Chain Rule

One Independent Variable $z = z(x, y), \quad x = x(t), \quad y = y(t)$ dz $\frac{dS}{dt} =$ ∂z ∂x dx $\frac{d}{dt} +$ ∂z ∂y dy dt

Two Independent Variables
\n
$$
z = z(x, y), \quad x = x(s, t), \quad y = y(s, t)
$$

\n
$$
\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}
$$
\n
$$
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Implicit Differentiation

If $F(x, y) = 0$ and $F_y \neq 0$ then

$$
\frac{dy}{dx} = -\frac{F_x}{F_y}
$$

Gradient

Directional Derivative

f differentiable at (a, b) and **u** a unit vector,

$$
D_{\mathbf{u}}f(a,b) = \nabla f(a,b) \cdot \mathbf{u}
$$

Tangent Plane of level surface $F(x, y, z) = 0$ at (a, b, c)

$$
F_x(a, b, c)(x - a) + F_y(a, b, c)(x - b) + F_z(a, b, c)(x - c) = 0
$$

of function $z = f(x, y)$ at point $(a, b, f(a, b))$

$$
z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b)
$$

Second Derivative Test

Let $D(x, y) = f_{xx}f_{yy} - f_{xy}^2$.

- 1. If $D(a, b) > 0$ and $f_{xx}(a, b) < 0$, then f has a local max at (a, b) .
- 2. If $D(a, b) > 0$ and $f_{xx}(a, b) > 0$, then f has a local min at (a, b) .
- 3. If $D(a, b) < 0$, then f has a saddle point at (a, b) .
- 4. If $D(a, b) = 0$, then the test is inconclusive.

Lagrange Multipliers

f is optimization function, g is the constraint, f and g are differentiable with $\nabla g(x, y) \neq 0$ on the curve $g(x, y) = 0$. To locate maximum and minimum values of f subject to the constraint $g(x, y) = 0$:

1. Solve for x, y and λ :

$$
\nabla f(x, y) = \lambda \nabla g(x, y) \text{ and } g(x, y) = 0
$$

2. Among the values (x, y) from step 1, calculate the max and min.

Note: For three dimensions, solve $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and $g(x, y, z) = 0$.

Double Integrals in Rectangular Coordinates

R is region bounded below and above by $y = g(x)$ and $y = h(x)$, respectively, and on the left and right by the lines $x = a$ and $x = b$, respectively. If f is continuous on R then

$$
\iint\limits_R f(x,y) \ dA = \int_a^b \int_{g(x)}^{h(x)} f(x,y) \ dy \ dx
$$

R is region bounded on the left and right by $x = g(y)$ and $x = h(y)$, respectively, and below and above by the lines $y = c$ and $y = d$, respectively. If f is continuous on R then

$$
\iint\limits_R f(x,y) \ dA = \int_c^d \int_{g(y)}^{h(y)} f(x,y) \ dx \ dy
$$

Double Integral in Polar Coordinates

f is continuous in $R = \{(r, \theta) : 0 \le g(\theta) \le r \le h(\theta), \ \alpha \le \theta \le \beta\}.$ Then

$$
\iint\limits_R f(r,\theta) \ dA = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r,\theta) \, r \, dr \, d\theta
$$

Triple Integral in Rectangular Coordinates

f continuous in $D = \{(x, y, z) : a \le x \le b, g(x) \le y \le h(x), G(x, y) \le z \le H(x, z)\}$

$$
\iiint\limits_{D} f(x, y) \ dV = \int_{a}^{b} \int_{g(x)}^{h(x)} \int_{G(x, y)}^{H(x, y)} f(x, y, z) \ dx \ dy \ dz
$$

Triple Integral in Cylindrical Coordinates

f continuous in $D = \{(r, \theta, z) : g(\theta) \le r \le h(\theta), \ \alpha \le \theta \le \beta, \ G(x, y) \le z \le H(x, z)\}\$

$$
\iiint\limits_{D} f(x,y) \ dV = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} \int_{G(r\cos\theta, r\sin\theta)}^{H(r\cos\theta, r\sin\theta)} f(r, \theta, z) \ dz \ r \ dr \ d\theta
$$

Triple Integral in Spherical Coordinates

f continuous in $D = \{(\rho, \varphi, \theta) : g(\varphi, \theta) \le \rho \le h(\varphi, \theta), a \le \varphi \le b, a \le \theta \le \beta\}$

$$
\iiint\limits_{D} f(x,y) dV = \int_{\alpha}^{\beta} \int_{a}^{b} \int_{g(\varphi,\theta)}^{h(\varphi,\theta)} f(\rho,\varphi,\theta) \rho^{2} \sin \varphi d\rho d\varphi d\theta
$$

Note:

$$
\rho^2 = x^2 + y^2 + z^2 \qquad x = \rho \sin \varphi \cos \theta \qquad y = \rho \sin \varphi \sin \theta \qquad z = \rho \cos \varphi
$$