Model Theory and Combinatorics of Homogeneous Metric Spaces

Errata

Gabriel Conant University of Illinois at Chicago gconan2@uic.edu

last updated: September 29, 2015

Typos

- page 20: "...with binary relations given by distance inequalities. However, when working directly..."
- page 25: "...with distances possibly outside of S, still satisfies these axioms."
- page 26: "...there is an \mathcal{R} -triangle (r', s', t') in S, which Φ -approximates (u, v, w)."
- page 31: In the proof of Proposition 2.3.10(a), the element s is undefined. The proof should read: "Suppose $\alpha, \beta \in S^*$, with $\alpha \leq^* \beta$. Fix an S-approximation Φ of $\{\alpha, \beta\}$. By density of S, we may fix $r \in \Phi(\alpha) \cap S$ and $s \in \Phi(\beta) \cap S$ such that $r \leq s$. Then (r, s, s) is an \mathcal{R} -triangle..."
- page 31: "However, in the case that $\mu := P_S(\alpha, \beta)$ is an element of $\nu(S),...$ "
- page 52: "Call an extension scheme (A, f, Ψ) standard if $\Psi^+(A^f \times A^f) \subseteq \mathbb{R}$."
- page 52: "Set $f_0 = f|_{A_0}$, $\mathcal{A}_0 = (A_0, d_A)$, and $\Psi_0 = \Psi_{A_0^{f_0} \times A_0^{f_0}}$."
- $\bullet \text{ page 52: } \Phi(a,b) = \begin{cases} \Phi_0(a,b) & \text{if } a,b \in A_0 \cup \{z_f\} \\ \hat{\Psi}(d_{\pmb{A}}(a,b)) & \text{otherwise.} \end{cases}$
- page 61: "...and, given $r, s \in R$, $r \oplus s$ is either r + s or the maximal element of R."
- page 63: (from the paragraph starting "In [15]..." through the rest of the section on page 64) In this discussion, there are some technical issues concerning whether equality of theories T = T' should mean that T and T' are the same collection of sentences, or that they axiomatize the

same complete theory. The reader should assume the latter.

- page 64: "In [26], it is shown that the continuous theory of the complete Urysohn sphere has SOP_n for all $n \geq 3...$ " (The cited source [26] does not address continuous versions of SOP_1 or SOP_2 .)
- page 69: "For example, if $S = (\{0, 1, 3, 4\}, +_S, \leq, 0)$, then $\frac{1}{2}(1 +_S 3) = 3$ and $\frac{1}{2}1 +_S \frac{1}{2}3 = 4$."
- page 80: "For this, fix $b \in BC$, and note $U(a_2) \leq d(a_2, b) \oplus \delta_b$..."
- page 80: "...by Lemma 3.4.10(c), we have $a' \downarrow_C^d Bb_*$ for all $a' \in A'$, which gives $A' \downarrow_C^d Bb_*$ by Lemma 3.4.1."
- page 81: "(iv) \mathcal{R} is ultrametric, i.e., for all $r, s \in \mathbb{R}$, if $r \leq s$ then $r \oplus s = s$."
- page 88: "Since Th($\mathcal{U}_{\mathcal{R}}$) is simple, it follows from Theorem 3.5.7(iv)..."
- page 96: "In other words $\operatorname{arch}(\mathcal{R}) \leq n$ if and only if $s \leq nr$ for all $s, r \in \mathbb{R}^{>0}$."
- page 98: "Given $1 \le i < n$, we have $d(a_i^0, a_{i+1}^1) = \alpha_{i+1}$..."
- page 105: "To show the first equality, it suffices by part (a)..."
- page 128: The proof of Theorem 4.4.4 is overly complicated, and contains several typos, listed below. For a cleaner proof, see the preprint *Extending partial isometries of generalized metric spaces*, arXiv 1509.04950.
 - page 128: "Since $\operatorname{Spec}(A)$ is finite, \mathcal{R} is countable and has only finitely many archimedean classes"
 - page 129: The indices i and j should not be fixed at the beginning of the proof of Claim 2. Instead, it should say: *Proof*: We extend A to an \mathcal{R} -metric space A^* such that, if A_1^*, \ldots, A_m^* are the \sim -classes of A^* , then A_i^* and A_j^* are isometric for all $i, j \leq m$.
 - page 129: "Note that, for all $1 \le i \le m$, (A_i, d) is a subspace of (A, d_0) ."
 - page 129: "Given $1 \leq i, j \leq p$, fix an isometry $\theta_{i,j} : A_i \longrightarrow A_j$. By induction, there is an \mathcal{S}_1 -metric space B_1 such that $A_1 \subseteq B_1$ and any partial isometry of A_1 extends to a total isometry of B_1 ."
 - page 130: In the proof of Claim 4, a_i and a_j are fixed elements of $dom(\varphi) \cap A_i$ and $dom(\varphi) \cap A_j$, respectively.
 - page 130: Both the definition of $\hat{\phi}$ and Claim 6 are irrelevant and can be entirely omitted.

• page 148: "(i) $R = \{0, 1, ..., n\} \cup \{t\}$, with $t \notin \{0, 1, ..., n\}$ "

Errors

- page 117: There is a crucial error in the proof of Theorem 4.2.2, which prevents the argument from working in general when \mathcal{F} is nonempty. The argument can be salvaged by imposing strong restrictions on \mathcal{F} , but the general situation is unclear. This has the following consequences:
 - (i) Theorem 4.2.2 is only proved when \mathcal{F} satisfies certain restrictions (which include $\mathcal{F} = \emptyset$).
 - (ii) Corollary 4.2.3 is only proved when \mathcal{F} satisfies these restrictions (in particular, Corollary 4.2.4 is still true).
 - (iii) Corollary 4.3.4 is still true (see final remarks below).
 - (iv) Other than these, all other results are unaffected.

A new draft of the argument, which spells out the restrictions on \mathcal{F} , is available as part of the preprint: Extending partial isometries of generalized metric spaces, arxiv.org/abs/1509.04950. In particular, the classes of triangles of odd perimeter (which are the subject of Corollary 4.3.4, and the motivation for considering nonempty \mathcal{F}) satisfy these restrictions.