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The goal of this note is to characterize certain definable types and f -generics in
Presburger arithmetic (i.e., the complete first-order theory of the ordered group of
integers (Z,+, <, 0)). Specifically, we consider f -generic types in Sn(G), where G is
a saturated model of Presburger arithmetic (i.e. f -generic types with respect to the
definable group Zn). Let G∗ be sufficiently saturated monster model in which we
can realize global types over G. Given p ∈ Sn(G), and a realization ā |= p, we let
G(ā) denote the divisible hull of the subgroup of G∗ generated by Gā (i.e. G(ā) is
the definable closure of Gā in G∗). Our main characterization is: given p ∈ Sn(G)
and ā |= p in G∗, p is f -generic if and only if

(i) ā is algebraically independent over G, and
(ii) G(ā) is an end extension of G (i.e. if x ∈ G(ā)\G then x > G or x < G).

Along the way, we give a similar characterization of definable types in Sn(G), and
we show that every f -generic type is strongly f -generic and definable over ∅.

0.1. Definable groups and f-generics. Let T be a complete theory, with a
monster model M . We also work with a larger monster model M∗ in which we can
take realizations of global types over M .

Suppose G = G(M) is a definable group in T . We let SG(M) denote the space
of global types containing the formula defining G. Given p ∈ SG(M) and g ∈ G,
we let gp denote the translate {ϕ(g-1x) : ϕ(x) ∈ p} of p.

Definition 0.1. Let p ∈ SG(M) be a global G-type.

(a) p is definable (over G) if, for any formula ϕ(x̄, ȳ), there is a formula dp[ϕ](ȳ)
over G such that, for any b̄ ∈ G, ϕ(x̄, b̄) ∈ p if and only if G |= dp[ϕ](b̄).

(b) p is a f-generic if, for every formula φ(x) ∈ p, there is a small model M0 such
that no translate φ(gx) of φ(x) forks over M0.

(c) p is a strongly f-generic if there is a small model M0 such that no translate
gp of p forks over M0.

(d) p is definably f-generic if there is a small model M0 such that every translate
gp is definable over M0.

0.2. End extensions of discrete orders. Let T , M , andM∗ be as in the previous
subsection. Assume L contains a symbol < for an ordering and T extends the theory
of linear orders. We say that the theory T is definably complete if any nonempty
definable subset of M , with an upper bound in M , has a least upper bound in M ,
and similarly for lower bounds. Note that this does not depend on the model M .
If T is definably complete, and we further assume that M is discretely ordered by
<, then it follows that definable subsets of M contain their least upper bound and
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greatest lower bound (whenever they exist). We will say T is discretely ordered to
indicate that the ordering < on M is discrete.

Recall that, in a totally ordered structure, algebraic closure and definable closure
coincide. Given a tuple ā ∈ (M∗)n, we let M(ā) = dcl(Mā).

Definition 0.2. Given subsets A ⊆ B of M∗, we say B is an end extension of
A if, for all b ∈ B\A, either b < a for all a ∈ A or b > a for all a ∈ A.

Lemma 0.3. Suppose T is discretely ordered and definably complete. Fix a non-
isolated type p ∈ Sn(M) and a realization ā in M∗. If M(ā) is not an end extension
of M then:

(a) p is not definable,
(b) p has at least two distinct coheirs to M∗.

Proof. SinceM(ā) is not an end extension ofM , we may fix anM -definable function
f : (M∗)n −→ M∗, and m1,m2 ∈ M such that f(ā) 6∈ M and m1 < f(ā) < m2.
Define the upwards closed set

X = {m ∈M : p |= f(x̄) < m}.

Then m1 and m2 witness that X is nonempty and not all of M . If X has a minimal
element m0, and m−0 is the immediate predecessor of m0 in M , then we must have
m−0 ≤ f(ā) < m0, and so f(ā) = m−0 ∈ M , which is a contradiction. So X has no
minimal element, and therefore cannot be M -definable. This proves part (a).

Now define

C = {c ∈M∗ : m < c < m′ for all m ∈M\X and m′ ∈ X}.

Then f(ā) ∈ C, and so C 6= ∅. We define the following partial types over M∗:

q1 = p ∪ {m < f(x̄) < c : m ∈M\X, c ∈ C}
q2 = p ∪ {c < f(x̄) < m : c ∈ C, m ∈ X}.

Note that q1 and q2 are distinct since C 6= ∅. If we can show that they are each
finitely satisfiable in M , then they will extend to distinct coheirs of p, which proves
part (b). So we show q1 is finitely satisfiable in M (the proof for q2 is similar).

Fix a formula ϕ(x̄) ∈ p and some m ∈ G\X (which exists since X is not all of
M). Set

A = {m′ ∈ f(ϕ(Mn)) : m < m′}.

Then A is an M -definable subset of M , which is nonempty since b ∈ A(M∗). Since
A is bounded below by m, we may fix a minimal element m0 ∈ A. By elementarity,
m0 is the minimal element of A(M∗). In particular, m0 < f(ā), and so m0 ∈M\X.
By definition of A, m0 = f(ā′) for some ā′ ∈Mn such that M |= ϕ(ā′). Altogether,
we have M |= ϕ(ā′), and m < f(ā′) < c for any c ∈ C. �

Suppose T is discretely ordered and definably complete. If, moreover, dcl(∅) is
nonempty, then T has definable Skolem functions by picking out either the maxi-
mal element of a definable set or the least element greater than some ∅-definable
constant. It follows that M(ā) is the unique prime model over Mā.
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0.3. Presburger arithmetic. Let T = Th(Z,+, <, 0). Let G denote a sufficiently
saturated model of T , and let G∗ denote a larger elementary extension of G, which
is sufficiently saturated with respect to G. We treat types over G as global types,
but use G∗ as an even larger monster model in which we can realize such types.

Note that T satisfies the properties discussed in the previous section: it is
discretely ordered and definably complete, with dcl(∅) nonempty. Therefore, for
ā ∈ G∗, G(ā) is the prime model over Gā. Recall that T has quantifier elimination
in the expanded language L∗ = {+, <, 0, 1, (Dn)n<ω} where Dn is a unary predi-
cate interpreted as nZ. Consequently, given ā ∈ G∗, G(ā) is the divisible hull of
the subgroup of G∗ generated by Gā.

Given a ∈ G∗ and n > 0, let [a]n ∈ {0, 1, . . . , n − 1} be the unique remainder
of a modulo n. Given k̄ ∈ Zn, we let sk̄(x̄) denote the definable function x̄ 7→
k1x1 + . . .+ knxn.

Proposition 0.4.

(a) Let G0 ≺ G be a small model, and fix a, b ∈ G.
(i) If G0 < a < b then there is some c ∈ G such that b < c and a ≡G0

c.
(ii) If a < b < G0 then there is some c ∈ G such that c < a and b ≡G0

c.
(b) For any p ∈ Sn(G) and ā |= p, if G(ā) is not an end extension of G then there

are h1, h2 ∈ G and k̄ ∈ Zn such that h1 < sk̄(ā) < h2 and sk̄(ā) 6∈ G.

Proof. Part (a). We prove (i); the proof of (ii) is similar. By quantifier elimination
and saturation of G it is enough to fix an integer N > 0, and find c ∈ G such that
b < c and [c]n = [a]n for all 0 < n ≤ N . To find such an element, simply note that⋂

0<n≤N nG + [a]n is nonempty (as it contains a), and is therefore a single coset

mG+ r for some m, r ∈ Z. So we may choose c = b− [b]m +m+ r.
Part (b). By assumption, there is b ∈ dcl(Gā)\G and h′1, h

′
2 ∈ G such that

h′1 < b < h′2. By the description of definable closure in Presburger arithmetic,
there are integers r ∈ Z+, k̄ ∈ Zn and some h0 ∈ G such that rb = sk̄(ā) +h0. Now
let hi = rh′i − h0. �

0.4. Definable types in Presburger arithmetic. In the context of Definition
0.1, we consider the situation where G is the monster model M , and the definable
group is Gn = Zn(G), for a fixed n > 0, under coordinate addition. In particular,
where we have the notation SG(M) in Definition 0.1, here we just have Sn(G).

Definition 0.5. A type p ∈ Sn(G) is algebraically independent if for all (some)
ā |= p, ai 6∈ G(ā6=i) for all 1 ≤ i ≤ n.

Lemma 0.6. Suppose p ∈ Sn(G) is algebraically independent and for all (some)
ā |= p, G(ā) is an end extension of G. Then p is definable over ∅.

Proof. Let Zn∗ denote Zn\{0̄}. By quantifier elimination, it suffices to give defini-
tions for atomic formulas of the following forms:

• ϕ1(x̄, ȳ) :=
(
sk̄(x̄) = t(ȳ)

)
, where k̄ ∈ Zn∗ and t(ȳ) is a term in variables ȳ,

• ϕ2(x̄, ȳ) :=
(
sk̄(x̄) > t(ȳ)

)
, where k̄ ∈ Zn∗ and t(ȳ) is a term in variables ȳ,

• ϕ3(x̄, ȳ) :=
(
[sk̄(x̄) + t(ȳ)]m = 0

)
, where k̄ ∈ Zn∗ , m ∈ Z+, and t(ȳ) is a term in

variables ȳ.

Fix ā |= p and fix k̄ ∈ Zn∗ . Since p is algebraically independent, it follows that
sk̄(ā) 6∈ G. Since G(ā) is an end extension of G, we may partition Zn∗ = S+ ∪ S−
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where

S+ = {k̄ : sk̄(ā) > G} and S− = {k̄ : sk̄(ā) < G}.

Note that S+ and S− depend only on p, and not choice of realization ā. Moreover,
for any k̄ ∈ Zn and m > 0, the integer [sk̄(ā)]m ∈ {0, . . . ,m − 1} depends only on
p. We now give the following definitions for p (note that they are formulas over ∅):

dp[ϕ1](ȳ) :=
(
y1 6= y1

)
,

dp[ϕ2](ȳ) :=

{
y1 = y1 if k̄ ∈ S+

y1 6= y1 if k̄ ∈ S−,

dp[ϕ3](ȳ) :=
(
[t(ȳ) + [sk̄(ā)]m]m = 0

)
. �

Theorem 0.7. Given p ∈ Sn(G), the following are equivalent.

(i) p is definable (over G).
(ii) p has a unique coheir to G∗.

(iii) For any (some) ā |= p, G(ā) is an end extension of G.

Proof. (i) ⇒ (ii). This is true in any NIP theory (see [5, Exercise 2.74]), and has
nothing to do with G being a group.

(ii)⇒ (iii). By Lemma 0.3(b).
(iii)⇒ (i). We may assume p is non-isolated. We proceed by induction on n. If

n = 1 then p is algebraically independent since it is non-isolated, and so we apply
Lemma 0.6. Assume the result for n′ < n and fix p ∈ Sn(G). If p is algebraically
independent then we apply Lemma 0.6. So assume, without loss of generality, that
we have ā |= p with an ∈ G(ā<n). Let q = tp(ā<n/G) ∈ Sn−1(G). By assumption,
G(ā<n) = G(ā) is an end extension of G, and so q is definable by induction. Fix
a G-definable function f : (G∗)n−1 −→ G∗ such that f(ā<n) = an. Fix a formula
ϕ(x̄, ȳ) and define

ψ(x̄<n, ȳ) := ϕ(x̄<n, f(x̄<n), ȳ).

Let dq[ψ](ȳ) be an LG-formula such that, for any b̄ in G, ψ(x̄<n, b̄) ∈ q if and only
if G |= dq[ψ](b̄). Then, for any b̄ in G, we have

ϕ(x̄, b̄) ∈ p ⇔ G∗ |= ϕ(ā, b̄) ⇔ G∗ |= ψ(ā<n, b̄) ⇔ G |= dq[ψ](b̄).

This shows that p is definable. �

Remark 0.8.

(1) Neither Lemma 0.6 nor Theorem 0.7 require saturation of G.
(2) This result is similar to the Marker-Steinhorn theorem for o-minimal theories

[3], which says that a type p over a modelM of an o-minimal theory is definable
if and only if M is Dedekind closed in M(ā) (i.e. no Dedekind cut in M is
realized in M(ā)), where M(ā) is again the unique prime model over Mā.

(3) Lemma 0.3(a) gives a direct (and short) proof of (i) ⇒ (iii), which does not
appeal to NIP.

(4) Some relationship between definable 1-types and end extensions in Peano arith-
metic is discussed in Section 11.4 of [4].
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0.5. f-generics in Presburger arithmetic. We continue to work with the no-
tations and conventions from the previous section.

Proposition 0.9. Any f -generic p ∈ Sn(G) is algebraically independent.

Proof. Suppose p is not algebraically independent. Without loss of generality, fix
ā |= p with an ∈ G(ā<n). Then there are r, k1, . . . , kn−1 ∈ Z and b ∈ G such that
ran = b+ k1a1 + . . .+ kn−1an−1. Consider the formula φ(x̄; b) := rxn = b+ k1x1 +
. . .+ kn−1xn−1, and note that φ(x̄; b̄) ∈ p. We fix a small model G0 ≺ G, and find
a translate of φ(x̄; b̄) that forks over G0. Pick c ∈ rG such that b− c 6∈ G0, and set
g = c

r . Let ḡ = (0, . . . , 0, g), and set ψ(x̄; b, ḡ) := φ(x̄ + ḡ; b). By construction, we
may find automorphisms σi ∈ Aut(G/G0) such that σi(b−c) 6= σj(b−c) for all i 6= j.

Setting bi = σi(b) and ḡi = σi(ḡ) = (0, . . . , σi(c)
r ), we have that {ψ(x̄; bi, ḡi) : i < ω}

is 2-inconsistent. So ψ(x̄; b, ḡ) forks over G0, as desired. �

Theorem 0.10. If p ∈ Sn(G) is algebraically independent, then the following are
equivalent.

(i) p is f -generic.
(ii) p is strongly f -generic.

(iii) p is definably f -generic.
(iv) p is definable (over G).
(v) p is definable over ∅.

(vi) For any (some) ā |= p, G(ā) is an end extension of G.

Proof. (iv)⇒ (vi): By Theorem 0.7.
(vi)⇒ (v): By Lemma 0.6.
(v)⇒ (iv): Trivial.
(i) ⇒ (vi): Suppose G(ā) is not an end extension of G, and fix k̄ ∈ Zn and

h1, h2 ∈ G such that sk̄(ā) 6∈ G and h1 < sk̄(ā) < h2. Consider the formula
φ(x̄;h1, h2) := h1 < sk̄(x̄) < h2, and note that φ(x̄;h1, h2) ∈ p. We fix a small
model G0 ≺ G, and find a translate of φ(x̄;h1, h2) that forks over G0. Without
loss of generality, assume b > 0 and also h1 > 0. Let ki be a nonzero element
of the tuple k̄. By saturation of G, we may find g ∈ G such that kig > c for all
c ∈ G0. Let ḡ ∈ Gn be such that gj = 0 for all j 6= i and gi = g. For t ∈ {1, 2},
set ct = ht + kig ∈ G. Then φ(x̄ − ḡ;h1, h2) is equivalent to c1 < sk̄(x̄) < c2.
Since c < c1 for all c ∈ G0, it is easy to show, using Proposition 0.4(a), that
φ(x̄− ḡ;h1, h2) forks over G0, as desired. So p is not f -generic.

(vi) ⇒ (iii): Suppose G(ā) is an end extension of G. For any ḡ ∈ Gn, we
have G(ā) = G(ḡ+ ā), and ḡp is still algebraically independent. Therefore, for any
ḡ ∈ Gn, we use Lemma 0.6 to conclude that ḡp is definable over ∅.

(iii)⇒ (ii): Trivial.
(ii)⇒ (i): Trivial. �

Remark 0.11. In general, f -generic types need not be strongly f -generic, even in
definably amenable NIP groups. In fact, if G is a sufficiently saturated model of
RCF, then there are f -generic types in (G2,+), which are not strongly f -generic
(see [1, Example 3.10]). On the other hand, Levi, Kaplan, and Simon [2] have
shown that if G is definably amenable and dp-minimal, then any f -generic type in
SG(M) is strongly f -generic.
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