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Abstract. We define five notions of independence, which can be used to measure the complexity of an

arbitrary first order theory. After assuming the theory in question has the property that algebraic closure

satisfies exchange, we add a sixth notion of dimensional independence, and see how it fits in with the others.

Altogether, this gives a simple proof of the characterization of independence in strongly minimal theories.

T denotes a complete first order theory and M a sufficiently saturated monster model of T .

Definition 1. Let C ⊂M and ϕ(x̄, ȳ) ∈ L(C). Given b̄ ∈M, ϕ(x̄, b̄) divides over C if there is a sequence

(b̄i)i<ω, with b̄i ≡C b̄ for all i < ω, such that {ϕ(x̄, b̄i) : i < ω} is k-inconsistent for some k > 0.

A formula forks over C if it proves a finite disjunction of formulas that divide over C. A type forks

(resp. divides) over C if it proves a formula that forks (resp. divides) over C.

Definition 2.

ā |̂ ucl

C
B ⇔ tp(ā/BC) is finitely satisfiable in acl(C)

ā |̂ f

C
B ⇔ tp(ā/BC) does not fork over C

ā |̂ d

C
B ⇔ tp(ā/BC) does not divide over C

Theorem 3. |̂ ucl ⇒ |̂ f ⇒ |̂ d

Proof. The second implication is trivial since dividing implies forking by definition. Next, suppose tp(ā/BC)

forks over C. Then there are tuples d̄ ∈ M, b̄ ∈ B, some and L(C)-formulas ψ(x̄, ȳ), ϕ1(x̄, ȳ), . . . ϕn(x̄, ȳ)

such that ψ(x̄, b̄) ∈ tp(ā/BC), ϕi(x̄, d̄) divides over C for all i, and

ψ(x̄, b̄) `
n∨

i=1

ϕi(x̄, d̄).

Suppose, ā∗ |= ψ(x̄, b̄). Then there is some i such that M |= ϕi(ā∗, d̄). Fix (d̄l)l<ω, with d̄l ≡C d̄ for all

l < ω, such that {ϕ(x̄, d̄l) : l < ω} is finitely inconsistent. If σl ∈ Aut(M/C) is such that σl(d̄) = d̄l, then
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set āl = σl(ā∗). Since ā∗ |= ϕ(x̄, d̄) and {ϕ(x̄, d̄l) : l < ω} is finitely inconsistent, it follows that (āl)l<ω is an

infinite sequence. Therefore ā∗ 6∈ acl(C), and so ψ(x̄, b̄) is not satisfiable in acl(C). So ā 6 |̂ ucl

C
B. �

Definition 4.

ā |̂ a

C
B ⇔ acl(āC) ∩ acl(BC) = acl(C)

ā |̂ M

C
B ⇔ ā |̂ a

D
B for all C ⊆ D ⊆ acl(BC)

Author’s note (November 2023): At this point in the original draft of these notes, it was stated

that |̂ d
implies |̂ M

in any theory. The proof quoted [1, Remark 5.4], which has since been found to be

false. Several counterexamples are given in the arXiv preprint 2311.00609 (with Kruckman). On the other

hand, the impact on these notes is minimal because we are about to assume that algebraic closure in T

satisfies the exchange property (defined below). In the same arXiv preprint, we prove the following result

(see Proposition 2.18 there).

Theorem 5. If algebraic closure in T satisfies the exchange property, then |̂ d ⇒ |̂ M
.

Now we assume that in T , algebraic closure satisfies the exchange property, i.e., if a ∈ acl(bC)\ acl(C)

then b ∈ acl(aC).

Definition 6. Fix sets A,C ⊂M. Then A is independent over C if a 6∈ acl(C ∪A\{a}) for all a ∈ A. A

basis for A over C is a subset A0 ⊆ A such that A0 is independent over C and acl(A0C) = acl(AC).

Theorem 7. Let A,C ⊂ M. If A′ ⊆ A is such that acl(A′C) = acl(AC), then A′ contains a basis for A

over C. Moreover, any two bases for A over C have the same cardinality.

Proof. See [3]. �

Definition 8. Given C ⊂M and ā ∈M, dim(ā/C) is the cardinality of a basis for ā over C. We define

ā |̂ dim

C
B ⇔ dim(ā/BC) = dim(ā/C).

Proposition 9.

(a) |̂ dim
is symmetric.

(b) |̂ M
= |̂ dim

Proof. This proof is essentially the same as that of [2, Proposition 2.2].

Part (a). Suppose ā 6 |̂ dim

C
B. Without loss of generality, assume ā is independent over C. Then ā is not

independent over BC so there is some a ∈ ā such that a ∈ acl(ā′BC), where ā′ := ā\{a}. Let ā0 ⊆ ā′ and

b̄0 ⊆ B be such that ā0b̄0 is a basis for ā′B over C. Then a ∈ acl(ā0b̄0C). Let b̄ ⊆ b̄0 be independent over



INDEPENDENCE, EXCHANGE, AND STRONGLY MINIMAL THEORIES 3

C and finite such that a ∈ acl(ā0b̄C). Note that b̄ 6= ∅ since ā is independent over C. For b ∈ b̄, we have

a ∈ acl(ā0b̄C)\ acl(ā0b̄\{b}C), and so b ∈ acl(aā0b̄\{b}C). It follows that b̄ is not independent over āC. In

particular, B 6 |̂ dim

C
ā.

Part (b). Suppose ā 6 |̂ dim

C
B. By part (a), B 6 |̂ dim

C
ā. Then there are B0 ⊆ B and b ∈ B such that B0b

is independent over C, but b ∈ acl(āB0C). Let D := acl(B0C). Then C ⊆ D ⊆ acl(BC), b ∈ acl(āB0C) ⊆

acl(āD), b ∈ B ⊆ acl(BD) and b 6∈ D = acl(D). Therefore D witnesses ā 6 |̂ M

C
B.

Conversely, suppose ā 6 |̂ M

C
B. Say C ⊆ D ⊆ acl(BC) such that ā 6 |̂ a

D
B. So there is some d ∈ (acl(āD)∩

acl(BD))\ acl(D). Without loss of generality we may assume D\C is finite and independent over C. By

exchange, follows that Dd is independent over C. But Dd is not independent over āC, and so Dd 6 |̂ dim

C
ā. By

symmetry, ā 6 |̂ dim

C
acl(BC). Therefore dim(ā/BC) = dim(ā/ acl(BC)) < dim(ā/C), and so ā 6 |̂ dim

C
B. �

Remark 10. Note that |̂ M ⇒ |̂ a
is always true, and so we have |̂ dim ⇒ |̂ a

by Proposition 9.

Moreover, the following are equivalent:

(i) |̂ dim
= |̂ a

;

(ii) T is modular, i.e., dim(A) + dim(B) = dim(A ∪B) + dim(A ∩B) for all closed sets A and B;

(iii) |̂ a
satisfies base monotonicity, i.e., ā |̂ a

D
B and D ⊆ C ⊆ B implies ā |̂ a

C
B;

(iv) B ∩ acl(A ∪ C) = acl((B ∩A) ∪ C) for all closed sets A, B, and C, with C ⊆ B.

See [3] for (i) ⇔ (ii), and [1] for (iii) ⇔ (iv). In [1], (iv) is used to define a modular theory without the

assumption of acl satisfying exchange.

To finish the chain of equivalences, it suffices to show (i)⇔ (iii). But (i) implies (iii) since |̂ dim
clearly

satisfies base monotonicity. Conversely, (iii) implies |̂ M
= |̂ a

, which implies (i) by Proposition 9.

Given a ternary relation |̂ and C ⊂M, let |̂
C

be the induced binary relation.

Theorem 11. Suppose T is strongly minimal and C ⊂M. If acl(C) is infinite then

|̂ ucl

C
= |̂ f

C
= |̂ d

C
= |̂ M

C
= |̂ dim

C
.

Proof. By previous results, it suffices to show |̂ dim

C
⇒ |̂ ucl

C
. So assume ā |̂ dim

C
B. We prove ā |̂ ucl

C
B

by induction on |ā|. For the base case, let ϕ(x, b̄) ∈ tp(a/BC). If ϕ(M, b̄) is finite then dim(a/C) =

dim(a/BC) = 0, and so a ∈ acl(C). Therefore a |̂ ucl

C
B since tp(a/BC) is realized in acl(C). Otherwise

ϕ(M, b̄) is cofinite and therefore intersects acl(C).

Assume the result for tuples of length strictly less than l(ā), and let ā = (a1, . . . , an). Fix ϕ(x̄, b̄) ∈

tp(ā/BC). We want to show ϕ(x̄, b̄) has a solution in acl(C).

Suppose first that ϕ(M, a2, . . . , an, b̄) is infinite. Then there is some c ∈ acl(C) such that M |= ϕ(c, a2, . . . , a2, b̄).

Let ψ(x) ∈ L(C) such that M |= ψ(c) and ψ(M) is finite. Then ∃x(ϕ(x, x2, . . . , xn)∧ψ(x)) ∈ tp(a2, . . . , an/BC).

Note that a2, . . . , an |̂ dim

C
B, and so by induction there are c1, . . . , cn ∈M such that c2, . . . , cn ∈ acl(C) and
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M |= ϕ(c̄, b̄) ∧ ψ(c1). Then c1 ∈ acl(C) as well, and so ϕ(x̄, b̄) has a solution in acl(C).

Now suppose ϕ(M, a2, . . . , an, b̄) is finite. It follows that dim(ā/BC) < n and so dim(ā/C) < n, since

ā |̂ dim

C
B. In particular there is some ai such that ai ∈ acl(a1 . . . ai−1ai+1 . . . anC). Without loss of gen-

erality, assume a1 ∈ acl(a2 . . . anC). Let ψ(x, y2, . . . , yn) ∈ L(C) such that ψ(M, a2, . . . , an) is finite and

M |= ψ(a1, . . . , an). Say |ψ(M, a2, . . . , an)| = m. Then

∃x(ϕ(x, x2, . . . , xn, b̄) ∧ ψ(x, x2, . . . , xn)) ∧ ∃!mxψ(x, x2, . . . , xn) ∈ tp(a2, . . . , an/BC).

By induction there are c1, . . . , cn ∈M such that c2, . . . , cn ∈ acl(C), ψ(M, c2, . . . , cn) is finite, and

M |= ϕ(c1, . . . , cn, b̄) ∧ ψ(c1, . . . , cn).

Therefore c1 ∈ acl(c2 . . . cnC) = acl(C), and so ϕ(x̄, b̄) has a solution in acl(C). �
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