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Abstract. We investigate the continuous model theory of ultrametric spaces of diameter ≤ 1. There is

no universal Polish ultrametric space of diameter 1; but there is a Polish ultrametric space, Umax, taking

distances in Q∩[0, 1], which is universal for all such Polish ultrametric spaces. We show that in the continuous

theory of Umax, nonforking is characterized by a stable independence relation, which is a continuous version

of “forking by equality” in first-order logic. Finally, we show that the theory of Umax is strictly stable.

1. Introduction

The recent development of continuous logic has allowed for a more controlled study of the model theory of

bounded metric structures. An in-depth introduction to this field, as well as many examples, can be found

in [3]. One example of such a metric structure is the Uryoshn sphere, i.e the universal Polish metric space

of diameter 1. In a rather naive sense, this structure is somewhat analogous to the model completion of the

empty theory in first-order logic, which is of course just an infinite set. However, the Urysohn sphere turns

out to be far more complicated than an infinite set. Model theoretic results about the Urysohn sphere in

continuous logic can be found in [6] and [8]. The characterization of forking and dividing for the Urysohn

sphere, as well as a classification in the spectrum of unstable theories, can be found in [4].

In this paper, we study a more well-behaved continuous stucture: Umax, the universal Polish ultrametric

space with distance set Q ∩ [0, 1]. We consider the continuous theory Tmax of Umax in the same language

as that of the Urysohn sphere: the empty language containing only a symbol for the metric d. We first

show that arbitrary ultrametric spaces of diameter 1 will embed in a sufficiently saturated model Tmax.

Then we show that Tmax has a stable independence relation, which can be seen as a continuous version of

independence in the first-order theory of the infinite set. Consequently, Tmax is stable, and we further show

that it is strictly stable (in the sense of continuous model theory). Finally we note that Tmax is, in some

sense, the continuous version of the model completion of infinitely refining equivalence relations in first order

logic.

2. Ultrametric Spaces

Definition 2.1. Let (X, d) be a metric space.
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(1) The spectrum of X, Spec(X), is the set of distances realized by points in X, i.e. Spec(X) =

d(X ×X).

(2) The density character of X, χ(X), is the least cardinal κ such that X has a dense subset of size

κ.

(3) (X, d) is an ultrametric space if for all x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}.

Proposition 2.2. Suppose (X, d) is an ultrametric space and Y ⊆ X is dense. Then Spec(X) = Spec(Y ).

Proof. We clearly have Spec(Y ) ≤ Spec(X). Conversely, suppose r ∈ Spec(X) and x1, x2 ∈ X are such

that d(x1, x2) = r. We may assume r > 0. For i ∈ {1, 2}, let yi ∈ Y such that d(xi, yi) < r. Then

d(x2, y2) < d(x1, x2) so d(x1, y2) = d(x1, x2). Then d(x1, y1) < d(x1, y2), so d(y1, y2) = d(x1, y2) = r.

Therefore r ∈ Spec(Y ). �

Corollary 2.3. If (X, d) is an infinite ultrametric space then |Spec(X)| ≤ χ(X).

Proof. If Y ⊆ X is a dense subset of size χ(X), then |Spec(X)| = |Spec(Y )| ≤ |Y × Y | = χ(X). �

It follows that there is no Polish ultrametric space that embeds every Polish ultrametric space, since such a

space would have uncountable spectrum and therefore fail to be separable. However, one can construct Umax,

a homogeneous Polish ultrametric space, with spectrum Q ∩ [0, 1], which embeds every Polish ultrametric

space X such that Spec(X) ⊆ Q ∩ [0, 1]. The following construction of Umax, and subsequent results in this

section, are taken from [5].

Definition 2.4. Let I = Q ∩ (0, 1] and Umax = ωI . Given f, g ∈ Umax, let

d(f, g) = sup{x ∈ I : f(x) 6= g(x)},

where sup ∅ = 0.

Proposition 2.5. (Umax, d) is an ultrametric space, with Spec(Umax) = [0, 1].

Proof. Fix f, g ∈ Umax. We clearly have d(f, g) = d(g, f). Moreover,

d(f, g) = 0 ⇔ {x ∈ I : f(x) 6= g(x)} = ∅ ⇔ f = g.

Next, fix f, g, h ∈ Umax. Without loss of generality, assume d(f, g) ≥ d(f, h). If x ∈ I is such that

x > d(f, g) then g(x) = f(x) = h(x). Therefore d(f, g) ≥ d(g, h). If d(f, g) = d(f, h) then the result follows,

so we may assume d(f, g) > d(f, h). For any x ∈ I, with d(f, h) < x < d(f, g), we have g(x) 6= f(x) = h(x).

Therefore d(g, h) ≥ d(f, g), and so we have d(f, h) < d(f, g) = d(g, h), shows that Umax is an ultrametric

space.

Finally, fix r ∈ [0, 1] and let f : I ∩ ω be the characteristic function of I ∩ (0, r]. Let g : I −→ ω be the

constant 0 function. Then d(f, g) = sup{x ∈ I : x ≤ r} = r. Therefore Spec(Umax) = [0, 1]. �
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Definition 2.6. Given r ∈ I, let Ir = Q ∩ [r, 1]. Define

Umax = {f ∈ Umax : for all r ∈ I, Ir ∩ supp(f) is finite}.

Proposition 2.7. Spec(Umax) = Q ∩ [0, 1].

Proof. Given r ∈ I, let fr : I −→ ω be the characteristic function of {r}. If g is the constant 0 function,

then d(fr, g) = sup{r} = r. Therefore Q ∩ [0, 1] ⊆ Spec(Umax).

Next, fix distinct f, g ∈ Umax and let r = sup{x ∈ I : f(x) 6= g(x)} ∈ (0, 1]. We want to show r ∈ Q. Fix

q ∈ Q such that 0 < q < r. Then

{x ∈ I : x ≥ q, f(x) 6= g(x)} ⊆ (Iq ∩ supp(f)) ∪ (Iq ∩ supp(g)),

and so {x ∈ I : x ≥ q, f(x) 6= g(x)} is finite. It follows that

r = sup{x ∈ I : f(x) 6= g(x)} = sup{x ∈ I : x ≥ q, f(x) 6= g(x)} ∈ Q. �

Proposition 2.8. Umax and Umax are complete.

Proof. Let (fn)n<ω be a Cauchy sequence in Umax. For each k < ω, there is some Nk < ω such that for all

m,n ≥ Nk, d(fm, fn) < 1
k . Assume Nk < Nk+1 for all k < ω.

Given k < ω, and m,n ≥ Nk, if x ∈ I is such that x ≥ 1
k , then

x ≥ 1
k > d(fm, fn) = sup{x ∈ I : fn(x) 6= fm(x)},

and so fn(x) = fm(x). Therefore we may define f : I −→ ω such that if x ∈ I, with x ≥ 1
k , then

f(x) = fNk
(x).

We first show that limn→∞ fn = f . Indeed, given ε > 0, if k < ω is such that 1
k < ε then for any n ≥ Nk,

we have

d(fn, f) = sup{x ∈ I : fn(x) 6= f(x)} ≤ 1
k < ε,

since for any x ≥ 1
k , we have f(x) = fNk

(x) = fn(x).

This shows that Umax is complete. To show that Umax is complete, we assume fn ∈ Umax for all n < ω

and show that the function f constructed above is also in Umax. For this, fix r ∈ I. We want to show that

{x ∈ I : x ≥ r, f(x) 6= 0} is finite. Let k < ω be such that 1
k ≤ r. Then if x ∈ I is such that x ≥ r, we have

f(x) = fNk
(x), and so Ir ∩ supp(f) = Ir ∩ supp(fNk

), which is finite by assumption. �

Proposition 2.9. Umax is separable.
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Proof. Given r ∈ I, set Xr = {t ∈ ωIr : supp(t) is finite}. Note that each Xr is countable. Given t ∈ Xr,

define ft : I −→ ω such that

ft(x) =

t(x) if x ≥ r

0 if x < r.

Let Y = {ft : t ∈ Xr, r ∈ I}, which is a countable subset of Umax. We show that Y is dense in Umax.

Indeed, fix f ∈ Umax and ε > 0. Let r ∈ I be such that r < ε. Then t := f |Ir ∈ Xr and

d(f, ft) = sup{x ∈ I : f(x) 6= ft(x)} ≤ r < ε. �

Theorem 2.10. [5]

(a) Umax is a Polish ultrametric space with spectrum Q ∩ [0, 1].

(b) If (X, d) is a Polish ultrametric space, with Spec(X) ⊆ Q ∩ [0, 1], then (X, d) is isometric to a subspace

of Umax.

(c) Any isometry between two compact subspaces of Umax extends to an isometry of Umax.

Note that Cantor space, 2ω, with the metric d(f, g) = 1
min{n<ω:f(n)6=g(n)}+1 is a Polish ultrametric space,

with Spec(2ω) ⊆ Q ∩ [0, 1]. Therefore |Umax| = 2ℵ0 . Obviously, we also have |Umax| = 2ℵ0 . On the other

hand, χ(Umax) = ℵ0 and χ(Umax) = 2ℵ0 .

3. Continuous Model Theory of Umax

We assume the reader is familiar with the treatment of metric structures in continuous logic (see [3] for

a full introduction). Let Tmax = Th(Umax) in the language containing only the metric d. Let Umax be a

sufficiently saturated monster model of Tmax.

Given r ∈ [0, 1], we let dr(x, y) denote the following formula:

max{d(x, y)
.− r, r .− d(x, y)}.

We will also write d(x, y) = r for the condition dr(x, y) = 0.

Theorem 3.1. If (X, d) is an ultrametric space, with Spec(X) ⊆ [0, 1], and Umax is χ(X)-saturated then X

is isometric to a subspace of Umax.

Proof. We may replace X with a dense subset and assume that Umax is |X|-saturated. By compactness

and saturation, it suffices to assume that X is finite. Let X = {a1, . . . , an} and, given 1 ≤ i, j ≤ n, let

ri,j = d(ai, aj) ∈ [0, 1]. Define

ϕ(x1, . . . , xn) = max{dri,j (xi, xj) : 1 ≤ i < j ≤ n}.
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We want to show that “ infx1,...,xn
ϕ(x1, . . . , xn) = 0” ∈ Tmax, i.e, we fix ε > 0 and find c1, . . . , cn ∈ Umax

such that ϕ(c1, . . . , cn) < ε. Given 1 ≤ i < j ≤ n, let si,j , ti,j ∈ Q ∩ [0, 1] such that ri,j − ε
2 ≤ si,j < ri,j <

ti,j ≤ ri,j + ε
2 .

Consider (Q, <) and (R, <) as first order structures in the language L = {<}. Let v̄ = (vi,j)1≤i<j≤n and

define the following first order L-formula:

θ(v̄) :=
∧

1≤i<j≤n

si,j < vi,j < ti,j

∧
∧

1≤i<j<k≤n

(vi,j ≤ max{vi,k, vj,k} ∧ vj,k ≤ max{vi,j , vi,k} ∧ vi,k ≤ max{vi,j , vj,k})

(where u ≤ max{v, w} is shorthand for (v ≤ w → u ≤ w) ∧ (w ≤ v → u ≤ v)). If r̄ = (ri,j)1≤i<j≤n then

R |= θ(r̄). Since (Q, <) ≺ (R, <), it follows that Q |= ∃v̄θ(v̄). Let qi,j ∈ Q be such that Q |= θ(q̄).

Define the space Y = {c1, . . . , cn} with d(ci, cj) = qi,j , for 1 ≤ i < j ≤ n. Then Y is an ultrametric

space, with Spec(Y ) ⊆ Q ∩ [0, 1]. So we may assume Y ⊆ Umax. For any 1 ≤ i < j ≤ n, we have

ri,j − ε
2 < d(ci, cj) < ri,j + ε

2 . Therefore dri,j (ci, cj) < ε, and so ϕ(c1, . . . , cn) < ε, as desired. �

Next, we prove that Tmax has quantifier elimination. The proof is essentially the same as quantifier

elimination for the Urysohn sphere (see [8]).

Theorem 3.2. Tmax has quantifier elimination.

Proof. Given ā = (a1, . . . , an) ∈ Umax and C ⊂ Umax, note that the quantifier-free type of ā over C is entirely

determined by the following quantifier-free type:

{d(xi, xj) = d(ai, aj) : 1 ≤ i, j ≤ n} ∪ {d(xi, c) = d(ai, c) : 1 ≤ i ≤ n, c ∈ C}.

We use quantifier elimination techniques outlined in [3]. In particular, fix a quantifier-free formula

ϕ(x, y1, . . . , yn). We want to show that the formula infx ϕ(x, ȳ) is approximable in Tmax by quantifier-

free formulas. Fix M,N |= Tmax, substructures M0 ⊆M and N0 ⊆ N , an isomorphism Φ from M0 onto N0,

and elements a1, . . . , an ∈M0. It suffices to show that for any ε > 0,

infNx ϕ(x,Φ(a1), . . . ,Φ(an)) < infMx ϕ(x, a1, . . . , an) + ε.

Let b ∈ M be such that ϕM (b, ā) < infMx ϕ(x, ā). Note that, since Φ is an isometry, the space X =

{x,Φ(a1), . . . ,Φ(an)} with d(Φ(ai),Φ(aj)) = d(ai, aj) and d(x,Φ(ai)) = d(b, ai) is an ultrametric space.

Therefore the type

{d(x,Φ(ai)) = d(b, ai) : 1 ≤ i ≤ n}

is realized by some c′ ∈ N , where N is a saturated elementary extension of N . We clearly have that

Φ extends to an isomorphism from {a1, . . . , an, b} to {Φ(a1), . . . ,Φ(an), b} in the obvious way. Therefore
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ϕ(c′,Φ(ā)) = ϕ(b, ā), since ϕ(x, ȳ) is quantifier-free. It follows that

infNx ϕ(x,Φ(ā)) = infNX ϕ(x,Φ(ā)) ≤ ϕ(c′,Φ(ā)) = ϕ(b, ā) < infMx ϕ(x, ā) + ε,

as desired. �

By quantifier elimination, given C ⊂ Umax and ā = (a1, . . . ,n ) ∈ Umax the complete type tp(ā/C) is

completely determined by its quantifier free type:

{d(xi, xj) = d(ai, aj) : 1 ≤ i, j ≤ n} ∪ {d(xi, c) = d(ai, c) : 1 ≤ i ≤ n, c ∈ C}.

Moreover, by quantifier elimination it follows that Umax ≺ Umax. Note that if r ∈ [0, 1] then the type

{d(x, y) = r} determines a complete type in S2(Tmax). If r 6∈ Q then {d(x, y) = r} is omitted in Umax. It

follows that Tmax is not separably categorical. Moreover, by Corollary 2.3, Tmax does not have a separable

saturated model.

4. Stability in Continous Model Theory

Let T be a complete continuous theory, and M a monster model of T . The following definitions and

results are quoted from [3].

Definition 4.1. Given A ⊂M, we define the d-metric on Sn(A) as follows: given p, q ∈ Sn(A), define

d(p, q) = inf

{
max
1≤i≤n

d(bi, ci) : (b1, . . . , bn) |= p, (c1, . . . , cn) |= q

}
.

Definition 4.2. Let λ be an infinite cardinal.

(1) T is λ-stable with respect to the discrete metric if for all A ⊂M, if |A| ≤ λ then |S1(A)| ≤ λ.

(2) T is λ-stable if for all A ⊂ M, if |A| ≤ λ then the density character of S1(A), with respect to the

d-metric, is at most λ.

T is stable if it is λ-stable for some λ.

Theorem 4.3. [3] If T is stable then T is λ-stable with respect to the discrete metric for any λ such that

λ|T | = λ.

Definition 4.4. Let T be a complete continuous theory and M a monster model of T . A ternary relation

|̂ is a stable independence relation if it satisfies the following properties:

(i) (invariance) For all A,B,C ⊂M and σ ∈ Aut(M), A |̂
C
B if and only if σ(A) |̂

σ(C)
σ(B).

(ii) (symmetry) For all A,B,C ⊂M, A |̂
C
B if and only if B |̂

C
A.

(iii) (full transitivity) For all A,B,C,D ⊂M, A |̂
C
BD if and only if A |̂

C
B and A |̂

BC
D.

(iv) (finite character) For all A,B,C ⊂ M, A |̂
C
B if and only if A0 |̂ C B0 for all finite A0 ⊆ A and

B0 ⊆ B.
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(v) (full existence) For all A,B,C ⊂M there is A′ ≡C A such that A′ |̂
C
B.

(vi) (local character) For all A ⊂ M there is a cardinal κ(A) such that for all B ⊂ M there is C ⊆ B,

with |C| ≤ κ(A), such that A |̂
C
B.

(vii) (stationarity over models) For all A,A′, B ⊂ M and models M ⊂ M, if A |̂
M
B, A′ |̂

M
B, and

A ≡M A′, then A ≡BM A′.

Theorem 4.5. [3] Let T be a complete continuous theory and M a monster model of T . Then T is stable if

and only if T has a stable independence relation. Moreover, if T has a stable independence relation |̂ , then

|̂ = |̂ f = |̂ d.

5. Stability and Independence in Tmax

Using Theorem 4.5, we can show that Tmax is stable and characterize forking independence.

Theorem 5.1. Given A,B,C ⊂ Umax,

A |̂ f
C
B ⇔ for all a ∈ A, d(a,BC) = d(a,C)

Proof. Define the ternary relation |̂ such that A |̂
C
B if and only if for all a ∈ A, d(a,BC) = d(a,C). We

show that |̂ satisfies the necessary properties to characterize forking.

Invariance, Full Transitivity : Trivial.

Symmetry : Suppose A |̂
C
B and fix b ∈ B. For a contradiction, suppose d(b, AC) < d(b, C). Then

there is some a ∈ A such that d(a, b) < d(b, C). Given c ∈ C, we have d(a, b) < d(b, c), so it follows that

d(a, c) = d(b, c). Therefore,

d(a,BC) ≤ d(a, b) < d(b, C) = d(a,C),

which contradicts A |̂
C
B.

Finite Character : Suppose A |̂
C
B. Given A0 ⊆ A finite, we have A0 |̂ C B by definition of |̂ . There-

fore A0 |̂ C B0 by monotonicity. Conversely, suppose A0 |̂ C B0 for all finite A0 ⊆ A and B0 ⊆ B. Given

a ∈ A if d(a,BC) < d(a,C) then there is b ∈ B such that d(a, b) < d(a,C), which contradicts a |̂
C
b.

Full Existence: Given A,B,C, we may find A′ ≡C A such that for all a′ ∈ A′ and b ∈ B,

d(a′, b) = inf
c∈C

max{d(a, c), d(b, c)}

(where inf ∅ = 1). In other words, A′ is constructed by taking the usual free amalgamation of AC and BC

over C. We show that A′ |̂
C
B. Fix a′ ∈ A′. For any b ∈ B, we have

d(a′, C) = d(a,C) = inf
c∈C

d(a, c) ≤ inf
c∈C

max{d(a, c), d(b, c)} = d(a′, b).

Therefore d(a′, BC) = d(a′, C).
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Local Character : Fix A,B. Given a ∈ A, let (ban)n<ω be a sequence from B such that (d(a, ban))→ d(a,B).

Now define

C =
⋃
a∈A

(ban)n<ω,

and note that |C| ≤ |A|+ ℵ0. We claim that A |̂
C
B. Indeed, given a ∈ A and ε > 0, find n < ω such that

d(a, ban) < d(a,B) + ε. Then d(a,C) ≤ d(a, ban) < d(a,B) + ε. It follows that d(a,B) = d(a,C).

Stationarity Over Models: We will actually show stationarity over all sets (i.e. M need not be a model).

Fix A,A′, B,C such that A ≡C A′, A |̂
C
B, and A′ |̂

C
B. To prove A′ ≡BC A, it suffices to show that

d(a, b) = d(a′, b) for all b ∈ B. So suppose, towards a contradiction, that d(a′, b) < d(a, b) for some b ∈ B.

Note that this means d(a, a′) = d(a, b). On the other hand, d(a′, C) = d(a′, BC) < d(a, b), and so there is

some c ∈ C such that d(a′, c) < d(a, b) = d(a, a′). Therefore d(a, c) = d(a, a′) > d(a′, c), which contradicts

A ≡C A′. �

Corollary 5.2. Tmax is stable.

This characterization of forking independence in Tmax can be seen as a continuous version of forking

independence in infinite sets: A |̂ f
C
B if and only if A ∩B ⊆ C (this is also the characterization of forking

in the random graph). In these theories forking only happens as a result of changes in equality. In Tmax

forking only happens as a result of changes in distance.

Theorem 5.1 also follows from a straightforward generalization of the characterization of forking and

dividing in the Urysohn sphere from [4], giving a proof that does not rely on Theorem 4.5.

In the proof of Theorem 5.1, we utilize the free amalgamation of ultrametric spaces. In the theory of the

Urysohn sphere, free amalgamation of metric spaces yields a ternary relation: A |̂ ⊗
B
C if and only if for

all a ∈ A and b ∈ B, d(a, b) = infc∈C(d(a, c) + d(b, c)). This is a stationary independence relation, i.e. a

ternary relation satisfying all of the axioms for a stable independence relation except possibly local character

(see [7]). In any theory T , if |̂ is a stationary independence relation then one may show that |̂ ⇒ |̂ f

(e.g. using methods of [1]). If T is unstable (e.g. the Urysohn sphere), this implication must be strict since

nonforking cannot satisfy stationarity.

In Tmax, we can consider the stationary independence relation given by free amalgamation of ultrametric

spaces, and show that it coincides with forking independence.

Corollary 5.3. For all A,B,C ⊂ Umax,

A |̂ f
C
B ⇔ for all a ∈ A, b ∈ B, d(a, b) = inf

c∈C
max{d(a, c), d(b, c)}.

This can be verified directly using the characterization of |̂ f in Theorem 5.1. Alternatively, one could

show that in ultrametric spaces, free amalgamation is a stable independence relation.

Next, we show that Tmax is strictly stable.
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Theorem 5.4. Given an infinite cardinal λ, Tmax is λ-stable if and only if λℵ0 = λ.

Proof. The reverse direction is by Theorem 4.3. For the forward direction, suppose λℵ0 > λ. Define

f : N −→ [0, 1] ∩Q such that

f(n) =
1

n+ 2
+

1

2
,

and note that f is strictly decreasing. Next, we define the following space (Aλ, d). Let Aλ = (aη)η∈λ<ω and,

for η 6= µ, define

d(aη, aµ) = f(|ν|),

where ν is the meet of η and µ.

Claim 1 : (Aλ, d) is an ultrametric space.

Proof : Fix distinct µ1, µ2, µ3 ∈ λ<ω. For distinct 1 ≤ i < j ≤ 3, let νi,j be the meet of µi and µj . Without

loss of generality, it suffices to assume |ν1,2| > |ν1,3| and show that |ν2,3| = |ν1,3|. But in this case, since

ν1,2 ⊆ µ1 and ν1,3 ⊆ µ1, it follows that ν1,3 ⊂ ν1,2. Therefore ν2,3 = ν1,3, and so the desired result follows.�

We may assume Umax is λ+-saturated, and so (Aλ, d) is a subspace of Umax. Fix σ ∈ λω and define

pσ = {d(x, aσ|n) = f(n) : n < ω}∪{d(x, aτ |n) = f(m) : τ ∈ λω, τ 6= σ, m = max{i < ω : σ|i = τ |i}, n > m}.

Claim 2 : pσ is a consistent 1-type over Aλ.

Proof : It suffices to show that (Aλ∪{x}, d) is an ultrametric space. In particular, we must check the triangle

inequality in the following cases.

Case 1 : {x, aσ|m , aσ|n}, for some m < n. We have d(aσ|m , aσ|n) = f(m), d(x, aσ|m) = f(m), and

d(x, aσ|n) = f(n).

Case 2 : {x, aσ|m , aτ |n}, where τ ∈ λω, τ 6= σ, n > k := max{i < ω : σ|i = τ |i}. If m ≤ k then we have

d(aσ|m , aτ |m) = f(m), d(x, aσ|m) = f(m), and d(x, aτ |n) = f(k). If m > k then we have d(aσ|m , aτ |m) = f(k),

d(x, aσ|m) = f(m), and d(x, aτ |n) = f(k).

Case 3 : {x, aρ|m , aτ |n}, where ρ, τ ∈ λω\{σ}, k := max{i < ω : σ|i = ρ|i}, l := max{i < ω : σ|i = τ |i},

k ≤ l, k < m, and l < n. We have d(x, aρ|m) = f(k) and d(x, aτ |n) = f(l). If k < l then ρ|k is the

meet of ρ|m and τ |n, so d(aρ|m , aτ |n) = f(k). If k = l then the meet of ρ|m and τ |n has length r > k and

d(aρ|m , aτ |n) = f(r). �

Next, fix distinct σ, τ ∈ λω and let n = max{i < ω : σ|i = τ |i}. Let b |= pσ and c |= pτ . Then

d(b, aσ|n+1
) = f(n+ 1) and d(c, aσ|n+1

) = f(n). Therefore d(b, c) = f(n), and so we have d(pσ, pτ ) = f(n) ≥
1
2 . If D ⊆ S1(Aλ) is dense then, for each σ ∈ λω, there is some qσ ∈ D ∩B 1

2
(pσ). Therefore, if σ, τ ∈ λω are

distinct, we have d(qσ, qτ ) ≥ 1
2 . In particular, |D| ≥ λℵ0 > λ. Altogether, χ(S1(Aλ)) > |Aλ|. �

As a final remark, we note the connection between ultrametric spaces and refining equivalence relations.

In particular, if (X, d) is an ultrametric space, then for any r ∈ [0, 1], d(x, y) ≤ r is an equivalence relation.



10 GABRIEL CONANT

Conversely, suppose we have equivalence relations (Er)r∈D, where D ⊆ [0, 1], and we consider a structure

M on which these equivalence relations refine according the ordering (with E0 equality). Then M can be

considered as a (pseudo)ultrametric space when equipped with d(a, b) = inf{r ∈ D : aErb}. For example

Baire space can be considered as a model of infinitely refining equivalence relations indexed by D = { 1n :

n ∈ N}. Theories of refining equivalence relations are standard examples in stability theory (see e.g. [2]).

Indeed, much of the previous work is guided by the behavior found in these examples.
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