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These notes cover most of Section 3 of On pseudo-finite dimensions, by Ehud Hrushovksi [2].
They were prepared for the reading seminar on pseudofinite structures during the Model Theory,
Combinatorics, and Valued fields trimester at Institut Henri Poincaré in the spring of 2018. The
notes pick up from the start of Section 3, and thus assume familiarity with Sections 1 and 2.
Thanks to Martin Bays, Daŕıo Garcia, Amador Martin-Pizarro, Pierre Simon, Frank Wagner, and
Tingxiang Zou for helpful discussions and comments, and also to Charlotte Kestner for lending me
her notes from a similar seminar she previously gave on this topic.

Theorem 1 below is [2, Corollary 3.2], which is a result of Breuillard-Green-Tao [1] and Pyber-
Szabó [4]. Theorem 2 is [2, Theorem 3.1].

1 Setup and theorems

Theorem 1. Let G be an algebraic group. For any 0 < ε < ε′ there is some m > 0 satisfying the
following properties. Suppose F is a field, such that G(F ) is simple nonabelian, and fix a finite set
X = X-1 ⊆ G(F ). Then one of the following holds.

(i) X is contained in a subgroup of G(F ) of size at most |X|1+ε′;

(ii) there is a proper algebraic subgroup H(F alg) of G(F alg) such that X ⊆ H(F ) and H has
complexity at most m; or

(iii) |X ·m| ≥ |X|1+ε (where X ·m = X · . . . ·X︸ ︷︷ ︸
m times

).

In particular, if X is a k-approximate subgroup, and (i) and (ii) fail, then k ≥ |X|
ε

m−1 .

Remark 1. For the moreover statement about approximate subgroups, suppose XX ⊆ XA, where
A ⊆ G(F ) has size at most k. Then |X|1+ε ≤ |X ·m| ≤ |XA·(m−1)| ≤ |X|km−1, and so k ≥ |X|

ε
m−1 .

Remark 2. Our formulation Theorem 1 is not completely identical to [2, Corollary 3.2] (which itself
is taken from [1] and [4]). The notion of “G being an algebraic group”, as well as the “complexity”
of such an object, have not been precisely explained. The reader should think of G functorially as
a definable object in the language of rings, possibly allowing for parameters, with definitions for
an underlying set and (the graph of) a binary operation. So, given a field F , asking whether G(F )
is a simple nonabelian group makes sense (although the notation G(F ) suppresses the underlying
choice of parameters from F ). The “complexity” of G can be calculated from the definition of G
(e.g. based on degrees of polynomials, etc...). Theorem 1 resembles [1, Theorem 5.5], which fixes
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a a field F outright, and thus is stated for concrete algebraic groups. There is also a more precise
discussion of “complexity” in [1]. The main difference between Theorem 1 and [2, Corollary 3.2] is
in condition (ii), where Hrushovski just says “X is not contained in H(F ), for H a proper algebraic
subgroup of G of bounded index”. On the other hand, our formulation of condition (ii) matches
the corresponding part of [1, Theorem 5.5].

We will deduce Theorem 1 from Theorem 2 below. To state this second result, we recall the
setup involving coarse pseudofinite dimensions.

Setup. Consider a structure

M = (G, ·, X∗, . . .) =
∏
U

(Gn, ·, Xn, . . .)

where (Gn, ·, Xn, . . .) is an expansion of a group (Gn, ·), and Xn is a finite subset of Gn (and
so X∗ =

∏
U Xn is pseudofinite). Let δ be the coarse pseudofinite dimension normalized so that

δ(X∗) = 1. Throughout, “type-definable” means an intersection of countably many definable sets,
where definability is with respect to the structure M (unless otherwise stated).

Recall that a subgroup H ≤ G is Zariski dense if it is not contained in a proper (G, ·)-definable
(with parameters) subgroup of G.

We assume that (G, ·) is a (definably) simple nonabelian group of finite Morley rank. We also
make a further assumption, denoted �, about the geometry of centralizers, which holds when (G, ·)
is a simple nonabelian algebraic group over an algebraically closed field (see, e.g., [1, Lemma 5.1]
and references cited there). The precise formulation of � is postponed until Section 2.

Theorem 2. Suppose Γ ≤ G is Zariski dense and type-definable, with 0 < δ(Γ) < ∞. Then there
is a definable S ≤ G such that Γ ≤ S and δ(S) = δ(Γ).

1.1 Proof of Theorem 1 from Theorem 2

Fix 0 < ε < ε′ and suppose there is no such m > 0, i.e., for any m > 0 there is a field Fm, a finite
set Xm = X -1

m ⊆ G(Fm) such that G(Fm) is simple nonabelian and:

(1) Xm is not contained in a subgroup of G(Fm) of size at most |X|1+ε′ ;

(2) for any proper algebraic subgroup H(F alg) of G(F alg), if H has complexity at most m then X
is not contained in H(F ); and

(3) |X ·mm | < |Xm|1+ε.

For m a power of 2, let Mm = (G(F algm ), ·, Fm, X ·mm , X
·m/2
m , X

·m/4
m , . . . , Xm). Let

M = (G, ·, F, Y0, Y1, Y2, . . .) =
∏
U
Mm,

for some nonprincipal ultrafilter U . In particular, G = G(F alg), F =
∏
U Fm, and Yn =

∏
U X

·m/2n
m ⊆

G(F ) for all n ∈ N. Note that Yn+1Yn+1 = Yn, and so Γ :=
⋂
n∈N Yn is a type-definable subgroup

of G. Let δ be the coarse pseudofinite dimension normalized so that δ(Y0) = 1. So we are in the
setup above, with X∗ = Y0.

By assumption (3), we have |X ·m/2
n

m |1+ε ≥ |Xm|1+ε > |X ·mm | for all sufficiently large m. So
(1 + ε)δ(Yn) ≥ δ(Y0) = 1. In particular, it follows that 0 < 1

1+ε ≤ δ(Γ) ≤ 1 <∞.
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Next, we claim that Γ is Zariski dense in G. Otherwise, there a (G, ·)-definable proper subgroup
H(F alg) of G such that Γ ⊆ H(F ). By compactness, there is some n ∈ N such that Yn ⊆ H(F ) =∏
U H(Fm). So there is some m, larger than the complexity of H, such that Xm ⊆ X ·m/2

n

m ⊆ H(Fm),
which contradicts assumption (2).

Finally, by Theorem 2 there is a definable S ≤ G such that Γ ≤ S and δ(S) = δ(Γ). By

compactness, there is n ∈ N such that Yn ⊆ S. So for U-many m, Xm ⊆ X
·m/2n
m ⊆ Sm ∩ G(Fm)

and Sm ∩G(Fm) is a finite subgroup of G(Fm). By assumptions (1) and (3), we have

|X ·mm |
1+ε′
1+ε < |Xm|1+ε′ < |Sm|

for U-many m. Therefore
1 + ε′

1 + ε
δ(Y0) ≤ δ(S) = δ(Γ) ≤ δ(Y0),

which is a contradiction since ε < ε′.

2 Theorem 2

Let M and δ be as in the setup above. Let g = RM(G) (and recall that Morley rank is definable
in our setting). Given a ∈ G, define

Ta = CG(a) and T ra = {b ∈ Ta : Ta = Tb}.

Let t = RM(Ta) for some (any) generic a ∈ G. Define

R = {a ∈ G : RM(NG(Ta)) = RM(Ta) = t and RM(Ta\T ra ) < t}.

Note that R =
⋃
a∈R T

r
a . Moreover, t < g since otherwise [G : Ta] < ∞, and so G = Ta since G is

connected, contradicting Z(G) = {1}.

Assumption �: R is generic (i.e., has Morley rank g).

The following is the generalized Larsen-Pink inequality from [3] (see also [2, Section 2.15]).

Fact 1. [Larsen-Pink] Suppose Γ ≤ G is Zariski dense and type-definable, with 0 < δ(Γ) < ∞. If

Z ⊆ G is (G, ·)-definable then δ(Γ ∩ Z) ≤ RM(Z)
g δ(Γ). Moreover, if Z = Ta for some a ∈ Γ, then

equality holds.

Proof of “moreover”. Fix a ∈ Γ, and, for X ⊆ G, let aX = {g-1ag : g ∈ X}. Set β = g
δ(Γ) . Then

RM(Ta) + RM(aG) = RM(G) = βδ(Γ) = βδ(Γ ∩ Ta) + βδ(aΓ).

By Larsen-Pink, βδ(Γ ∩ Ta) ≤ RM(Ta) and βδ(aΓ) ≤ βδ(Γ ∩ aG) ≤ RM(aG), and so we must have
βδ(Γ ∩ Ta) = RM(Ta).

2.1 Proof of Theorem 2

Let Γ ≤ G be type-definable and Zariski dense, with 0 < δ(Γ) <∞. Let Y = {Ta : a ∈ Γ ∩R} and
set

S = NG(Y) = {s ∈ G : s-1Ys = Y}.

We are going to show that S is the desired subgroup.
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Claim 2.1.

(a) δ(Γ\R) < δ(Γ).

(b) For any a ∈ Γ ∩R, δ(Γ ∩ (Ta\R)) < δ(Γ ∩ Ta).

Proof. Part (a). We have

δ(Γ\R) = δ(Γ ∩ (G\R)) ≤ g − 1

g
δ(Γ) < δ(Γ),

where the first inequality follows from Larsen-Pink, and since RM(G\R) ≤ g − 1 by �.
Part (b). Fix a ∈ Γ ∩R, then

δ(Γ ∩ (Ta\R)) ≤ δ(Γ ∩ (Ta\T ra )) ≤ t− 1

g
δ(Γ) =

t− 1

t
δ(Γ ∩ Ta) < δ(Γ ∩ Ta),

where the second inequality follows from Larsen-Pink and since a ∈ R, and the equality follows
from Larsen-Pink for Ta.

Fix X ⊆ G definable such that Γ ⊆ X and δ(XX) < δ(Γ) + δ(Γ)
2g .

Claim 2.2. For any a ∈ R, δ(X ∩ Ta) < δ(Γ ∩ Ta) + δ(Γ)
2g .

Proof. Fix a ∈ R. Define f : (X ∩ Ta) × Γ → XΓ such that f(t, γ) = tγ. For any (t, γ), (u, η) ∈
dom(f), if f(t, γ) = f(u, η) then u-1t = ηγ-1 ∈ Γ ∩ Ta. So, for a fixed c ∈ Im(f), projection onto
the first coordinate gives a well-defined injective map from f -1(c) to t(Γ∩ Ta), where t is such that
f(t, γ) = c for some γ. So δ(f -1(c)) ≤ δ(Γ ∩ Ta) for any c ∈ Im(f). Altogether,

δ(X ∩ Ta) + δ(Γ) = δ((X ∩ Ta)×X) ≤ δ(Γ ∩ Ta) + δ(XΓ).

Therefore

δ(X ∩ Ta)− δ(Γ ∩ Ta) ≤ δ(XΓ)− δ(Γ) ≤ δ(XX)− δ(Γ) <
δ(Γ)

2g
,

where the last inequality follows by choice of X.

Let D = {a ∈ R : Ta = Ta′ for some a′ ∈ Γ ∩R}.

Claim 2.3. D is definable.

Proof. Given a ∈ G, we show that the following are equivalent:

(i) a ∈ D.

(ii) a ∈ R and δ(X ∩ Ta) >
t− 1

2
g δ(Γ).

(iii) a ∈ R and δ(X ∩ Ta) ≥ t
g δ(Γ).

This suffices to prove the claim since, by continuity of δ, (ii) is a co-type-definable condition and
(iii) is a type-definable condition. (Note that D is also type-definable by type-definability of Γ.)

(i) ⇒ (iii). Assume a ∈ D. Then a ∈ R and there is a′ ∈ Γ ∩ R such that Ta′ = Ta. By
Larsen-Pink for Ta′ ,

δ(X ∩ Ta) = δ(X ∩ Ta′) ≥ δ(Γ ∩ Ta′) =
t

g
δ(Γ).
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(iii)⇒ (ii). Trivial.

(ii)⇒ (i). Assume a ∈ R and δ(X ∩ Ta) >
t− 1

2
g δ(Γ). Then

δ(Γ ∩ Ta) > δ(X ∩ Ta)−
1
2δ(Γ)

g
>
t− 1

g
δ(Γ) ≥ δ(Γ ∩ (Ta\T ra )),

where the first inequality is by Claim 2.2, and the third inequality is by Larsen-Pink and since
a ∈ R. So there is some a′ ∈ Γ ∩ T ra . Then a′ ∈ Γ ∩R and Ta = Ta′ , and so a ∈ D.

Note that Y = {Ta : a ∈ D} and so, by Claim 2.3, S is definable. It is also easy to see that
x-1Yx = Y for all x ∈ Γ, and so Γ ≤ S.

In the following, we identify Y with (D/∼) ⊆ M eq, where a ∼ a′ if and only if Ta = Ta′ (in
particular, given a ∈ D, Ta ∈ Y is identified with a/∼).

Claim 2.4. δ(Y) = (1− t
g )δ(Γ).

Proof. For any a ∈ Γ ∩R,

t

g
δ(Γ) = δ(Γ ∩ Ta) = max{δ(Γ ∩ Ta ∩R), δ(Γ ∩ (Ta\R))} = δ(Γ ∩ Ta ∩R),

where the first equality is by Larsen-Pink for Ta, and the third equality is by Claim 2.1(b). Now
we have

δ(Γ) = max{δ(Γ ∩R), δ(Γ\R)} = δ(Γ ∩R) =
t

g
δ(Γ) + δ(Y),

where the second equality is by Claim 2.1(a), and the third equality follows from the fact that
a 7→ Ta is a surjective definable map from Γ ∩ R to Y, all of whose fibers have dimension t

g δ(Γ)

(note that each fiber is of the form Γ ∩ Ta ∩R for some a ∈ Γ ∩R). So δ(Y) = (1− t
g )δ(Γ).

Claim 2.5. δ(S) <∞.

Proof. Let Z =
⋂
Y. Then Z ⊆ CG(Γ ∩R). Fix b ∈ Γ. By Claim 2.1(a),

δ(Γ\b(Γ ∩R)) = δ(Γ\(Γ ∩R)) < δ(Γ).

It follows that b(Γ ∩R) ∩ (Γ ∩R) 6= ∅, since otherwise

δ(Γ) = max{δ(Γ\b(Γ ∩R)), δ(Γ\(Γ ∩R))} < δ(Γ).

As Γ ∩ R is symmetric, we have shown Γ = (Γ ∩ R) · (Γ ∩ R), and so Z ⊆ CG(Γ). Since Γ is
Zariski dense, we have CG(Γ) = Z(G), since otherwise there is some a ∈ CG(Γ)\Z(G), and so Γ is
contained in Ta, which is proper and (G, ·)-definable. So Z ⊆ Z(G) = {1}.

By compactness, we may fix T1, . . . , Tk ∈ Y such that T1∩ . . .∩Tk = Z = {1}. Let Ni = NG(Ti).
Let σ : S → Yk be given by σ(s) = (s-1T1s, . . . , s

-1Tks). For any s ∈ S,

{x ∈ S : σ(x) = σ(s)} = s(N1 ∩ . . . ∩Nk).

Moreover,

|N1 ∩ . . . ∩Nk| = [N1 ∩ . . . ∩Nk : T1 ∩ . . . ∩ Tk] ≤
k∏
i=1

[Ni : Ti] <∞,

where the last inequality follows from the fact that if a ∈ R then RM(NG(Ta)) = RM(Ta) and so
[NG(Ta)) : Ta] <∞. So the fibers of σ are uniformly finite, and thus δ(S) ≤ δ(Yk) <∞ by Claim
2.4.
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Claim 2.6. δ(S) ≤ δ(Γ).

Proof. Fix a ∈ Γ ∩ R. Let T = Ta and N = NG(Ta). We have a well-defined injective map from
S/(S ∩N) to Y, which sends s(S ∩N) to s-1Ts. So

δ(S)− δ(S ∩N) = δ(S/S ∩N) ≤ δ(Y).

Next, [S ∩N : S ∩ T ] ≤ [N : T ] <∞ since a ∈ R, and so δ(S ∩N) = δ(S ∩ T ). Altogether,(
1− t

g

)
δ(S) = δ(S)− δ(S ∩ T ) ≤ δ(Y) =

(
1− t

g

)
δ(Γ),

where the first equality is by Larsen-Pink for T (applied with respect to the definable subgroup S,
using Claim 2.5), and the second equality is by Claim 2.4. Since t < g, this yields δ(Γ) ≤ δ(S).

Altogether, we have shown that S has the desired properties.
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[4] László Pyber and Endre Szabó, Growth in finite simple groups of Lie type, J. Amer. Math. Soc.
29 (2016), no. 1, 95–146.

6


