DEFINABLE TYPES AND F-GENERICS IN PRESBURGER
ARITHMETIC

GABRIEL CONANT AND SOMAYEH VOJDANI

The goal of this note is to characterize certain definable types and f-generics in
Presburger arithmetic (i.e., the complete first-order theory of the ordered group of
integers (Z, +, <,0)). Specifically, we consider f-generic types in S, (G), where G is
a saturated model of Presburger arithmetic (i.e. f-generic types with respect to the
definable group Z™). Let G* be sufficiently saturated monster model in which we
can realize global types over G. Given p € S,(G), and a realization a = p, we let
G(a) denote the divisible hull of the subgroup of G* generated by Ga (i.e. G(a) is
the definable closure of Ga in G*). Our main characterization is: given p € S, (G)
and @ = p in G*, p is f-generic if and only if

(1) a is algebraically independent over G, and

(#4) G(a) is an end extension of G (i.e. if z € G(a)\G then z > G or z < G).
Along the way, we give a similar characterization of definable types in S, (G), and
we show that every f-generic type is strongly f-generic and definable over (.

0.1. Definable groups and f-generics. Let T be a complete theory, with a
monster model M. We also work with a larger monster model M* in which we can
take realizations of global types over M.

Suppose G = G(M) is a definable group in T. We let Sg(M) denote the space
of global types containing the formula defining G. Given p € S (M) and g € G,
we let gp denote the translate {p(g7'z) : ¢(z) € p} of p.

Definition 0.1. Let p € Sg(M) be a global G-type.

(a) pis definable (over G) if, for any formula ¢(Z,7), there is a formula d,[](7)
over G such that, for any b € G, ¢(#,b) € p if and only if G |= d,[p](b).

(b) pisa f-generic if, for every formula ¢(x) € p, there is a small model My such
that no translate ¢(gx) of ¢(zx) forks over M.

(¢) pis a strongly f-generic if there is a small model My such that no translate
gp of p forks over M.

(d) pis definably f-generic if there is a small model M such that every translate
gp is definable over M.

0.2. End extensions of discrete orders. Let T\, M, and M* be as in the previous
subsection. Assume L contains a symbol < for an ordering and 7" extends the theory
of linear orders. We say that the theory T is definably complete if any nonempty
definable subset of M, with an upper bound in M, has a least upper bound in M,
and similarly for lower bounds. Note that this does not depend on the model M.
If T is definably complete, and we further assume that M is discretely ordered by
<, then it follows that definable subsets of M contain their least upper bound and
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greatest lower bound (whenever they exist). We will say T is discretely ordered to
indicate that the ordering < on M is discrete.

Recall that, in a totally ordered structure, algebraic closure and definable closure
coincide. Given a tuple a € (M*)™, we let M(a) = dcl(Ma).

Definition 0.2. Given subsets A C B of M*, we say B is an end extension of
A if, for all b € B\ A, either b < a for all a € A or b > a for all a € A.

Lemma 0.3. Suppose T is discretely ordered and definably complete. Fiz a non-
isolated type p € Sp, (M) and a realization a in M*. If M(a) is not an end extension
of M then:

(a) p is not definable,
(b) p has at least two distinct coheirs to M*.

Proof. Since M (a) is not an end extension of M, we may fix an M-definable function
fo(M*)" — M*, and my,me € M such that f(a) € M and my < f(a) < ma.
Define the upwards closed set

X={meM:pkE f(z) <m}.

Then m, and my witness that X is nonempty and not all of M. If X has a minimal

element mg, and my, is the immediate predecessor of mg in M, then we must have

mg < f(@) < mo, and so f(a) = my € M, which is a contradiction. So X has no

minimal element, and therefore cannot be M-definable. This proves part (a).
Now define

C={ceM" :m<c<m forallme M\X and m' € X}.
Then f(a) € C, and so C # (). We define the following partial types over M*:

G =pU{m< f(Z)<c:me M\X, ceC}
@=pU{c< f(Z)<m:ceC, me X}.

Note that q; and g2 are distinct since C # (). If we can show that they are each
finitely satisfiable in M, then they will extend to distinct coheirs of p, which proves
part (b). So we show ¢; is finitely satisfiable in M (the proof for ¢o is similar).

Fix a formula ¢(Z) € p and some m € G\X (which exists since X is not all of
M). Set

A={m' € f(e(M™)):m <m'}.

Then A is an M-definable subset of M, which is nonempty since b € A(M*). Since
A is bounded below by m, we may fix a minimal element my € A. By elementarity,
my is the minimal element of A(M*). In particular, mg < f(a), and so my € M\ X.
By definition of A, mo = f(@’) for some @’ € M™ such that M |= ¢(a’). Altogether,
we have M | ¢(a'), and m < f(a’) < ¢ for any c € C. O

Suppose T is discretely ordered and definably complete. If, moreover, dcl(() is
nonempty, then 7' has definable Skolem functions by picking out either the maxi-
mal element of a definable set or the least element greater than some (-definable
constant. It follows that M (a) is the unique prime model over Ma.
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0.3. Presburger arithmetic. Let T'= Th(Z, +, <,0). Let G denote a sufficiently
saturated model of T, and let G* denote a larger elementary extension of GG, which
is sufficiently saturated with respect to G. We treat types over G as global types,
but use G* as an even larger monster model in which we can realize such types.

Note that T satisfies the properties discussed in the previous section: it is
discretely ordered and definably complete, with dcl()) nonempty. Therefore, for
a € G*, G(a) is the prime model over Ga. Recall that T has quantifier elimination
in the expanded language £* = {+,<,0,1,(Dy)n<w} where D,, is a unary predi-
cate interpreted as nZ. Consequently, given a € G*, G(a) is the divisible hull of
the subgroup of G* generated by Ga.

Given a € G* and n > 0, let [a], € {0,1,...,n — 1} be the unique remainder
of @ modulo n. Given k € Z", we let s;(Z) denote the definable function Z
kll'l + ...+ knxn

Proposition 0.4.

(a) Let Gy < G be a small model, and fix a,b € G.
(1) If Go < a < b then there is some ¢ € G such that b < ¢ and a =¢, c.
(#) If a < b < Gy then there is some ¢ € G such that ¢ < a and b =¢, c.
(b) For anyp € S,,(G) and a = p, if G(a) is not an end extension of G then there
are hi,hy € G and k € Z"™ such that hy < s;(a) < hy and s;(a) € G.

Proof. Part (a). We prove (i); the proof of (i) is similar. By quantifier elimination
and saturation of G it is enough to fix an integer N > 0, and find ¢ € G such that
b < c and [c], = [a], for all 0 < n < N. To find such an element, simply note that
No<n<n G + [a], is nonempty (as it contains a), and is therefore a single coset
mG + r for some m,r € Z. So we may choose ¢ = b — [b],, +m + 7.

Part (b). By assumption, there is b € dcl(Ga)\G and h},h, € G such that
h} < b < hf. By the description of definable closure in Presburger arithmetic,
there are integers r € Z*, k € Z" and some hg € G such that 7b = s;(a) + ho. Now
let hz = ’I"h; — ho. (I

0.4. Definable types in Presburger arithmetic. In the context of Definition
0.1, we consider the situation where G is the monster model M, and the definable
group is G" = Z"(G), for a fixed n > 0, under coordinate addition. In particular,
where we have the notation Sg(M) in Definition 0.1, here we just have S, (G).

Definition 0.5. A type p € S,,(G) is algebraically independent if for all (some)
af=p, a; € G(ay;) for all 1 <i < n.

Lemma 0.6. Suppose p € S, (G) is algebraically independent and for all (some)
a = p, G(a) is an end extension of G. Then p is definable over ().

Proof. Let Z? denote Z"\{0}. By quantifier elimination, it suffices to give defini-

tions for atomic formulas of the following forms:

e ©1(Z,7) == (si(¥) = t(y)), where k € Z and t(y) is a term in variables ¥,

e ©2(Z,7) = (si(%) > t(y)), where k € Z and t(y) is a term in variables 7,

e 03(z,9) = ([s5(Z) + t(y)]m = 0), where k € Z"', m € Z*, and t(y) is a term in
variables .

Fix a |= p and fix k € Z?. Since p is algebraically independent, it follows that
sp(a) € G. Since G(a) is an end extension of G, we may partition Z? = S+ U S~
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where
ST ={k:sz(@)>G} and S~ ={k:sz(a) <G}

Note that .S * and S~ depend only on p, and not choice of realization a. Moreover,
for any k € Z™ and m > 0, the integer [s;(a)]m € {0,...,m — 1} depends only on
p. We now give the following definitions for p (note that they are formulas over ):

dpl1)(9) = (y1 # 11),

_ y=1y IifkesSt
dplpa)(g) =7 7 T T
yw#Fy ifkesS™,

dples)(1) := ([t() + [57(@)]m]m = 0). O

Theorem 0.7. Given p € S,,(G), the following are equivalent.

(1) p is definable (over G).
(i) p has a unique coheir to G*.
(#it) For any (some) a |= p, G(a) is an end extension of G.

Proof. (i) = (ii). This is true in any NIP theory (see [5, Exercise 2.74]), and has
nothing to do with G being a group.

(#4) = (i91). By Lemma 0.3(b).

(#i1) = (4). We may assume p is non-isolated. We proceed by induction on n. If
n = 1 then p is algebraically independent since it is non-isolated, and so we apply
Lemma 0.6. Assume the result for n’ < n and fix p € S,,(G). If p is algebraically
independent then we apply Lemma 0.6. So assume, without loss of generality, that
we have a = p with a,, € G(a<y,). Let ¢ = tp(d<n/G) € S,,—1(G). By assumption,
G(a<y,) = G(a) is an end extension of G, and so ¢ is definable by induction. Fix
a G-definable function f : (G*)"~! — G* such that f(a<,) = a,. Fix a formula
©(Z,y) and define

77[}(5_6<n7y) = @(i‘<na f(f<n)’ y)'

Let d,4[1](y) be an Lg-formula such that, for any bin G, Y(Z<pn,b) € ¢ if and only
if G = dy[¢](b). Then, for any b in G, we have

p@b)ep & G Ep@b) & G Edawmb) & G0
This shows that p is definable. O

Remark 0.8.

(1) Neither Lemma 0.6 nor Theorem 0.7 require saturation of G.

(2) This result is similar to the Marker-Steinhorn theorem for o-minimal theories
[3], which says that a type p over a model M of an o-minimal theory is definable
if and only if M is Dedekind closed in M(a) (i.e. no Dedekind cut in M is
realized in M(a)), where M (@) is again the unique prime model over Ma.

(3) Lemma 0.3(a) gives a direct (and short) proof of (i) = (#ii), which does not
appeal to NIP.

(4) Some relationship between definable 1-types and end extensions in Peano arith-
metic is discussed in Section 11.4 of [4].
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0.5. f-generics in Presburger arithmetic. We continue to work with the no-
tations and conventions from the previous section.

Proposition 0.9. Any f-generic p € S,,(G) is algebraically independent.

Proof. Suppose p is not algebraically independent. Without loss of generality, fix
a = p with a, € G(@<y,). Then there are r, ky,...,k,—1 € Z and b € G such that
rap =b+kia1+ ...+ kn_1a,—1. Consider the formula ¢(Z;b) := rz, = b+ kix; +
...+ kn_12,_1, and note that ¢(z;b) € p. We fix a small model Gy < G, and find
a translate of ¢(Z;b) that forks over Gy. Pick ¢ € 7G such that b — ¢ & Gy, and set
g=%. Let g=1(0,...,0,9), and set 1(Z;b,g) := ¢(z + g;b). By construction, we
may find automorphisms o; € Aut(G/Go) such that o;(b—c) # o;(b—c) for all i # j.
Setting b; = 04(b) and g; = o;(g) = (0, ..., ‘”ﬁc)), we have that {¢(Z;b;, ;) 17 < w}
is 2-inconsistent. So ¥ (Z;b, g) forks over Gy, as desired. O

Theorem 0.10. If p € S, (G) is algebraically independent, then the following are
equivalent.

(1) p is f-generic.
(it) p is strongly f-generic.

(#i1) p is definably f-generic.

(iv) p is definable (over G).

(v) p is definable over ().

(vi) For any (some) a = p, G(a) is an end extension of G.

Proof. (iv) = (vi): By Theorem 0.7.

(vi) = (v): By Lemma 0.6.

(v) = (iv): Trivial.

(1) = (vi): Suppose G(a) is not an end extension of G, and fix k € Z" and
hi,ha € G such that s;(a) € G and hy < sp(a@) < hg. Consider the formula
d(T;h1,ha) := h1 < sz(Z) < ha, and note that ¢(Z; hy, he) € p. We fix a small
model Gy < G, and find a translate of ¢(Z;hy, ho) that forks over Gp. Without
loss of generality, assume b > 0 and also h; > 0. Let k; be a nonzero element
of the tuple k. By saturation of G, we may find g € G such that k;g > ¢ for all
¢ € Go. Let g € G" be such that g; = 0 for all j # i and g; = g. For t € {1,2},
set ¢¢ = hy + kig € G. Then ¢(z — g; hy, ha) is equivalent to ¢; < sp(Z) < ca.
Since ¢ < ¢ for all ¢ € Gy, it is easy to show, using Proposition 0.4(a), that
&(T — g; hi, he) forks over Gy, as desired. So p is not f-generic.

(vi) = (#i1): Suppose G(a) is an end extension of G. For any g € G", we
have G(a) = G(g+ a), and gp is still algebraically independent. Therefore, for any
g € G™, we use Lemma 0.6 to conclude that gp is definable over .

(ii3) = (i4): Trivial.

(1) = (¢): Trivial. O

Remark 0.11. In general, f-generic types need not be strongly f-generic, even in
definably amenable NIP groups. In fact, if G is a sufficiently saturated model of
RCF, then there are f-generic types in (G2,+), which are not strongly f-generic
(see [1, Example 3.10]). On the other hand, Levi, Kaplan, and Simon [2] have
shown that if G is definably amenable and dp-minimal, then any f-generic type in
Sa(M) is strongly f-generic.
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