.T(x)$
Orbit Structures of \mathbb{II}_1 Group Actions

\mathbb{II}_1 actions (X, μ, Γ):

- Γ – discrete countable group
- (X, B, μ) – std prob space $\cong ([0, 1], \text{Borel}, \text{Lebesgue})$
- $\Gamma \curvearrowright (X, \mu)$ – ergodic m.p. ($\gamma_*\mu = \mu, \quad \forall \gamma \in \Gamma$)

Orbit Equivalence

$(X, \mu, \Gamma) \overset{OE}{\sim} (Y, \nu, \Lambda)$ if $\exists T : (X, \mu) \cong (Y, \nu)$ s.t. $T(\Gamma.x) = \Lambda.T(x)$

Denoting by $R_{\Gamma,X} = \{(x, y) \in X \times X \mid \Gamma x = \Gamma y\}$ the orbit relation

$$T : (X, \mu, \Gamma) \overset{OE}{\sim} (Y, \nu, \Lambda) \iff \quad T \times T(R_{\Gamma,X}) \cong R_{\Lambda,Y}$$
Orbit Structures of \(\mathbb{II}_1 \) Group Actions

\(\mathbb{II}_1 \) actions \((X, \mu, \Gamma) \):

- \(\Gamma \) – discrete countable group
- \((X, B, \mu) \) – std prob space \(\cong ([0, 1], \text{Borel}, \text{Lebesgue}) \)
- \(\Gamma \bowtie (X, \mu) \) – ergodic m.p. \((\gamma_*\mu = \mu, \ \forall \gamma \in \Gamma) \)

Orbit Equivalence

\((X, \mu, \Gamma) \overset{OE}{\sim} (Y, \nu, \Lambda) \) if \(\exists T : (X, \mu) \cong (Y, \nu) \) s.t. \(T(\Gamma.x) = \Lambda.T(x) \)

Denoting by \(R_{\Gamma,X} = \{ (x, y) \in X \times X \mid \Gamma x = \Gamma y \} \) the orbit relation

\[T : (X, \mu, \Gamma) \overset{OE}{\sim} (Y, \nu, \Lambda) \iff T \times T(R_{\Gamma,X}) \cong R_{\Lambda,Y} \]

Stable, or weak, OE: \((X, \mu, \Gamma) \overset{sOE}{\sim} (Y, \nu, \Lambda) \)

\[X \ni A \xrightarrow{T} B \subset Y \quad T \times T(R_{X,\Gamma}|_{A \times A}) \cong R_{Y,\Lambda}|_{B \times B} \]
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II_1 actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is amenable or not.
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II$_1$ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is amenable or not.

Theorem (Ornstein-Weiss, 1980)

All II$_1$ actions of all amenable groups are OE.
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II_1 actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\text{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \bowtie (X_i, \mu_i)$ ess. free II_1 actions $(X_1, \mu_1, \Gamma_1) \overset{\text{sOE}}{\sim} (X_2, \mu_2, \Gamma_2)$.
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II_1 actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is amenable or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\text{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \curvearrowright (X_i, \mu_i)$ ess. free II_1 actions $(X_1, \mu_1, \Gamma_1) \overset{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

$$G_1 \cong G_2, \quad \text{and}$$
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II$_1$ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is amenable or not.

Theorem (Ornstein-Weiss, 1980)

All II$_1$ actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

*Let G_1, G_2 be center free simple Lie groups, $\text{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \acts (X_i, \mu_i)$ ess. free II$_1$ actions $(X_1, \mu_1, \Gamma_1) \overset{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

\[
G_1 \cong G_2, \quad \text{and} \quad G \acts (G_1 \times_{\Gamma_1} X_1) \cong G \acts (G_2 \times_{\Gamma_2} X_2)
\]*
What does the Orbit Structure $\mathcal{R}_{X,\Gamma}$ know about Γ?

Fact

For ess. free II_1 actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is

amenable or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\text{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices
$\Gamma_i \curvearrowleft (X_i, \mu_i)$ ess. free II_1 actions $(X_1, \mu_1, \Gamma_1) \overset{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

$$G_1 \cong G_2, \quad \text{and} \quad G \curvearrowleft (G_1 \times_{\Gamma_1} X_1) \cong G \curvearrowleft (G_2 \times_{\Gamma_2} X_2)$$

For free II_1 actions of higher rank lattices $\Gamma < G$ any $\mathcal{R}_{X,\Gamma}$ remembers G!
Cocycles and Orbit Equivalence

Definition

$c : G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2 g_1, x) = c(g_2, g_1 \cdot x) \cdot c(g_1, x)$$
Cocycles and Orbit Equivalence

Definition

c : G × X → H is a measurable cocycle if for all g_1, g_2 ∈ G a.e. on X

\[c(g_2g_1, x) = c(g_2, g_1.x) \cdot c(g_1, x) \]

any measurable f : X → H defines a conjugate cocycle

\[c^f(g, x) = f(gx) c(g, x) f(x)^{-1} \]
Cocycles and Orbit Equivalence

Definition

$c : G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2 g_1, x) = c(g_2, g_1 . x) \cdot c(g_1, x)$$

Any measurable $f : X \to H$ defines a **conjugate** cocycle

$$c^f(g, x) = f(gx) c(g, x) f(x)^{-1}$$

Example

Any Orbit Equivalence $T : (X, \mu, G) \to (Y, \nu, H)$ of **free** II_1 actions, defines

$$c : G \times X \to H \quad \text{by} \quad T(g . x) = c(g, x) . T(x)$$
Cocycles and Orbit Equivalence

Definition

c : G × X → H is a measurable **cocycle** if for all g_1, g_2 ∈ G a.e. on X

\[c(g_2g_1, x) = c(g_2, g_1.x) \cdot c(g_1, x) \]

any measurable f : X → H defines a **conjugate** cocycle

\[c^f(g, x) = f(gx) \cdot c(g, x) \cdot f(x)^{-1} \]

Example

Any Orbit Equivalence T : (X, µ, G) → (Y, ν, H) of free II_1 actions, defines

\[c : G \times X → H \quad \text{by} \quad T(g.x) = c(g, x) \cdot T(x) \]

If \(c^f(g, x) = \rho(g) \), then \(\rho : G → H \) is a group homomorphism,
Cocycles and Orbit Equivalence

Definition

$c: G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2 g_1, x) = c(g_2, g_1 \cdot x) \cdot c(g_1, x)$$

any measurable $f: X \to H$ defines a **conjugate** cocycle

$$c^f(g, x) = f(gx) \cdot c(g, x) \cdot f(x)^{-1}$$

Example

Any Orbit Equivalence $T: (X, \mu, G) \to (Y, \nu, H)$ of free II_1 actions, defines

$$c: G \times X \to H \quad \text{by} \quad T(g \cdot x) = c(g, x) \cdot T(x)$$

If $c^f(g, x) = \rho(g)$, then $\rho: G \to H$ is a group homomorphism, and

$$T'(x) = f(x) \cdot T(x) \quad \text{satisfies} \quad T'(g \cdot x) = \rho(g) \cdot T'(x)$$
Cocycles and Orbit Equivalence

Definition

\(c : G \times X \rightarrow H \) is a measurable **cocycle** if for all \(g_1, g_2 \in G \) a.e. on \(X \)

\[
 c(g_2 g_1, x) = c(g_2, g_1.x) \cdot c(g_1, x)
\
\]

any measurable \(f : X \rightarrow H \) defines a **conjugate** cocycle

\[
 c^f(g, x) = f(g x) \cdot c(g, x) \cdot f(x)^{-1}
\
\]

Example

Any Orbit Equivalence \(T : (X, \mu, G) \rightarrow (Y, \nu, H) \) of free II\(_1\) actions, defines

\[
 c : G \times X \rightarrow H \quad \text{by} \quad T(g.x) = c(g, x). T(x)
\
\]

If \(c^f(g, x) = \rho(g) \), then \(\rho : G \rightarrow H \) is a group homomorphism, and

\[
 T'(x) = f(x). T(x) \quad \text{satisfies} \quad T'(g.x) = \rho(g). T'(x)
\
\]

Moreover, \(T' : (X, \mu) \cong (Y, \nu) \) is a measure space iso and \(\rho \) is a group iso.
Zimmer’s Cocycle Superrigidity Theorem

Theorem (Zimmer, 1981)

Let G, H be (semi)simple Lie groups with $\text{rk}(G) \geq 2$, $G \bowtie (X, \mu)$ an (irr) erg. p.m.p. action, $\alpha : G \times X \rightarrow H$ a non-compact Zariski dense cocycle.

Then α is conjugate to a homomorphism $\rho : G \rightarrow H$.

Same for cocycles $\Gamma \bowtie (X, \mu)$ where $\Gamma < G$ is a lattice.

A generalization of

Theorem (Margulis, 1973)

Let G, H be (semi)simple Lie groups, $\text{rk}(G) \geq 2$, $\Gamma < G$ an (irr) lattice, $\rho : \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense $\rho(\Gamma)$.

Then ρ extends to $G \rightarrow H$.
Definition (Gromov)

Let Γ_1, Γ_2 be two groups

1. **Topological Equivalence** is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \curvearrowright \Sigma$ properly disc and cocompact.

2. **Measure Equivalence** is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \curvearrowright \Omega$ has a finite measure fundamental domain.
Measurable Group Theory

Definition (Gromov)

Let Γ_1, Γ_2 be two groups

1. **Topological Equivalence** is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \bowtie \Sigma$ properly disc and cocompact.

2. **Measure Equivalence** is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \bowtie \Omega$ has a finite measure fundamental domain.

Theorem

1. $\Gamma_1 \overset{TE}{\sim} \Gamma_2$ if and only if $\Gamma_1 \overset{qi}{\sim} \Gamma_2$ (Gromov).

2. $\Gamma_1 \overset{ME}{\sim} \Gamma_2$ if and only if \exists free $(X_1, \Gamma_1) \overset{sOE}{\sim} (X_2, \Gamma_2)$.

Example

1. Uniform lattices Γ_1, Γ_2 in a loc cpt group G: $\Gamma_1 \bowtie G \bowtie \Gamma_2$.

2. Arbitrary lattices Γ_1, Γ_2 in a loc cpt group G: $\Gamma_1 \bowtie G \bowtie \Gamma_2$.
Measurable Group Theory

Definition (Gromov)

Let Γ_1, Γ_2 be two groups

1. **Topological Equivalence** is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \curvearrowright \Sigma$ properly disc and cocompact.

2. **Measure Equivalence** is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \curvearrowright \Omega$ has a finite measure fundamental domain.

Theorem

1. $\Gamma_1 \overset{\text{TE}}{\sim} \Gamma_2$ if and only if $\Gamma_1 \overset{qi}{\sim} \Gamma_2$ (Gromov).

2. $\Gamma_1 \overset{\text{ME}}{\sim} \Gamma_2$ if and only if \exists free $(X_1, \Gamma_1) \overset{sOE}{\sim} (X_2, \Gamma_2)$.

Example

1. **Uniform** lattices Γ_1, Γ_2 in a loc cpt group G: $\Gamma_1 \curvearrowright G \curvearrowright \Gamma_2$

2. Arbitrary lattices Γ_1, Γ_2 in a loc cpt group G: $\Gamma_1 \curvearrowright G \curvearrowright \Gamma_2$
Measure Equivalence and Higher Rank Lattices

Theorem (F. 1999)

Let G be simple $rk(G) \geq 2$, $\Gamma < G$ and Λ any group with $\Gamma \sim^{ME} \Lambda$.
Measure Equivalence and Higher Rank Lattices

Theorem (F. 1999)

Let G be simple $\text{rk}(G) \geq 2$, $\Gamma < G$ and Λ any group with $\Gamma \overset{\text{ME}}{\sim} \Lambda$

Then $\Lambda \simeq$ a lattice in G.
Measure Equivalence and Higher Rank Lattices

Theorem (F. 1999)

Let G be simple $rk(G) \geq 2$, $\Gamma < G$ and Λ any group with $\Gamma \overset{ME}{\sim} \Lambda$

Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II$_1$ action of lattice $\Gamma < G$, simple $rk(G) \geq 2$.

Let $\Lambda \curvearrowright (Y, \nu)$ be any free II$_1$ action with $(X, \Gamma) \overset{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\rightarrow G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.

Other applications

Feldman-Moore question, computations of $\text{Out}(R^X, \Gamma) = \text{Aut}/\text{Inn}$, Enveloping grps for lattices

A.Furman ()

Zimmer's 60th birthday conference

September 8, 2007 7 / 14
Theorem (F. 1999)

Let G be simple $\text{rk}(G) \geq 2$, $\Gamma \leq G$ and Λ any group with $\Gamma \overset{\text{ME}}{\sim} \Lambda$. Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II$_1$ action of lattice $\Gamma \leq G$, simple $\text{rk}(G) \geq 2$. Let $\Lambda \curvearrowright (Y, \nu)$ be any free II$_1$ action with $(X, \Gamma) \overset{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\to G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.
- Otherwise, for any $\pi : X \to G/\Gamma_\pi$ there is $(X_\pi, \Gamma_\pi) \overset{sOE}{\sim} (X, \Gamma)$.
Theorem (F. 1999)

Let G be simple $\text{rk}(G) \geq 2$, $\Gamma < G$ and Λ any group with $\Gamma \overset{\text{ME}}{\sim} \Lambda$. Then $\Lambda \cong$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II_1 action of lattice $\Gamma < G$, simple $\text{rk}(G) \geq 2$. Let $\Lambda \curvearrowright (Y, \nu)$ be any free II_1 action with $(X, \Gamma) \overset{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\rightarrow G / \Gamma'$, then $\Gamma \cong \Lambda$ and $\Gamma \curvearrowright X \cong \Lambda \curvearrowright Y$.
- Otherwise, for any $\pi : X \rightarrow G / \Gamma_\pi$ there is $(X_\pi, \Gamma_\pi) \overset{sOE}{\sim} (X, \Gamma)$ and (Y, Λ) is \cong to either (X, Γ) or to one of (X_π, Γ_π).
Measure Equivalence and Higher Rank Lattices

Theorem (F. 1999)

Let G be simple $rk(G) \geq 2$, $\Gamma < G$ and Λ any group with $\Gamma \overset{ME}{\sim} \Lambda$. Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II$_1$ action of lattice $\Gamma < G$, simple $rk(G) \geq 2$. Let $\Lambda \curvearrowright (Y, \nu)$ be any free II$_1$ action with $(X, \Gamma) \overset{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\to G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.

- Otherwise, for any $\pi : X \to G/\Gamma_\pi$ there is $(X_\pi, \Gamma_\pi) \overset{sOE}{\sim} (X, \Gamma)$ and (Y, Λ) is \simeq to either (X, Γ) or to one of (X_π, Γ_π).

Other applications

Feldman-Moore question, computations of $\text{Out} \left(\mathcal{R}_X, \Gamma \right) = \text{Aut} / \text{Inn}$, Enveloping grps for lattices
Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let \(\Gamma = \prod_{i}^{n} \Gamma_i \acts (X, \mu) \) free \(n \geq 2 \), where \(\Gamma_i \) are “hyperbolic-like” and \(\Gamma_i \acts (X, \mu) \) erg. \(i = 1, 2 \).
Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let \(\Gamma = \prod_i^n \Gamma_i \bowtie (X, \mu) \) free \(n \geq 2 \), where \(\Gamma_i \) are “hyperbolic-like” and \(\Gamma_i \bowtie (X, \mu) \) erg. \(i = 1, 2 \). Then

- \(R_{X,\Gamma} \) remembers the number of factors: \(n \).
Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i}^{n}\Gamma_{i} \curvearrowright (X, \mu)$ free $n \geq 2$, where Γ_{i} are “hyperbolic-like” and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. $i = 1, 2$. Then

- $R_{X,\Gamma}$ remembers the number of factors: n.
- If $\Lambda \curvearrowright (Y, \nu)$ is any free and mildly mixing, and $R_{X,\Gamma} \sim R_{Y,\Lambda}$ then $\Gamma \cong \Lambda$ and $\Gamma \curvearrowright X \cong \Lambda \curvearrowright Y$.
Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \geq 2$, where Γ_{i} are “hyperbolic-like” and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. $i = 1, 2$. Then

- $R_{X, \Gamma}$ remembers the number of factors: n.
- If $\Lambda \curvearrowright (Y, \nu)$ is any free and mildly mixing, and $R_{X, \Gamma} \sim R_{Y, \Lambda}$ then $\Gamma \cong \Lambda$ and $\Gamma \curvearrowright X \cong \Lambda \curvearrowright Y$.

Let $A = A_{1} \times A_{2}$ acts on (X, μ) with both $A_{i} \curvearrowright (X, \mu)$ erg $i = 1, 2$

$\alpha : A \times X \rightarrow \Gamma$ a non-elementary cocycle into a “hyperbolic-like” Γ.

Then α is cohom to a homomorphism $\rho : A \rightarrow A_{i} \rightarrow \Gamma$ for $i = 1$ or 2.
Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \geq 2$, where Γ_{i} are “hyperbolic-like” and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. $i = 1, 2$. Then

- $R_{X, \Gamma}$ remembers the number of factors: n.
- If $\Lambda \curvearrowright (Y, \nu)$ is any free and mildly mixing, and $R_{X, \Gamma} \sim R_{Y, \Lambda}$ then $\Gamma \cong \Lambda$ and $\Gamma \curvearrowright X \cong \Lambda \curvearrowright Y$.

Let $A = A_{1} \times A_{2}$ acts on (X, μ) with both $A_{i} \curvearrowright (X, \mu)$ erg $i = 1, 2$ $
\alpha : A \times X \rightarrow \Gamma$ a non-elementary cocycle into a “hyperbolic-like” Γ.

Then α is cohom to a homomorphism $\rho : A \rightarrow A_{i} \rightarrow \Gamma$ for $i = 1$ or 2.
Results of Kida 2006,+

For Γ Mapping Class Group

- Full rigidity: $\text{ME}(\Gamma) = \{ \Gamma \}$, $\text{OE} = \text{isom}$ (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $\text{Out}(\mathcal{R}_X,\Gamma)$

+ A. Furman

Zimmer's 60th birthday conference
September 8, 2007
Mapping Class groups

Results of Kida 2006,+

For Γ Mapping Class Group
- Full rigidity: $ME(\Gamma) = \{\Gamma\}$, OE=isom (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $Out(\mathcal{R}_x,\Gamma)$

Ingredients
- Boundary theory on Thurston’s compactification (amenability,+)
- Ivanov’s $\Gamma = Aut(Curve Cpx)$ for groupoids
Mapping Class groups

Results of Kida 2006,+

For Γ Mapping Class Group

- Full rigidity: $ME(\Gamma) = \{\Gamma\}$, $OE=\text{isom}$ (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $Out(\mathcal{R}_X,\Gamma)$

Ingredients

- Boundary theory on Thurston’s compactification (amenability, $+$)
- Ivanov’s $\Gamma = \text{Aut} \ (\text{Curve Cpx})$ for groupoids
Invariants of groups

- amenability,
Invariants of groups

- amenability, property (T),
Invariants of groups

- amenability, property (T), a-(T)-menability, ...
Invariants of groups

- amenability, property (T), a-(T)-menability, ...
- $\text{Sp}_{n,1}(\mathbb{R}) \not\sim ME \text{Sp}_{k,1}(\mathbb{R})$ (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- $\text{cost}(\mathcal{R}_{X,F_n}) = n, \ldots$ (Levitt, Gaboriau)
- $\beta^{(2)}_n(\Gamma), \chi(\Gamma)$ (Gaboriau)
Invariants of groups

- amenability, property (T), a-(T)-menability, ...
- $S_{p_{n,1}}(R)^{ME} \not\sim S_{p_{k,1}}(R)$ (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- $\text{cost}(\mathcal{R}_{X,F_n}) = n, \ldots$ (Levitt, Gaboriau)
- $\beta_n^{(2)}(\Gamma), \chi(\Gamma)$ (Gaboriau)
- Homological invariants (Sauer)
Invariants of groups

- amenability, property (T), a-(T)-menability, ...
- \(\text{Sp}_{n,1}(\mathbb{R}) \overset{ME}{\nRightarrow} \text{Sp}_{k,1}(\mathbb{R}) \) (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- \(\text{cost}(\mathcal{R}_{X,F_n}) = n, \ldots \) (Levitt, Gaboriau)
- \(\beta_n^{(2)}(\Gamma), \chi(\Gamma) \) (Gaboriau)
- Homological invariants (Sauer)

Applications

- Descriptive Set Theory: Adams-Kechris, Hjorth, Thomas, ...

Applications to QI of amenable groups

- Shalom, Sauer
New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^{\Gamma}$ be a Bernoulli action. Let any discrete, or cpt (or $\in U_{\text{fin}}$) group. Then any cocycle $\alpha : \Gamma \times X \to \Lambda$ is conjugate in Λ to a homomorphism $\rho : \Gamma \to \Lambda$.
New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let \(\Gamma \) have (T) and \(\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma \) be a Bernoulli action. \(\Lambda \) any discrete, or cpt (or \(\in U_{\text{fin}} \)) group.

Then any cocycle \(\alpha : \Gamma \times X \rightarrow \Lambda \) is conjugate in \(\Lambda \) to a homomorphism \(\rho : \Gamma \rightarrow \Lambda \).

Corollary

For \(\Gamma \curvearrowright (X, \mu) \) as above, \(R_{X,\Gamma} \) remembers \(\Gamma \) and \(\Gamma \curvearrowright X \).
New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^\Gamma$ be a Bernoulli action. Let any discrete, or cpt (or $\in U_{\text{fin}}$) group. Then any cocycle $\alpha : \Gamma \times X \to \Lambda$ is conjugate in Λ to a homomorphism $\rho : \Gamma \to \Lambda$.

Corollary

For $\Gamma \curvearrowright (X, \mu)$ as above, $R_{X, \Gamma}$ remembers Γ and $\Gamma \curvearrowright X$.

Theorem (Ioana 2007)

Let Γ have (T), $K = \lim \Gamma / \Gamma_i$ be a profinite completion. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any $\Lambda \in U_{\text{fin}}$. Then $\exists i$, and $\rho : \Gamma_i \to \Lambda$ so that $\alpha|_{\Gamma_i \times K_i}$ is conjugate to ρ, $K_i = \Gamma_i < K$.

A.Furman () Zimmer's 60th birthday conference September 8, 2007 11 / 14
Theorem (F. after Ioana, 2007)

Let Γ have (\mathcal{T}), K compact, $\tau: \Gamma \to K$ dense hom.
$\alpha: \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom $\rho: \Gamma' \to \Lambda$ from a fin ind $\Gamma' \subset \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha: \Gamma' \times \hat{K}' \to \Lambda$ is conjugate to ρ.
Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom $\rho : \Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K'} \to K' = \tau(\Gamma')$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ.

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and Π_1 action $\Gamma \curvearrowright (X, \mu)$. Then close cocycles are conjugate:
One Proof

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom $\rho : \Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \tau(\Gamma')$ so that $\alpha : \Gamma' \times \hat{K}' \to \Lambda$ is conjugate to ρ.

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and Π_1 action $\Gamma \bowtie (X, \mu)$. Then close cocycles are conjugate: $\exists S \subset \Gamma$, $\epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy

$$
\mu\{x \in X \mid \forall s \in S : \alpha(s, x) = \beta(s, x)\} > 1 - \epsilon
$$
One Proof

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom $\rho : \Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K'} \to K' = \tau(\Gamma')$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ.

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and Π_1 action $\Gamma \actson (X, \mu)$. Then close cocycles are conjugate: $\exists S \subset \Gamma$, $\epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy

$$\mu\{x \in X \mid \forall s \in S : \alpha(s, x) = \beta(s, x)\} > 1 - \epsilon$$

then $\exists f : X \to \Lambda$ s.t. $\beta = \alpha^f$
Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom.
\[\alpha : \Gamma \times K \to \Lambda\] any cocycle into any discrete group.

Then \exists a hom $\rho : \Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \tau(\Gamma')$ so that $\alpha : \Gamma' \times \hat{K}' \to \Lambda$ is conjugate to ρ.

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and \mathbb{II}_1 action $\Gamma \actson (X, \mu)$. Then close cocycles are conjugate: \exists $S \subset \Gamma$, $\epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy
\[\mu\{x \in X \mid \forall s \in S : \alpha(s, x) = \beta(s, x)\} > 1 - \epsilon\]
then $\exists f : X \to \Lambda$ s.t. $\beta = \alpha^f$ and $\mu\{x \mid f(x) = e\} > 3/4$.
Proof of the Theorem

Proof.

Deform \(\alpha : \Gamma \times K \to \Lambda \) by \(\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1}) \) \((t \in K) \).
Proof of the Theorem

Proof.

Deform \(\alpha : \Gamma \times K \to \Lambda \) by \(\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1}) \) \((t \in K) \).

For \(t \in U \) small there is \(f_t : K \to \Lambda \) so that

\[\alpha_t = \alpha^{f_t} \quad \text{and} \quad \mu\{x \mid f(x) = e\} > 3/4. \]
Proof

Deform $\alpha : \Gamma \times K \to \Lambda$ by $\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1})$ ($t \in K$).

For $t \in U$ small there is $f_t : K \to \Lambda$ so that

$$\alpha_t = \alpha^{f_t}$$

and

$$\mu\{x \mid f(x) = e\} > 3/4.$$

If $t, s, ts \in U$ then both

$$f_t(xs^{-1})f_s(x) \quad \text{and} \quad f_{ts}(x)$$

conjugate α to α_{ts}.
Proof.

Deform \(\alpha : \Gamma \times K \to \Lambda \) by \(\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1}) \) \((t \in K) \).

For \(t \in U \) small there is \(f_t : K \to \Lambda \) so that

\[\alpha_t = \alpha^{f_t} \quad \text{and} \quad \mu\{x \mid f(x) = e\} > 3/4. \]

If \(t, s, ts \in U \) then both

\[f_t(xs^{-1})f_s(x) \quad \text{and} \quad f_{ts}(x) \]

conjugate \(\alpha \) to \(\alpha_{ts} \).

\(f_{ts}(x) = f_t(xs^{-1})f_s(x) \) on a set of meas > 0, hence a.e.

Try to propagate to \(K' = \langle U \rangle \). May need to lift to a finite cover \(\hat{K}' \to K' \).

On \(\hat{K}' \) we have \(f_t(x) = \phi(xt^{-1})^{-1}\phi(x) \)

\[\phi(\gamma xt^{-1})\alpha(\gamma, xt^{-1})\phi(xt^{-1}) = \phi(\gamma x)\alpha(\gamma, x)\phi(x)^{-1} = \rho(\gamma) \]
Proof of the Local Rigidity Statement

\[\Gamma \overset{\sim}{\rightarrow} X \times \Lambda \text{ by } g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1}). \]
Proof of the Local Rigidity Statement

\(\Gamma \curvearrowright X \times \Lambda \) by \(g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1}) \).

In the \(\Gamma \)-rep \(\pi \) on \(L^2(X \times \Lambda) \) the unit vector \(F_0 = 1_{X \times \{e\}} \) satisfies

\[
\forall s \in S : \quad \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon,
\]
Proof of the Local Rigidity Statement

$\Gamma \curvearrowright X \times \Lambda$ by $g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda \beta(g, x)^{-1})$.

In the Γ-rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$\forall s \in S : \quad \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon,$$

There exists a $\pi(G)$-invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x, \lambda) - 1|^2 \, dx \right)^{1/2} < 1/10.$$
Proof of the Local Rigidity Statement

\(\Gamma \curvearrowright X \times \Lambda \) by \(g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1}) \).

In the \(\Gamma \)-rep \(\pi \) on \(L^2(X \times \Lambda) \) the unit vector \(F_0 = 1_{X \times \{e\}} \) satisfies

\[\forall s \in S : \quad \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon, \]

There exists a \(\pi(G) \)-invariant unit \(F \in L^2(X \times \Lambda) \) with

\[\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x, \lambda) - 1|^2 \, dx \right)^{1/2} < 1/10. \]

The peak value \(p(x) = \max |F(x, -)| \) and its multiplicity \(m : X \to \mathbb{N} \) are \(\Gamma \)-inv on \((X, \mu) \), hence a.e. constants: \(0 < p \leq 1, \, m \in \mathbb{N} \).
Proof of the Local Rigidity Statement

$\Gamma \curvearrowright X \times \Lambda$ by $g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$.

In the Γ-rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$\forall s \in S : \quad \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon,$$

There exists a $\pi(G)$-invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int \|F(x, \lambda) - 1\|^2 \, dx \right)^{1/2} < 1/10.$$

The peak value $p(x) = \max \|F(x, -)\|$ and its multiplicity $m : X \to \mathbb{N}$ are Γ-inv on (X, μ), hence a.e. constants: $0 < p \leq 1$, $m \in \mathbb{N}$.

$m = 1$, because $m \geq 2 \implies p \leq 1/2$ and $\|F - F_0\| \geq 1/2$.
Proof of the Local Rigidity Statement

\(\Gamma \rightrightarrows X \times \Lambda\) by \(g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})\).

In the \(\Gamma\)-rep \(\pi\) on \(L^2(X \times \Lambda)\) the unit vector \(F_0 = 1_{X \times \{e\}}\) satisfies

\[\forall s \in S : \quad \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon,\]

There exists a \(\pi(G)\)-invariant unit \(F \in L^2(X \times \Lambda)\) with

\[\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x, \lambda) - 1|^2 \, dx\right)^{1/2} < 1/10.\]

The peak value \(p(x) = \max |F(x, -)|\) and its multiplicity \(m : X \rightarrow \mathbb{N}\) are \(\Gamma\)-inv on \((X, \mu)\), hence a.e. constants: \(0 < p \leq 1, \ m \in \mathbb{N}\).

\(m = 1\), because \(m \geq 2 \implies p \leq 1/2\) and \(\|F - F_0\| \geq 1/2\).

Let \(f : X \rightarrow \Lambda\) denote the location of the peak: \(F(x, f(x)) = p\).

\[f(g \cdot x) = \alpha(g, x)f(x)\beta(g, x)^{-1} \quad \alpha = \beta^f\]
Proof of the Local Rigidity Statement

$\Gamma \acts Luna X \times \Lambda$ by $g : (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$.

In the Γ-rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$\forall s \in S : \langle \pi(s)F_0, F_0 \rangle > 1 - \epsilon,$$

There exists a $\pi(G)$-invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x, \lambda) - 1|^2 \, dx \right)^{1/2} < 1/10.$$

The peak value $p(x) = \max |F(x, -)|$ and its multiplicity $m : X \to \mathbb{N}$ are Γ-inv on (X, μ), hence a.e. constants: $0 < p \leq 1$, $m \in \mathbb{N}$.

$m = 1$, because $m \geq 2 \implies p \leq 1/2$ and $\|F - F_0\| \geq 1/2$.

Let $f : X \to \Lambda$ denote the location of the peak: $F(x, f(x)) = p$.

$$f(g.x) = \alpha(g, x)f(x)\beta(g, x)^{-1} \quad \alpha = \beta^f$$

Finally $\mu\{x \in X \mid f(x) = e\} > 3/4$.