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Abstract. We investigate an open question concerning properties of algebraic independence in continuous

theories (see Section 4). The rest of the work is essentially a translation to continuous logic of popular notions

of independence (in particular, forking and dividing). Much of the time we are simply “copying” classical

proofs from well-known sources, while along the way making the necessary adjustments for continuous

languages.

1. Forking and Dividing

We assume that the reader is familiar with the construction of continuous languages and theories of metric

structures. A full introduction to these concepts can be found in [2].

We begin with the usual definition of dividing, which does not need to be altered to work in the continuous

setting.

Definition 1.1. A partial type π(x, b) divides over C if there is a C-indiscernible sequence (bi)i<ω, with

b0 ≡C b, such that ⋃
i<ω

π(x, bi) :=
⋃
i<ω

{ϕ(x, bi) = 0 : “ϕ(x, b) = 0” ∈ p(x, b)}

is unsatisfiable. A formula ϕ(x, b) divides over C if {ϕ(x, b) = 0} divides over C.

Basic familiar properties of dividing from classical logic can now be proved with little difficulty.

Proposition 1.2. If ϕ(x, b) divides over C and b′ ≡C b then ϕ(x, b′) divides over C.

Proof. Let σ ∈ Aut(M/C) such that σ(b) = b′. Let (bi)i<ω be C-indiscernible, with b0 = b, such that

{ϕ(x, bi) = 0 : i < ω} is inconsistent. Then (σ(bi))i<ω is C-indiscernible and {ϕ(x, σ(bi)) = 0 : i < ω} is

unsatisfiable, witnessing that ϕ(x, b′) divides over C. �

Proposition 1.3. Suppose π(x, b) divides over C. Then there are formulas ϕ1(x, b), . . . ϕk(x, b) such that

“ϕj(x, b) = 0” ∈ π(x, b) for all j, and max1≤j≤k ϕj(x, b) divides over C.
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Proof. Suppose π(x, b) divides over C, witnessed by the C-indiscernible sequence (bi)i<ω. By compactness

there are ϕ1(x, b), . . . ϕk(x, b) such that “ϕi(x, b) = 0” ∈ π(x, b) for all i, and

{ϕj(x, bi) = 0 : i < ω, 1 ≤ j ≤ k}

is unsatisfiable. This implies

{max1≤j≤k ϕj(x, bi) = 0 : i < ω}

is inconsistent, and so (bi)i<ω witnesses that max1≤j≤k ϕj(x, b) divides over C. �

Corollary 1.4. A complete type p ∈ S(B) divides over C if and only if there is some formula ϕ(x, b) such

that ϕ(x, b) = 0 ∈ p and ϕ(x, b) divides over C.

Proof. The reverse direction is obvious. Conversely, if ϕ1(x, b) = 0, . . . , ϕk(x, b) = 0 ∈ p and p is a complete

type then max1≤j≤k ϕj(x, b) = 0 ∈ p, so the result follows from Proposition 1.3. �

Proposition 1.5. Suppose p is C-invariant. Then p does not divide over C.

Proof. Fix a formula ϕ(x, b) such that “ϕ(x, b) = 0” ∈ p. Let (bi)i<ω be a C-indiscernible sequence with

b0 = b. For i < ω there is some σi ∈ Aut(M/C) such that σi(b) = bi. By C-invariance, “ϕ(x, bi) = 0 ∈ p.

Therefore {ϕ(x, bi) = 0 : i < ω} ⊆ p is satisfiable. �

The natural thing to do next is define forking. Many sources use the “implies a disjunction of dividing

formulas” definition, which we thought might be too syntactical and/or dependent on classical logic. So

instead, we use the definition illustrating the motivation for forking independence as the natural attempt to

“force” the extension axiom on dividing independence (see [1, Section 3] and Proposition 1.12).

Definition 1.6. A partial type π(x, b) forks over C if there is some D ⊇ Cb such that any extension of

p(x, b) to a complete type over D divides over C.

Proposition 1.7. Let C ⊆ B and π(x) a partial type over B. If π does not fork over C then it can be

extended to a complete type p(x) ∈ S(B), which does not fork over C.

Proof. Suppose D ⊇ B witnesses that π does not fork over C. Let Σ be the collection of consistent partial

types over B, which extend π and do not fork over C. Then π ∈ Σ, and we show that Σ satisfies the increasing

chain condition of Zorn’s Lemma. Indeed, suppose π0 ⊆ π1 ⊆ . . . are elements of Σ. Let π′ =
⋃
i<ω πi. Then

π′ is a consistent partial type over B extending π. It follows that D witnesses that π′ does not fork over C,

so π′ ∈ Σ.

Let p(x) be a maximal element of Σ. Then p does not fork over C, so we have left to show that p is

complete. So let ϕ(x) ∈ L(B)and suppose, towards a contradiction, that “ϕ(x) = r” 6∈ p for all r ∈ [0, 1]. By

maximality of p, pr := p ∪ {ϕ(x) = r} forks over A for all r ∈ [0, 1]. Let Dr ⊇ B witness that pr forks over
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C, and set D′ =
⋃
r∈RDr. Suppse p∗ is a complete extension of p to D′. Then there is some r ∈ R such that

“ϕ(x) = r ∈ p∗. It follows that p∗ is a complete extension of pr to D′ ⊇ Dr. By assumption p∗|Dr
divides

over C, and so p∗ divides over C. Altogether, we have shown D′ witnesses that p forks over C, which is a

contradiction. �

Given a formula ϕ(x) and ε ≥ 0, we use ϕ(x) ≤ ε to denote the condition ϕ(x) .− ε = 0. If π(x) is a type

and ϕ(x) is a formula then we use the notation

π(x) ` ϕ(x) = 0

to mean that ϕ(a) = 0 for any realization a |= π(x). Note that by compactness, if π(x, b) ` ϕ(x) = 0 then

for all ε > 0 there is a finite subset π0(x, b) ⊆ π(x, b) such that π0(x, b) ` ϕ(x) ≤ ε.

Lemma 1.8. If ϕ(x, b) divides over C then there is some ε > 0 such that ϕ(x, b) ≤ ε divides over C.

Proof. Suppose ϕ(x, b) divides over C, as witnessed by a C-indiscernible sequence (bi)i<ω. Then

{ϕ(x, bi) ≤ 1
n : i < ω, n > 0}

is unsatisfiable. By compactness there is some N > 0 such that

{ϕ(x, bi) ≤ 1
n : i < ω, 0 < n ≤ N}

is unsatisfiable. Therefore (bi)i<ω witnesses that ϕ(x, b) ≤ 1
N divides over C. �

We can now show that in continuous logic, the analog of forking as “implying a disjunction of dividing

formulas” still works.

Theorem 1.9. The following are equivalent:

(i) π(x, b) forks over C;

(ii) There are formulas ϕ1(x), . . . , ϕk(x) such that ϕj(x) divides over C for all j, and

π(x, b) ` min
1≤j≤k

ϕj(x) = 0.

Proof. First suppose π(x, b) forks over C, witnessed by D ⊇ Cb. Define

Σ = {ψ(x) ∈ L(D) : ψ(x) divides over C}.

By Lemma 1.8, for each ψ ∈ Σ we can find εψ > 0 such that ψ(x) ≤ εψ divides over C. Define

p0(x) := π(x, b) ∪ {ψ(x) ≥ εψ : ψ ∈ Σ},

which is a (possibly inconsistent) type over D. Suppose, towards a contradiction, that p0(x) is satisfiable.

Then we can extend p0(x) to p(x) ∈ S(D). By assumption p(x) divides over C. By Corollary 1.4, let

ψ(x) ∈ p(x) divide over C (and so ψ(x) ∈ Σ). If a realizes p then ψ(a) = 0, but “ψ(x) ≥ εψ” ∈ p0(x) ⊆ p(x),
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which is a contradiction.

Therefore p0(x) is unsatisfiable. By compactness there are ψ1(x), . . . , ψk(x) and εj := εψj
such that

ψj(x) ≤ εj divides over C and

π(x, b) ∪ {ψj(x) ≥ εj : 1 ≤ j ≤ k}

is unsatisfiable. If ϕj(x) := ψj(x) .− εj , then we have

π(x, b) ` min
1≤j≤k

ϕj(x) = 0.

Conversely, suppose we have ϕ1(x), . . . , ϕk(x) satisfying condition (ii) of the theorem. Let D be the

union of Cb together with all parameters from the ϕj(x), for 1 ≤ j ≤ k. Suppose p(x) ∈ S(D) is an

extension of π(x, b) and let a |= p. Then a |= π(x, b) so, by assumption, ϕj(a) = 0 for some j. But then

“ϕj(x) = 0” ∈ tp(a/D) = p, which means p divides over C. Therefore π(x, b) forks over C. �

As with dividing, we can now prove basic results about forking with little to no change from their classical

counterparts. Many of these are exercises in [5, Chapter 7].

Exercise 1.10. If π(x) is finitely satisfiable in C then π(x) does not fork over C.

Proof. If π(x, b) forks over C then let

π(x, b) ` min
1≤j≤k

ϕj(x, b) = 0

with ϕj(x, b) dividing over C for all 1 ≤ j ≤ k. By Lemma 1.8, there is some ε > 0 such that ϕj(x, b) ≤ ε

divides over C for all 1 ≤ j ≤ k. Let π0(x, b) ⊆ π(x, b) be finite such that

π0(x, b) ` min
1≤j≤k

ϕj(x, b) ≤ ε.

Since π(x, b) is finitely satisfiable in C, it follows that there is a ∈ C and some 1 ≤ j ≤ k such that

ϕj(a, b) ≤ ε. If (bi)i<ω is C-indiscernible, with b0 ≡C b, then a satisfies {ϕj(a, bi) ≤ ε : i < ω}. Altogether,

it follows that ϕj(x, b) ≤ ε does not divide over C, which is a contradiction. �

Proposition 1.11. Suppose M is a model and C ⊆M such that M is |C|+-saturated. Then for p ∈ S(M),

if p forks over C then p divides over C.

Proof. Suppose p ` min1≤j≤k ϕj(x, b) = 0, with ϕj(x, b) dividing over C for all 1 ≤ j ≤ k. By Lemma

1.8 there is ε > 0 such that ϕj(x, b) ≤ ε divides over C for all 1 ≤ j ≤ k. Let p0 be finite such that

p0 ` min1≤j≤k ϕj(x, b) ≤ ε. Let m be the finite tuple of parameters mentioned in p0. By assumption, there

is some d ∈M realizing tp(b/Cm). Then p ` p0 ` min1≤j≤k ϕj(x, d) ≤ ε, which implies there is some j such

that “ϕj(x, d) ≤ ε” ∈ p. But d ≡A b implies ϕj(x, d) ≤ ε divides over C, and so p divides over C. �
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Proposition 1.12. Non-forking satisfies extension, i.e. if tp(a/BC) does not fork over C and B′ ⊇ B then

there is some a′ ≡BC a such that tp(a′/B′C) does not fork over C.

Proof. Let M be a |C|+-saturated model containing B′C. Since p := tp(a/BC) does not fork over C, there

is some q ∈ S(M) extending p such that q does not divide over C. By Proposition 1.11, q does not fork over

C, and so q|B′C does not fork over C. If a′ |= q|B′C , then a′ ≡BC a and tp(a′/B′C) = q|B′C does not fork

over C. �

2. Erdös-Rado Results and Indiscernibles

In this section, we provide proofs of two fundamental theorems about indiscernibles. These are used

frequently in classical model theory, and will be just as useful in the continuous setting. The main results

are Theorem 2.3 and Theorem 2.4. We include complete proofs for continuous logic, but they are only slightly

modified from the classical proofs. Both can be found in [5] (Lemma 5.1.3 and Lemma 7.2.12, respectively).

Definition 2.1. Given a sequence I = (ai)i∈I and a set A, the EM-type of I over A, denoted EM(I/A),

is the following partial type in the variables (xn)n<ω over A

EM(I/A) = {ϕ(x1, . . . , xn) = 0 : ϕ(x̄) ∈ L(A), ∀ i1 < . . . < in, ϕ(ai1 , . . . , ain) = 0}.

Lemma 2.2. Given a sequence (ai)i∈I , a set A, and a linear order J , there is a sequence (bj)j∈J such that

EM((ai)i∈I/A) ⊆ EM((bj)j∈J/A).

Proof. We want to satisfy

∆ = {ϕ(xj1 , . . . , xjn) = 0 : “ϕ(x1, . . . , xn) = 0” ∈ EM((ai)i∈I/A), j1 < . . . < jn ∈ J}

Given a finite subset ∆0 ⊆ ∆, let j1 < . . . < jk ∈ J be such that (xjr )kr=1 are all the variables occuring in

the formulas in ∆0. Fix i1 < . . . < ik from I. If ϕ(xjr1 , . . . , xjrn ) ∈ ∆0 then 1 ≤ rl ≤ k for all 1 ≤ l ≤ n and

ϕ(x1, . . . , xn) ∈ EM((ai)i∈I/A), so by assumption, ϕ(air1 , . . . , airn ) = 0. Therefore (air )kr=1 satisfies ∆0.

By compactness, ∆ is satisfiable, and if (bj)j∈J is a realization, then EM((ai)i∈I/A) ⊆ EM((bj)j∈J/A). �

Theorem 2.3. Given a sequence (ai)i∈I , a set A, and a linear order J , there is an A-indiscernible sequence

(bj)j∈J realizing EM((ai)i∈I/A).

Proof. First, given a formula ϕ(x1, . . . , xn), we define the following connective:

uϕ(x1, . . . , xn, y1, . . . , yn) := max(ϕ(x1, . . . , xn)
.− ϕ(y1, . . . , yn), ϕ(y1, . . . , yn)

.− ϕ(x1, . . . , xn)).
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So uϕ(x̄, ȳ) = 0 if and only if ϕ(x̄) = ϕ(ȳ).

Let ∆(A) be the elementary diagram of A. Let L∗ = L ∪A ∪ {bj : b ∈ J} and define the sets

Γ1 = {uϕ(bj1 , . . . , bjn , bk1 , . . . , bkn) = 0 : ϕ(x̄) ∈ LA, j1 < . . . < jn and k1 < . . . < kn in J} and

Γ2 = {ϕ(bj1 , . . . , bjn) = 0 : “ϕ(x1, . . . , xn) = 0” ∈ EM((ai)i∈I/A), j1 < . . . < jn in J}.

Set Σ = T ∪∆(A) ∪ Γ1 ∪ Γ2. Suppose Σ0 ⊆ Σ is finite. Let ϕ1(x̄), . . . , ϕm(x̄) be the formulas in Σ0 ∩ Γ1,

and suppose x1, . . . , xn are the free variables occurring in the ϕk(x̄). Set κ = in(2ℵ0)+. By Lemma 2.2, we

may replace I by an index set of size κ. Define F : [I]n −→ [0, 1]m such that if i1 < . . . < in then

F ({i1, . . . , in}) = (ϕ1(xi1 , . . . , xin), . . . , ϕm(xi1 , . . . , xin)).

By the Erdös-Rado Theorem, there is an infinite subset Y ⊆ I that is homogeneous for F ; say η ∈ [0, 1]m

such that F (I0) = η for all I0 ∈ [Y ]n.

Let J0 be the finite set of j ∈ J such that bj appears in a sentence of Σ0. Let {ij : j ∈ J0} ⊆ Y such that

ij < ik if j < k. Then if j1 < . . . < jn and k1 < . . . < kn are in J0, we have

ϕk(aij1 , . . . , aijn ) = r ∈ [0, 1] ⇔ η(k) = r ⇔ ϕ(aik1
, . . . , aikn

) = r.

Therefore if we interpret bj as aij for j ∈ J0, we have uϕ(bj1 , . . . , bjn , bk1 , . . . , bkn) = 0 for all j1 < . . . < jn

and k1 < . . . < kn in J . It follows that M |= Σ0∩ (T ∪∆(A)∪Γ1). If ϕ(x1, . . . , xl) ∈ LA and ϕ(bj1 , . . . , bjl) ∈

Σ0 ∩ Γ2, then j1 < . . . < jl are in J0 and M |= ϕ(aij1 , . . . , aijl ). Therefore with these interpretations,

M |= Σ0.

By compactness, there is (bj)j∈J satisfying Σ. The sentences in Γ1 ensure that (bj)j∈J is indiscernible

over A, while the sentences in Γ2 ensure that (bj)j∈J satisfies EM((ai)i∈I/A). �

Theorem 2.4. For any A ⊂ M, there is some λ such that for any linear order I of cardinality λ and any

sequence (ai)i∈I , there is a sequence (bi)i<ω, indiscernible over A, such that for all j1 < . . . < jn < ω there

are i1 < . . . < in in I with ai1 . . . ain ≡A bj1 . . . bjn .

Proof. Let τ = supn<ω |Sn(A)|. Let λ = iτ+ . By the Erdös-Rado Theorem we have

(i) cof(λ) > τ and

(ii) for all κ < λ and all n < ω there is some κ′ < λ with κ′ → (κ)nτ .

Given κ < λ, since λ→ (κ)1τ and by considering ai 7→ tp(ai/A) ∈ S1(A), there is some I0 ⊆ I, with |I0| = κ,

and pκ1 (x1) ∈ S1(A) such that tp(ai/A) = pκ1 (x1) for all i ∈ I0. This gives a map from λ to S1(A) such that

κ 7→ pκ1 (x1). Since cof(λ) > τ , it follows that there is some p1(x1) such that p1(x1) = pκ1 (x1) for cofinally

many κ. Therefore we have p1(x1) such that for all κ < λ there is some I0 ⊆ I, with |I0| = κ, such that

tp(ai/A) = p1(x1) for all i ∈ I0.

Now suppose we have p1(x1) ⊆ p2(x1, x2) ⊆ . . . ⊆ pn(x1, . . . , xn) in S(A) such that for all κ < λ there is
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some I0 ⊆ I, with |I0| = κ, such that tp(ai1 , . . . , ain/A) = pn(x1, . . . , xn) for all i1 < . . . < in in I0.

Given κ < λ, let κ′ < λ be such that κ′ → (κ)n+1
τ . Let I ′ ⊆ I, with |I ′| = κ′ such that tp(ai1 , . . . , ain/A) =

p1(x1, . . . , xn) for all i1 < . . . < in in I ′. Consider the map from [I ′]n+1 to Sn+1(A) where i1 < . . . < in+1 7→

tp(ai1 , . . . , ain+1/A). By assumption on κ′, there is I0 ⊆ I ′, with |I0| = n + 1, and pκn+1(x1, . . . , xn+1) ∈

Sn+1(A) such that tp(ai1 , . . . , ain+1/A) = pκn+1(x1, . . . , xn+1) for all i1 < . . . < in+1 in I0. Note that

pn(x1, . . . , xn) ⊆ pκn+1(x1, . . . , xn+1). Again, κ 7→ pκn+1 gives a map from λ to Sn+1(A) and so there is

pn+1(x1, . . . , xn+1) such that pκn+1 = pn+1 for cofinally many κ. It follows that for all κ < λ there is I0 ⊆ I,

with |I0| = κ, such that tp(ai1 , . . . , ain+1/A) = pn+1(x1, . . . , xn+1) for all i1 < . . . < in+1 in I0.

Since p1 ⊆ p2 ⊆ . . ., there is a realization (bi)i<ω of
⋃
i<ω pi. Suppose ϕ(v1, . . . , vn) ∈ LA and M |=

ϕ(b0, . . . , bn−1) = 0. If j1 < . . . < jn are in ω then pn ⊆ pjn . Suppose, towards a contradiction, that M |=

ϕ(bj1 , . . . , bjn) = r for some r > 0. By assumption, there is I0 ⊆ I infinite such that tp(ai1 , . . . , aijn /A) = pjn

for all i1 < . . . < ijn in I0. But “ max(ϕ(x1, . . . , xn), ϕ(xj1 , . . . , xjn) .− r) = 0” ∈ pjn . So if we set N = jn−n

and pick i1 < . . . < ijn+N in I0 then we have

ϕ(ai1 , . . . , ain) = 0, ϕ(aij1 , . . . , aijn ) = r and ϕ(aij1 , . . . , aijn ) = 0, ϕ(aij1+N
, . . . , aijn+N

) = r.

which is a contradiction. Therefore M |= ϕ(bj1 , . . . , bjn) = 0, which implies (bi)i<ω is indiscernible over A.

Suppose j1 < . . . < jn are in ω. Then there is an infinite set I0 ⊆ I such that tp(ai1 , . . . , ain/A) = pn

for all i1 < . . . < in in I0. Therefore, for any i1 < . . . < in in I0, we have ai1 . . . ain ≡A b0 . . . bn−1. By

A-indiscernibility, it follows that ai1 . . . ain ≡A bj1 . . . bjn . �

3. Dividing and Algebraic Closure

In many texts (e.g. [5]), dividing is defined by k-inconsistency of sequences, rather than inconsistency of

indiscernible sequences. We can formulate and prove the analogous result for continuous logic.

Theorem 3.1. Let ϕ(x, b) be a formula and C ⊂M. The following are equivalent:

(i) ϕ(x, b) divides over C;

(ii) there is an ε > 0, an integer k > 0, and a sequence (bi)i<ω, with bi ≡C b for all i < ω, such that

{ϕ(x, bi) ≤ ε : i < ω} is k-unsatisfiable.

Proof. Suppose ϕ(x, b) divides over C, witnessed by the C-indiscernible sequence (bi)i<ω. Then

{ϕ(x, bi) ≤ 1
n : i < ω, n > 0}
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is unsatisfiable, so by compactness there is some N > 0 and some i1 < . . . < ik < ω such that

{ϕ(x, bis) ≤ 1
N : 1 ≤ s ≤ k}

is unsatisfiable. We claim that for all j1 < . . . < jk < ω, {ϕ(x, bjs) ≤ 1
N : 1 ≤ s ≤ k} is unsatisfiable. Indeed,

otherwise

|= inf
x

max
1≤s≤k

ϕ(x, bjs) ≤ 1
N ,

and so |= infx max1≤s≤k ϕ(x, bis) ≤ 1
N by C-indiscernibility. A realization of this sentence contradicts that

{ϕ(x, bis) ≤ 1
N : 1 ≤ s ≤ k} is unsatisfiable. Altogether we have shown that

{ϕ(x, bi) ≤ 1
N : i < ω}

is k-unsatisfiable.

Conversely, suppose we have a sequence (bi)i<ω, with bi ≡C b for all i < ω, such that for some ε > 0 and

some integer k > 0, {ϕ(x, bi) ≤ ε : i < ω} is k-unsatisfiable. Given i1 < . . . < ik, we have that for all x ∈M,

ϕ(x, bis) > ε for some s. Therefore

|= sup
x

min
1≤s≤k

ε
.− ϕ(x, bis) = 0.

It follows that “ supx min1≤s≤k ε
.− ϕ(x, ys) = 0” ∈ EM((bi)i<ω/C). Let (b′i)i<ω be a C-indiscernible

sequence realizing EM((bi)i<ω/A). After conjugating by an automorphism, we may assume b′0 = b. By the

above,

|= sup
x

min
1≤s≤k

ε .− ϕ(x, b′s) = 0.

Then for any d ∈ M, there must be some 1 ≤ s ≤ k such that ϕ(d, b′s) ≥ ε, and so {ϕ(x, b′i) = 0 : i < ω} is

unsatisfiable. Therefore ϕ(x, b) divides over C. �

Lemma 3.2. Suppose C ⊂M and a ∈M. The following are equivalent:

(i) a ∈ acl(C);

(ii) the set of realizations in M of tp(a/C) is compact;

(iii) the set of realizations in M of tp(a/C) has bounded density character;

(iv) for all ε > 0 there is some ϕ(x) ∈ L(C) and δ > 0 such that ϕ(a) = 0 and {b ∈ M : ϕ(b) < δ} has a

finite ε-net.

Proof. This is [2, Exercise 10.8]. �
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Definition 3.3. We define the ternary relations

a |̂ f
C
B ⇔ tp(a/BC) does not fork over C

a |̂ d
C
B ⇔ tp(a/BC) does not divide over C

a |̂ a
C
B ⇔ acl(aC) ∩ acl(BC) = acl(C)

Note that dividing implies forking for partial types, and so |̂ f ⇒ |̂ d.

Lemma 3.4. Suppose b ∈ acl(C) and (bi)i<ω is a C-indiscernible sequence, with b0 = b. Then bi = b for all

i < ω.

Proof. The set of realizations of tp(b/C) is compact. Since (bi)i<ω is a sequence of realizations of tp(b/C),

it follows that (bi)i<ω contains a convergent subsequence. If there are i < j < ω such that d(bi, bj) = ε > 0,

then d(bi, bj) = ε for all i < j < ω by indiscernibility. This contradicts the existence of a convergent

subsequence. Therefore d(bi, bj) = 0 for all i < j < ω, and so bi = b for all i < ω. �

Lemma 3.5. Suppose b 6∈ acl(C). Then there is an ε > 0 and a sequence (bi)i<ω such that bi ≡C b for all

i < ω and d(bi, bj) ≥ ε for all i < j < ω.

Proof. We will prove the contrapositive. Let X = {b′ : b′ ≡C b}. Suppose that for all ε > 0 and all sequences

(bi)i<ω from X, there are i < j < ω such that d(bi, bj) < ε. Fix ε > 0 and let b0 ∈ X be arbitrary.

Suppose we have chosen b0, . . . , bn−1 ∈ X such that for all i 6= j, d(bi, bj) ≥ ε. Let Y = X ∩
⋃
i<nBε(bi).

If X\Y is nonempty, pick bn ∈ X\Y . If this process continues infinitely then we have a sequence (bi)i<ω

such that d(bi, bj) ≥ ε for all i < j < ω, which is a contradiction. Therefore there is some n such that

X ⊆
⋃
i<nBε(bi).

We have shown that X is totally bounded. Since X is closed, it follows that X is compact, and so

b ∈ acl(C). �

Proposition 3.6. For any tuple a ∈M and C ⊂M, a |̂ d
C
a if and only if a ∈ acl(C).

Proof. Suppose a 6∈ acl(C). By Lemma 3.5, there is a sequence (ai)i<ω of realizations of tp(a/C) and an

ε > 0 such that d(ai, aj) ≥ ε for all i < j < ω. Then “d(x, a) ≤ ε
3” ∈ tp(a/Ca) and {d(x, ai) ≤ ε

3 : i < ω} is

2-unsatisfiable. By Theorem 3.1, tp(a/Ca) divides over C.

Conversely suppose a ∈ acl(C) and ϕ(x, y) is an L(C)-formula with “ϕ(x, a) = 0” ∈ tp(a/Ca). Suppose

(ai)i<ω is indiscernible over C, with a0 = a. By Lemma 3.4, ai = a for all i < ω, and so {ϕ(x, ai) = 0 : i < ω}

is satisfied by a. Therefore ϕ(x, a) does not divide over C, which implies a |̂ d
C
a. �

The proof of the following theorem is adapted from that of [3, Proposition 3.9].

Theorem 3.7. a |̂ d
C

acl(BC) ⇒ a |̂ a
C
B
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Proof. Suppose a 6 |̂ a
C
B. Then (acl(aC) ∩ acl(BC))\ acl(C) 6= ∅, so fix b ∈ acl(BC) such that b ∈

acl(aC)\ acl(C). Let p(x, y) = tp(a, b/C) and q(y) = tp(b/C). Suppose, towards a contradiction, that

for all formulas ϕ(x, y), with “ϕ(x, b) = 0” ∈ p(x, b), ϕ(x, b) does not divide over C.

Since b 6∈ acl(C), we can fix ε > 0 and (bi)i<ω as in Lemma 3.5. Then this sequence satisfies the type

Γ(yi)i<ω :=
⋃
i<ω

q(yi) ∪ {d(yi, yj) ≥ ε : i < j < ω}.

Claim:
⋃
i<ω p(x, yi) ∪ Γ(yi)i<ω is satisfiable.

Proof : By compactness, it suffices to satisfy

{max
i≤n

ϕ(x, yi) = 0} ∪ Γ(yi)i<ω,

for n < ω and any formula ϕ(x, y) such that “ϕ(x, b) = 0” ∈ p(x, b). But ϕ(x, b) does not divide over C by

assumption. So by Theorem 3.1, it follows that {ϕ(x, bi) ≤ ε : i < ω} is n-satisfiable.�

Let (a′, (b′i)i<ω) realize
⋃
i<ω p(x, yi) ∪ Γ(yi)i<ω. In particular (a′, b′0) ≡C (a, b), so by conjugating by an

automorphism over C, we may assume a′ = a. But then b′i |= tp(b/aC) for all i < ω. Since (b′i)i<ω does not

contain a convergent subsequence, it follows that the set of realizations of tp(b/aC) is not compact. This

contradicts that b ∈ acl(aC).

From this contradiction, we conclude that tp(a/bC) divides over C. Since b ∈ acl(BC), it follows that

a 6 |̂ d
C

acl(BC). �

4. An Aside on Independence Relations

The study of abstract independence relations in first-order theories has become a popular combinatorial

way to understand complexity. These independence relations usually take the form of a ternary relation |̂ ,

together with various axioms of “good behavior”. We list a few examples of such axioms, organized into

categories which will be explained shortly.

Category 1

(automorphism invariance) If A |̂
C
B and σ ∈ Aut(M) then σ(A) |̂

σ(C)
σ(B).

(monotonicity) If D ⊆ C ⊆ B and A |̂
D
B then A |̂

D
C and A |̂

C
B.

(normality) A |̂
C
B if and only if A |̂

C
BC.

Category 2
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(transitivity) If D ⊆ C ⊆ B, A |̂
D
C, and A |̂

C
B, then A |̂

D
B.

(symmetry) If A |̂
C
B then B |̂

C
A.

(local character) There is a cardinal κ such that if A |̂
C
B then there is some C0 ⊆ C, with |C0| ≤ κ, such

that A |̂
C0
B.

Category 3

(extension) If A |̂
C
B and B′ ⊇ B then there is some A′ ≡BC A such that A′ |̂

C
B′.

(existence) For all A and C, A |̂
C
C.

(full existence) For all A, B, and C, there is some A′ ≡C A such that A′ |̂
C
B.

(irreflexivity) a |̂
C
a if and only if a ∈ acl(C).

The properties in Category 1 are relatively weak and usually hold of any reasonable notion of independence,

including |̂ f and |̂ d.

The properties in Category 2 are desirable in order for a ternary relation to capture the feeling of an

independence relation. Having |̂ d or |̂ f satisfy even one of the properties in Category 2 is equivalent to

having both |̂ d and |̂ f satisfy all of them (see [4]). A theory in which this happens is called simple.

Category 3 is slightly more miscellaneous. We have shown |̂ d satisfies irreflexivity in Proposition 3.6.

By Proposition 1.12, |̂ f satisfies extension, but a priori can fail existence (there are classical examples).

On the other hand |̂ d satisfies existence and can fail extension.

Proposition 4.1. |̂ d satisfies extension if and only if |̂ f = |̂ d.

Proof. Suppose |̂ d satisfies extension. We always have |̂ f ⇒ |̂ d, so suppose a 6 |̂ f
C
B, witnessed by some

D ⊇ BC (i.e. every extension of tp(a/BC) to S(D) divides over C). Then a 6 |̂ d
C
B, since otherwise the

extension axiom would give some a′ ≡BC a such that a |̂ d
C
D, contradicting the choice of D.

Conversely, if |̂ f = |̂ f then |̂ d satisfies extension by Proposition 1.12. �

The reader should see [1] for more on abstract notions of independence.

In this section, we will take a slight detour with a discussion of the full existence axiom. In [1, Proposition

1.5], Adler gives a short and fairly self-contained proof that |̂ a satisfies full existence in any classical theory.

Goldbring has asked if the same is true in continuous logic. We have not been successful in adapting Adler’s

proof to the continuous setting so, for now, we take an alternate route and answer the question for certain

classes of theories.

To show that |̂ a satisfies full existence, it would suffice to find a stronger independence relation that

satisfies it. In particular, we will want to see if |̂ f or |̂ d is stronger than |̂ a. It would then follow that
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|̂ a satisfies full existence whenever |̂ f or |̂ d does. This happens quite often, as seen from the following

easy exercise in |̂ -calculus.

Proposition 4.2. Suppose |̂ is a ternary relation satisfying normality, existence and extension. Then |̂

satisfies full existence.

Proof. Fix A, B, and C. By existence, A |̂
C
C. By extension, there is some A′ ≡C A such that A′ |̂

C
BC.

By normality, A′ |̂
C
B. �

In particular, if |̂ f satisfies existence then |̂ f satisfies full existence (normality for |̂ f is trivial).

Alternatively if |̂ d satisfies extension (i.e. if |̂ d = |̂ f ) then |̂ d satisfies full existence (since |̂ d always

satisfies existence and normality). Of course in this situation we would then have that |̂ f satisfies existence

anyway.

Proposition 4.3. |̂ d satisfies full existence if and only if |̂ f satisfies existence.

Proof. Suppose |̂ d satisfies full existence, and fix sets A and C. For any D ⊇ C, there is some A′ ≡C A

such that A′ |̂ d
C
D. Therefore tp(a/C) does not fork over C, i.e. a |̂ f

C
C.

Conversely suppose |̂ f satisfies existence. Then it satisfies full existence by Proposition 1.12 and Propo-

sition 4.2. Therefore |̂ d satisfies full existence, since |̂ f ⇒ |̂ d. �

So now we try to see if |̂ d or |̂ f is stronger than |̂ a. Of course, |̂ f ⇒ |̂ d, so |̂ d ⇒ |̂ a would

be the strongest result. However, this implication is stronger than what we need for now, and has a more

difficult proof (see the appendix for further discussion). So we prove an easier fact (Lemma 4.4).

Lemma 4.4. a |̂ f
C
B ⇒ a |̂ d

C
acl(BC)

Proof. Suppose tp(a/ acl(BC)) divides over C, witnessed by some formula ϕ(x, d), where “ϕ(x, d) = 0” ∈

tp(a/BC) and d ∈ acl(BC). Let D := B ∪ {d′ : d′ ≡BC d} ⊆ acl(BC). Suppose q ∈ S(D) is an extension

of tp(a/BC). If a′ |= q then a′ ≡BC a, and so ϕ(a′, d′) = 0 for some d′ ≡BC d. Then d′ ∈ D, so

“ϕ(x, d′) = 0” ∈ q. Therefore q divides over C, and so we have shown that tp(a/BC) forks over C. �

Corollary 4.5. |̂ f ⇒ |̂ a

Proof. Combine Theorem 3.7 and Lemma 4.4. �

Theorem 4.6. If |̂ f satisfies existence then |̂ a satisfies full existence.

Proof. Combine Proposition 1.12, Proposition 4.2, and Corollary 4.5. �
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The class of theories where |̂ f satisfies existence includes simple theories and, more generally, any theory

where forking equals dividing. In classical logic this includes most NIP theories with a notion of minimality

(o-minimal, VC-minimal, etc...).

Appendix

Authors’ Note (October 2021). In the original draft of these notes, this appendix detailed a proof

that |̂ d ⇒ |̂ a in continuous logic. This proof relied on Theorem A.2 (in the original draft), which claimed

to prove a |̂ d
C
B implies a |̂ d

C
acl(BC). In discrete logic, this statement appears as Remark 5.4(3) in [1], as

well as Exercise 1.25(iii) in Adler’s thesis. Our original argument was a continuous adaptation of a discrete

proof of this exercise given to us by Adler. However, a gap in that proof was recently found by A. Kruckman,

leading to the construction of a (discrete) counterexample, which will appear in forthcoming work. In the

mean time, a direct proof of |̂ d ⇒ |̂ a for continuous logic can be found in joint work of the first author

and J. Hanson (see arXiv preprint 2110.07763). [Added November 2023: The preprint with Hanson

is now published in Fundamenta Mathematicae vol. 259 (2022) pp. 97-109. I also neglected to mention

in 2021 that the main purpose of that paper is to give a direct proof that |̂ a satisfies existence in any

continuous theory (c.f., the discussion above at the bottom of page 11, and subsequent results). Finally, the

“forthcoming work” with Kruckman alluded to above is now available; see arXiv preprint 2311.00609.]

Thus we have revised this appendix to remove the wrong result. But we have left the following lemma,

which is correct and still useful for other purposes. On the other hand, the proof is entirely based on

indiscernibles, automorphism, and Erdős-Rado, and thus looks identical to the discrete proof.

Lemma A.1. The following are equivalent:

(i) a |̂ d
C
B;

(ii) for any C-indiscernible sequence I = (bi)i<ω, with b0 an enumeration of BC, there is some aC-

indiscernible sequence I ′ such that I ′ ≡BC I.

Proof. Assume (i), and let (bi)i<ω be C-indiscernible, with b := b0 an enumeration of BC. By assumption,⋃
i<ω p(x, bi) is consistent, where p(x, b) = tp(a/BC). Let a′ be a realization of

⋃
i<ω p(x, bi). In particular,

there is σ ∈ Aut(M/BC) such that σ(a′) = a. Let I ′′ = (b′′i )i<ω := σ(I). Then I ′′ ≡BC I and a realizes⋃
i<ω p(x, b

′′
i ). Let I∗ = (b∗i )i<ω be an aC-indiscernible sequence realizing EM(I ′′/aC). Then a |= p(x, b∗0)

so there is τ ∈ Aut(M/aC) such that τ(b∗0) = b0. If I ′ = (b′i)i<ω := τ(I∗), then I ′ is still aC-indiscernible.

Moreover, b′0 = b0, so it follows that I ′ ≡BC I.

Now assume (ii), and let p(x, b) = tp(a/BC), with b an enumeration of BC. Given a C-indiscernible
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sequence (bi)i<ω, with b0 = b, let I ′ = (b′i)i<ω ≡BC I such that I ′ is aC-indiscernible. Since b0 ≡BC b′0 and

b0 = BC, it follows that b′0 = b0 = b. Then a |= p(x, b′0) and so a satisfies
⋃
i<ω p(x, b

′
i) by aC-indiscernibility.

It follows that
⋃
i<ω p(x, bi) is satisfiable as well. �
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