DEFINABLE TYPES AND F-GENERICS IN PRESBURGER ARITHMETIC

GABRIEL CONANT AND SOMAYEH VOJDANI

The goal of this note is to characterize certain definable types and f-generics in Presburger arithmetic (i.e., the complete first-order theory of the ordered group of integers $(\mathbb{Z},+,<,0)$). Specifically, we consider f-generic types in $S_n(G)$, where G is a saturated model of Presburger arithmetic (i.e. f-generic types with respect to the definable group \mathbb{Z}^n). Let G^* be sufficiently saturated monster model in which we can realize global types over G. Given $p \in S_n(G)$, and a realization $\bar{a} \models p$, we let $G(\bar{a})$ denote the divisible hull of the subgroup of G^* generated by $G\bar{a}$ (i.e. $G(\bar{a})$ is the definable closure of $G\bar{a}$ in G^*). Our main characterization is: given $p \in S_n(G)$ and $\bar{a} \models p$ in G^* , p is f-generic if and only if

- (i) \bar{a} is algebraically independent over G, and
- (ii) $G(\bar{a})$ is an end extension of G (i.e. if $x \in G(\bar{a}) \backslash G$ then x > G or x < G).

Along the way, we give a similar characterization of definable types in $S_n(G)$, and we show that every f-generic type is strongly f-generic and definable over \emptyset .

0.1. **Definable groups and** f-generics. Let T be a complete theory, with a monster model M. We also work with a larger monster model M^* in which we can take realizations of global types over M.

Suppose G = G(M) is a definable group in T. We let $S_G(M)$ denote the space of global types containing the formula defining G. Given $p \in S_G(M)$ and $g \in G$, we let gp denote the translate $\{\varphi(g^{-1}x) : \varphi(x) \in p\}$ of p.

Definition 0.1. Let $p \in S_G(M)$ be a global G-type.

- (a) p is **definable (over** G) if, for any formula $\varphi(\bar{x}, \bar{y})$, there is a formula $d_p[\varphi](\bar{y})$ over G such that, for any $\bar{b} \in G$, $\varphi(\bar{x}, \bar{b}) \in p$ if and only if $G \models d_p[\varphi](\bar{b})$.
- (b) p is a f-generic if, for every formula $\phi(x) \in p$, there is a small model M_0 such that no translate $\phi(gx)$ of $\phi(x)$ forks over M_0 .
- (c) p is a **strongly** f-**generic** if there is a small model M_0 such that no translate gp of p forks over M_0 .
- (d) p is **definably** f-generic if there is a small model M_0 such that every translate qp is definable over M_0 .
- 0.2. End extensions of discrete orders. Let T, M, and M^* be as in the previous subsection. Assume $\mathcal L$ contains a symbol < for an ordering and T extends the theory of linear orders. We say that the theory T is definably complete if any nonempty definable subset of M, with an upper bound in M, has a least upper bound in M, and similarly for lower bounds. Note that this does not depend on the model M. If T is definably complete, and we further assume that M is discretely ordered by <, then it follows that definable subsets of M contain their least upper bound and

Date: October 12, 2016 Updated: April 5, 2018. greatest lower bound (whenever they exist). We will say T is discretely ordered to indicate that the ordering < on M is discrete.

Recall that, in a totally ordered structure, algebraic closure and definable closure coincide. Given a tuple $\bar{a} \in (M^*)^n$, we let $M(\bar{a}) = \operatorname{dcl}(M\bar{a})$.

Definition 0.2. Given subsets $A \subseteq B$ of M^* , we say B is an **end extension of** A if, for all $b \in B \setminus A$, either b < a for all $a \in A$ or b > a for all $a \in A$.

Lemma 0.3. Suppose T is discretely ordered and definably complete. Fix a non-isolated type $p \in S_n(M)$ and a realization \bar{a} in M^* . If $M(\bar{a})$ is not an end extension of M then:

- (a) p is not definable,
- (b) p has at least two distinct coheirs to M^* .

Proof. Since $M(\bar{a})$ is not an end extension of M, we may fix an M-definable function $f:(M^*)^n \longrightarrow M^*$, and $m_1, m_2 \in M$ such that $f(\bar{a}) \notin M$ and $m_1 < f(\bar{a}) < m_2$. Define the upwards closed set

$$X = \{ m \in M : p \models f(\bar{x}) < m \}.$$

Then m_1 and m_2 witness that X is nonempty and not all of M. If X has a minimal element m_0 , and m_0^- is the immediate predecessor of m_0 in M, then we must have $m_0^- \leq f(\bar{a}) < m_0$, and so $f(\bar{a}) = m_0^- \in M$, which is a contradiction. So X has no minimal element, and therefore cannot be M-definable. This proves part (a).

Now define

$$C = \{c \in M^* : m < c < m' \text{ for all } m \in M \setminus X \text{ and } m' \in X\}.$$

Then $f(\bar{a}) \in C$, and so $C \neq \emptyset$. We define the following partial types over M^* :

$$q_1 = p \cup \{m < f(\bar{x}) < c : m \in M \setminus X, \ c \in C\}$$

$$q_2 = p \cup \{c < f(\bar{x}) < m : c \in C, \ m \in X\}.$$

Note that q_1 and q_2 are distinct since $C \neq \emptyset$. If we can show that they are each finitely satisfiable in M, then they will extend to distinct coheirs of p, which proves part (b). So we show q_1 is finitely satisfiable in M (the proof for q_2 is similar).

Fix a formula $\varphi(\bar{x}) \in p$ and some $m \in G \backslash X$ (which exists since X is not all of M). Set

$$A = \{ m' \in f(\varphi(M^n)) : m < m' \}.$$

Then A is an M-definable subset of M, which is nonempty since $b \in A(M^*)$. Since A is bounded below by m, we may fix a minimal element $m_0 \in A$. By elementarity, m_0 is the minimal element of $A(M^*)$. In particular, $m_0 < f(\bar{a})$, and so $m_0 \in M \setminus X$. By definition of A, $m_0 = f(\bar{a}')$ for some $\bar{a}' \in M^n$ such that $M \models \varphi(\bar{a}')$. Altogether, we have $M \models \varphi(\bar{a}')$, and $m < f(\bar{a}') < c$ for any $c \in C$.

Suppose T is discretely ordered and definably complete. If, moreover, $\operatorname{dcl}(\emptyset)$ is nonempty, then T has definable Skolem functions by picking out either the maximal element of a definable set or the least element greater than some \emptyset -definable constant. It follows that $M(\bar{a})$ is the unique prime model over $M\bar{a}$.

0.3. **Presburger arithmetic.** Let $T = \text{Th}(\mathbb{Z}, +, <, 0)$. Let G denote a sufficiently saturated model of T, and let G^* denote a larger elementary extension of G, which is sufficiently saturated with respect to G. We treat types over G as global types, but use G^* as an even larger monster model in which we can realize such types.

Note that T satisfies the properties discussed in the previous section: it is discretely ordered and definably complete, with $dcl(\emptyset)$ nonempty. Therefore, for $\bar{a} \in G^*$, $G(\bar{a})$ is the prime model over $G\bar{a}$. Recall that T has quantifier elimination in the expanded language $\mathcal{L}^* = \{+, <, 0, 1, (D_n)_{n < \omega}\}$ where D_n is a unary predicate interpreted as $n\mathbb{Z}$. Consequently, given $\bar{a} \in G^*$, $G(\bar{a})$ is the divisible hull of the subgroup of G^* generated by $G\bar{a}$.

Given $a \in G^*$ and n > 0, let $[a]_n \in \{0, 1, \ldots, n-1\}$ be the unique remainder of a modulo n. Given $\bar{k} \in \mathbb{Z}^n$, we let $s_{\bar{k}}(\bar{x})$ denote the definable function $\bar{x} \mapsto k_1 x_1 + \ldots + k_n x_n$.

Proposition 0.4.

- (a) Let $G_0 \prec G$ be a small model, and fix $a, b \in G$.
 - (i) If $G_0 < a < b$ then there is some $c \in G$ such that b < c and $a \equiv_{G_0} c$.
 - (ii) If $a < b < G_0$ then there is some $c \in G$ such that c < a and $b \equiv_{G_0} c$.
- (b) For any $p \in S_n(G)$ and $\bar{a} \models p$, if $G(\bar{a})$ is not an end extension of G then there are $h_1, h_2 \in G$ and $\bar{k} \in \mathbb{Z}^n$ such that $h_1 < s_{\bar{k}}(\bar{a}) < h_2$ and $s_{\bar{k}}(\bar{a}) \notin G$.

Proof. Part (a). We prove (i); the proof of (ii) is similar. By quantifier elimination and saturation of G it is enough to fix an integer N>0, and find $c\in G$ such that b< c and $[c]_n=[a]_n$ for all $0< n\leq N$. To find such an element, simply note that $\bigcap_{0< n\leq N} nG+[a]_n$ is nonempty (as it contains a), and is therefore a single coset mG+r for some $m,r\in \mathbb{Z}$. So we may choose $c=b-[b]_m+m+r$.

- Part (b). By assumption, there is $b \in \operatorname{dcl}(G\bar{a}) \backslash G$ and $h'_1, h'_2 \in G$ such that $h'_1 < b < h'_2$. By the description of definable closure in Presburger arithmetic, there are integers $r \in \mathbb{Z}^+$, $\bar{k} \in \mathbb{Z}^n$ and some $h_0 \in G$ such that $rb = s_{\bar{k}}(\bar{a}) + h_0$. Now let $h_i = rh'_i h_0$.
- 0.4. **Definable types in Presburger arithmetic.** In the context of Definition 0.1, we consider the situation where G is the monster model M, and the definable group is $G^n = \mathbb{Z}^n(G)$, for a fixed n > 0, under coordinate addition. In particular, where we have the notation $S_G(M)$ in Definition 0.1, here we just have $S_n(G)$.

Definition 0.5. A type $p \in S_n(G)$ is algebraically independent if for all (some) $\bar{a} \models p, \ a_i \notin G(\bar{a}_{\neq i})$ for all $1 \leq i \leq n$.

Lemma 0.6. Suppose $p \in S_n(G)$ is algebraically independent and for all (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G. Then p is definable over \emptyset .

Proof. Let \mathbb{Z}_*^n denote $\mathbb{Z}^n \setminus \{\bar{0}\}$. By quantifier elimination, it suffices to give definitions for atomic formulas of the following forms:

- $\varphi_1(\bar{x},\bar{y}) := (s_{\bar{k}}(\bar{x}) = t(\bar{y}))$, where $\bar{k} \in \mathbb{Z}_*^n$ and $t(\bar{y})$ is a term in variables \bar{y} ,
- $\varphi_2(\bar{x},\bar{y}) := (s_{\bar{k}}(\bar{x}) > t(\bar{y}))$, where $\bar{k} \in \mathbb{Z}_*^n$ and $t(\bar{y})$ is a term in variables \bar{y} ,
- $\varphi_3(\bar{x},\bar{y}) := ([s_{\bar{k}}(\bar{x}) + t(\bar{y})]_m = 0)$, where $\bar{k} \in Z_*^n$, $m \in \mathbb{Z}^+$, and $t(\bar{y})$ is a term in variables \bar{y} .

Fix $\bar{a} \models p$ and fix $\bar{k} \in \mathbb{Z}_*^n$. Since p is algebraically independent, it follows that $s_{\bar{k}}(\bar{a}) \notin G$. Since $G(\bar{a})$ is an end extension of G, we may partition $\mathbb{Z}_*^n = S^+ \cup S^-$

where

$$S^+ = \{\bar{k} : s_{\bar{k}}(\bar{a}) > G\}$$
 and $S^- = \{\bar{k} : s_{\bar{k}}(\bar{a}) < G\}.$

Note that S^+ and S^- depend only on p, and not choice of realization \bar{a} . Moreover, for any $\bar{k} \in \mathbb{Z}^n$ and m > 0, the integer $[s_{\bar{k}}(\bar{a})]_m \in \{0, \dots, m-1\}$ depends only on p. We now give the following definitions for p (note that they are formulas over \emptyset):

$$d_{p}[\varphi_{1}](\bar{y}) := (y_{1} \neq y_{1}),$$

$$d_{p}[\varphi_{2}](\bar{y}) := \begin{cases} y_{1} = y_{1} & \text{if } \bar{k} \in S^{+} \\ y_{1} \neq y_{1} & \text{if } \bar{k} \in S^{-}, \end{cases}$$

$$d_{p}[\varphi_{3}](\bar{y}) := ([t(\bar{y}) + [s_{\bar{k}}(\bar{a})]_{m}]_{m} = 0).$$

Theorem 0.7. Given $p \in S_n(G)$, the following are equivalent.

- (i) p is definable (over G).
- (ii) p has a unique coheir to G^* .
- (iii) For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G.

Proof. $(i) \Rightarrow (ii)$. This is true in any NIP theory (see [5, Exercise 2.74]), and has nothing to do with G being a group.

- $(ii) \Rightarrow (iii)$. By Lemma 0.3(b).
- $(iii)\Rightarrow (i)$. We may assume p is non-isolated. We proceed by induction on n. If n=1 then p is algebraically independent since it is non-isolated, and so we apply Lemma 0.6. Assume the result for n'< n and fix $p\in S_n(G)$. If p is algebraically independent then we apply Lemma 0.6. So assume, without loss of generality, that we have $\bar{a}\models p$ with $a_n\in G(\bar{a}_{< n})$. Let $q=\operatorname{tp}(\bar{a}_{< n}/G)\in S_{n-1}(G)$. By assumption, $G(\bar{a}_{< n})=G(\bar{a})$ is an end extension of G, and so g is definable by induction. Fix a G-definable function $f:(G^*)^{n-1}\longrightarrow G^*$ such that $f(\bar{a}_{< n})=a_n$. Fix a formula $\varphi(\bar{x},\bar{y})$ and define

$$\psi(\bar{x}_{< n}, \bar{y}) := \varphi(\bar{x}_{< n}, f(\bar{x}_{< n}), \bar{y}).$$

Let $d_q[\psi](\bar{y})$ be an \mathcal{L}_G -formula such that, for any \bar{b} in G, $\psi(\bar{x}_{\leq n}, \bar{b}) \in q$ if and only if $G \models d_q[\psi](\bar{b})$. Then, for any \bar{b} in G, we have

$$\varphi(\bar{x}, \bar{b}) \in p \iff G^* \models \varphi(\bar{a}, \bar{b}) \iff G^* \models \psi(\bar{a}_{\leq n}, \bar{b}) \iff G \models d_q[\psi](\bar{b}).$$

This shows that p is definable.

Remark 0.8.

- (1) Neither Lemma 0.6 nor Theorem 0.7 require saturation of G.
- (2) This result is similar to the Marker-Steinhorn theorem for o-minimal theories [3], which says that a type p over a model \mathcal{M} of an o-minimal theory is definable if and only if \mathcal{M} is $Dedekind\ closed$ in $\mathcal{M}(\bar{a})$ (i.e. no Dedekind cut in M is realized in $\mathcal{M}(\bar{a})$), where $\mathcal{M}(\bar{a})$ is again the unique prime model over $M\bar{a}$.
- (3) Lemma 0.3(a) gives a direct (and short) proof of $(i) \Rightarrow (iii)$, which does not appeal to NIP.
- (4) Some relationship between definable 1-types and end extensions in Peano arithmetic is discussed in Section 11.4 of [4].

0.5. f-generics in Presburger arithmetic. We continue to work with the notations and conventions from the previous section.

Proposition 0.9. Any f-generic $p \in S_n(G)$ is algebraically independent.

Proof. Suppose p is not algebraically independent. Without loss of generality, fix $\bar{a} \models p$ with $a_n \in G(\bar{a}_{< n})$. Then there are $r, k_1, \ldots, k_{n-1} \in \mathbb{Z}$ and $b \in G$ such that $ra_n = b + k_1a_1 + \ldots + k_{n-1}a_{n-1}$. Consider the formula $\phi(\bar{x};b) := rx_n = b + k_1x_1 + \ldots + k_{n-1}x_{n-1}$, and note that $\phi(\bar{x};\bar{b}) \in p$. We fix a small model $G_0 \prec G$, and find a translate of $\phi(\bar{x};\bar{b})$ that forks over G_0 . Pick $c \in rG$ such that $b - c \notin G_0$, and set $g = \frac{c}{r}$. Let $\bar{g} = (0,\ldots,0,g)$, and set $\psi(\bar{x};b,\bar{g}) := \phi(\bar{x}+\bar{g};b)$. By construction, we may find automorphisms $\sigma_i \in \operatorname{Aut}(G/G_0)$ such that $\sigma_i(b-c) \neq \sigma_j(b-c)$ for all $i \neq j$. Setting $b_i = \sigma_i(b)$ and $\bar{g}_i = \sigma_i(\bar{g}) = (0,\ldots,\frac{\sigma_i(c)}{r})$, we have that $\{\psi(\bar{x};b_i,\bar{g}_i) : i < \omega\}$ is 2-inconsistent. So $\psi(\bar{x};b,\bar{g})$ forks over G_0 , as desired.

Theorem 0.10. If $p \in S_n(G)$ is algebraically independent, then the following are equivalent.

- (i) p is f-generic.
- (ii) p is strongly f-generic.
- (iii) p is definably f-generic.
- (iv) p is definable (over G).
- (v) p is definable over \emptyset .
- (vi) For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G.

Proof. $(iv) \Rightarrow (vi)$: By Theorem 0.7.

- $(vi) \Rightarrow (v)$: By Lemma 0.6.
- $(v) \Rightarrow (iv)$: Trivial.
- $(i)\Rightarrow (vi)$: Suppose $G(\bar{a})$ is not an end extension of G, and fix $\bar{k}\in\mathbb{Z}^n$ and $h_1,h_2\in G$ such that $s_{\bar{k}}(\bar{a})\not\in G$ and $h_1< s_{\bar{k}}(\bar{a})< h_2$. Consider the formula $\phi(\bar{x};h_1,h_2):=h_1< s_{\bar{k}}(\bar{x})< h_2$, and note that $\phi(\bar{x};h_1,h_2)\in p$. We fix a small model $G_0\prec G$, and find a translate of $\phi(\bar{x};h_1,h_2)$ that forks over G_0 . Without loss of generality, assume b>0 and also $h_1>0$. Let k_i be a nonzero element of the tuple \bar{k} . By saturation of G, we may find $g\in G$ such that $k_ig>c$ for all $c\in G_0$. Let $\bar{g}\in G^n$ be such that $g_j=0$ for all $j\neq i$ and $g_i=g$. For $t\in\{1,2\}$, set $c_t=h_t+k_ig\in G$. Then $\phi(\bar{x}-\bar{g};h_1,h_2)$ is equivalent to $c_1< s_{\bar{k}}(\bar{x})< c_2$. Since $c< c_1$ for all $c\in G_0$, it is easy to show, using Proposition 0.4(a), that $\phi(\bar{x}-\bar{g};h_1,h_2)$ forks over G_0 , as desired. So p is not f-generic.
- $(vi) \Rightarrow (iii)$: Suppose $G(\bar{a})$ is an end extension of G. For any $\bar{g} \in G^n$, we have $G(\bar{a}) = G(\bar{g} + \bar{a})$, and $\bar{g}p$ is still algebraically independent. Therefore, for any $\bar{g} \in G^n$, we use Lemma 0.6 to conclude that $\bar{g}p$ is definable over \emptyset .
 - $(iii) \Rightarrow (ii)$: Trivial.

 $(ii) \Rightarrow (i)$: Trivial.

Remark 0.11. In general, f-generic types need not be strongly f-generic, even in definably amenable NIP groups. In fact, if G is a sufficiently saturated model of RCF, then there are f-generic types in $(G^2, +)$, which are not strongly f-generic (see [1, Example 3.10]). On the other hand, Levi, Kaplan, and Simon [2] have shown that if G is definably amenable and dp-minimal, then any f-generic type in $S_G(M)$ is strongly f-generic.

References

- [1] Artem Chernikov and Pierre Simon, *Definably amenable NIP groups*, arXiv:1502.04365, 2015, to appear in J. Amer. Math. Soc.
- [2] Itay Kaplan, Elad Levi, and Pierre Simon, Some remarks on dp-minimal groups, Groups, modules, and model theory—surveys and recent developments, Springer, Cham, 2017, pp. 359– 372
- [3] David Marker and Charles I. Steinhorn, *Definable types in O-minimal theories*, J. Symbolic Logic **59** (1994), no. 1, 185–198.
- [4] Bruno Poizat, A course in model theory, Universitext, Springer-Verlag, New York, 2000, An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.
- [5] Pierre Simon, A guide to NIP theories, vol. 44, Cambridge University Press, 2015.