A NOTE ON STABILITY IN A MODEL

G. CONANT AND C. TERRY

This note contains a combinatorial result about bipartite graphs (Proposition 2), which is motivated by certain definitions in model theory. Given an \mathcal{L} -structure M, an \mathcal{L} -formula $\varphi(x, y)$ is called *stable in* M if there do not exist sequences $(a_i)_{i \in I}$ in M^x and $(b_i)_{i \in I}$ in M^y , indexed by an infinite linear order I, such that $M \models \varphi(a_i, b_j)$ if and only if $i \leq j$. Note that it suffices to assume I is either ω or ω^* (where the latter denotes the reverse order on ω). This variation of the order property seems to have first appeared in an early paper of Pillay [4], and was later popularized by a paper of Ben Yaacov [1] on the connection between stability and work of Grothendieck in functional analysis [2].

Following the definition of stable in a model, it is natural to ask for an analogous definition of NIP in a model. In this case, one does not want to literally say that $\varphi(x, y)$ has the independence property witnessed by sequences in M, since this would force M to have size continuum. Thus, in [3], Khanaki and Pillay say that $\varphi(x, y)$ is NIP in M if there does not exist an infinite set $A \subseteq M^x$ such that the set system $\{\varphi(x, b) : b \in M^y\}$ shatters all finite subsets of A. Equivalently, $\varphi(x, y)$ is NIP in M if and only if there do not exist sequences $(a_i)_{i < \omega}$ in M^x and $(b_X)_{X \subseteq \omega}$ in N^y , where $N \succeq M$, such that $N \models \varphi(a_i, b_X)$ if and only if $i \in X$ (see [3, Remark 1.2] for further discussion).

Now, since the definition of NIP in a model is not directly analogous to the definition of stable in a model, it becomes necessary to prove that if $\varphi(x, y)$ is stable in M then it is also NIP in M. In [3, Corollary 2.7], this is quickly deduced from Pillay's account in [5] of the Grothendieck approach to stability and, in particular, definability of types. Given this short but rather high-powered proof, Pillay asked for a direct combinatorial proof, which we will present here. In particular, we will give a elementary combinatorial proof of the following fact, which restates [3, Lemma 2.6].

Fact 1. A formula $\phi(x, y)$ is stable in M if and only if there is no infinite linear order I, and sequences $(a_i)_{i \in I}$ in M^x and $(b_i)_{i \in I}$ in N^y , with $N \succeq M$, such that $N \models \phi(a_i, b_j)$ if and only if $i \leq j$.

Since this is a combinatorial argument, we will phrase our result (Proposition 2) in terms of bipartite graphs. In particular, we will align things with the routine equivalent formulation of the righthand side Fact 1 involving only the initial model M. For aesthetic reasons, Proposition 2 will also correspond to switching the positions of M and N in Fact 1. But this does not matter since $\varphi(x, y)$ is stable in M if and only if $\varphi^*(y, x)$ is stable in M, where $\varphi^*(y, x)$ is identical to $\varphi(x, y)$ but with the roles of x and y switched.

Date: February 5, 2019.

Updated: September 7, 2023.

Call a relation $R \subseteq U \times V$ stable if there is no infinite linear order I, and sequences $(a_i)_{i \in I}$ from U and $(b_i)_{i \in I}$ from V, such that $R(a_i, b_j)$ holds if and only if $i \leq j$. (So $\varphi(x, y)$ is stable in M if and only if φ is stable as a relation on $M^x \times M^y$.)

Proposition 2. The following are equivalent:

- (i) R is stable.
- (ii) There is no infinite linear order I and sequences $(a_i^X)_{i \in X \subset_{\text{fin}} I}$ in U and $(b_i)_{i \in I}$ in V, such that $R(a_i^X, b_j)$ holds if and only if $i \leq j$.

Proof. $(ii) \Rightarrow (i)$ is trivial. We prove the contrapositive of $(i) \Rightarrow (ii)$. Suppose there is some infinite linear order I as in (ii). We may assume I is either ω or ω^* . Suppose first that I is ω . So we have $(a_i^k)_{i \le k \in \omega}$ in U and $(b_i)_{i \in \omega}$ in V such that, for all $i, j \le k \in \omega$, $R(a_i^k, b_j)$ holds if and only if $i \le j$. Call $t \in \omega$ good if for all $k \ge t$, the set $\{u \in \omega : R(a_k^k, b_u)\}$ is finite.

Case 1: There is some good $t \in \omega$.

We construct a strictly increasing sequence $(k_i)_{i \in \omega}$ such that $k_0 = t$ and, for all $i < j \in \omega$, $\neg R(a_t^{k_i}, b_{k_j})$. Let $k_0 = t$ and suppose we have constructed k_0, \ldots, k_i as above. Since t is good, the set $\{u \in \omega : R(a_t^{k_j}, b_u) \text{ for some } j \leq i\}$ is finite. So we may choose some $k_{i+1} > k_i$ such that $\neg R(a_t^{k_j}, b_{k_{i+1}})$ holds for all $j \leq i$. This finishes the construction.

Now set $c_i = a_t^{k_i}$ and $d_i = b_{k_i}$. If $i \ge j$ then $R(c_i, d_j)$ holds since $k_i \ge k_j \ge t$. If i < j then $\neg R(c_i, d_j)$ holds since $k_i < k_j$. Altogether, R is not stable.

Case 2: There is no good $t \in \omega$.

We construct $(k_t)_{t\in\omega}$ in ω and $(I_t)_{t\in\omega}$ in $\mathcal{P}(\omega)$ such that, for all $t\in\omega$, I_t is infinite, $i_t := \min I_t \leq k_t$, and $I_{t+1} = \{u \in I_t : u > k_t, R(a_{i_t}^{k_t}, b_u)\}$. Let $I_0 = \omega$. Fix $t \geq 0$ and suppose have constructed I_s for all $s \leq t$, and k_s for all s < t. We find I_{t+1} and k_t . Since i_t is not good, and I_t is infinite, there is some $k_t \geq i_t$ such that the set $I_{t+1} := \{u \in I_t : u > k_t, R(a_{i_t}^{k_t}, b_u)\}$ is infinite. This finishes the construction.

Now set $c_t = a_{i_t}^{k_t}$ and $d_t = b_{i_t}$. Fix $s, t < \omega$. If s = t then $R(c_s, d_t)$ holds since $i_t \le k_t$. If s > t then $\neg R(c_s, d_t)$ holds since $i_t < i_s \le k_s$. Suppose s < t. Then $i_t = \min I_t \subseteq I_{s+1}$, and so $i_t \in I_{s+1}$. So $R(a_{i_s}^{k_s}, b_{i_t})$ holds, i.e., $R(c_s, d_t)$ holds. Altogether, R is not stable.

Finally, suppose I is ω^* . So we have $(a_i^k)_{i \leq k \in \omega}$ in U and $(b_i)_{i \in \omega}$ in V such that, for all $i, j \leq k \in \omega$, $R(a_i^k, b_j)$ holds if and only if $i \geq j$. For $i \in \omega$, let $c_i = b_{i+1}$. Then, for all $i, j \leq k \in \omega$, we have $\neg R(a_i^k, c_j)$ if and only if $i \leq j$. So $\neg R$ is not stable by the above argument, which implies that R is not stable.

References

- I. Ben Yaacov, Model theoretic stability and definability of types, after A. Grothendieck, Bull. Symb. Log. 20 (2014), no. 4, 491–496. MR 3294276
- [2] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186. MR 0047313
- [3] K. Khanaki and A. Pillay, *Remarks on the NIP in a model*, MLQ Math. Log. Q. 64 (2018), no. 6, 429–434. MR 3898100
- [4] A. Pillay, Dimension theory and homogeneity for elementary extensions of a model, J. Symbolic Logic 47 (1982), no. 1, 147–160. MR 644760
- [5] _____, Generic stability and Grothendieck, South Amer. J. Log. 2 (2016), no. 2, 437–442. MR 3671044