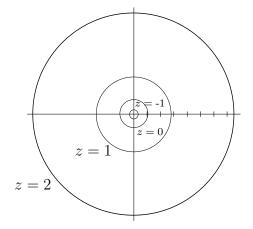
Name_____

Define

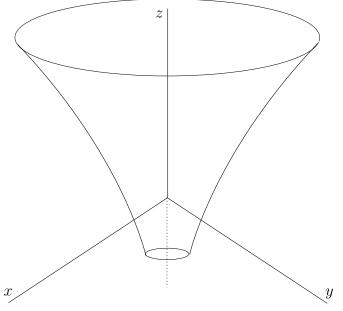
$$f(x,y) = \ln(x^2 + y^2)$$

(a) Find the domain of f.

Solution


The domain of $\ln(t)$ is all **positive** real numbers, so the domain of f is all pairs (x, y) such that $x^2 + y^2 > 0$. In other words the domain is

$$\{(x, y) \text{ in } \mathbb{R}^2 : (x, y) \neq (0, 0)\}.$$


(b) On a single xy-plane, sketch and label level curves for the z values -1, 0, 1, and 2.

Solution

z = -1	$-1 = \ln(x^2 + y^2)$	$x^2 + y^2 = e^{-1}$
z = 0	$0 = \ln(x^2 + y^2)$	$x^2 + y^2 = 1$
z = 1	$1 = \ln(x^2 + y^2)$	$x^2 + y^2 = e$
z=2	$2 = \ln(x^2 + y^2)$	$x^2 + y^2 = e^2$

(c) Sketch the surface in three dimensions. Solution

