Applications of Pseudofinite Model Theory
Lecture 10 (15 May 2020)

Soldier Gold Selice Holder

Setting: G is a sufficiently entered preudolinik expansion of a group.

Main Task Ginn Desinelle A = G, NIP, express $G_A = \bigcap_{n=0}^{\infty} X_n$ when X_n is definable and has nice algebraic structure

Remark

1) Suppose G/Ga is prodirite. Then $G_A = \bigcap_{n=0}^{\infty} H_n$ where H_n is a lift. Similar index, normal subgrup. (Exe 74).

Thm (Ildis) Any compact Hzwid. At dorsion group is profinite

Exercise 26: Suppose G is a Sinike group of exposent r and A=G

is k-NIP. Then Y 500, 3 a normal subgroup H=G, dinlex Q_{C,C}(1),

and Z=G, IZI<EIGI, st Y g&Z, ISHNAI<EIHI or ISHIAI<EIHI.

2) If $G_A^{\circ\circ}$ is obtainable. Then it has finite index (Exc. 6c). So $G_B^{\circ\circ}$ is finite.

Also $E_A = \emptyset$. Then $\forall g \in G$, $\mu(g G_A^{\circ} \cap A) = 0$... $\mu(g G_A^{\circ} \setminus A) = 0$.

This happens if A is "k-stable" (i.e. $I_G(A)$ omits ([k], [k]; \leq); see Thun 44).

Proposition 10.1 Suppose $\Gamma \in G$ is attly-def., normal bounded index. Then $\Gamma = \bigcap_{i=0}^{\infty} X_i$ where $\forall i \geq 0$, X_i is def., $X_{i+1} \in X_i$, $\exists A \in A$. Sinitational subgroup $H_i \in G$ is a def. surj. hom. $T_i: H_i \to T^{n_i}$, for some $n_i \in \mathbb{N}$ st $\Gamma \in \ker T_i \subseteq X_i \in H_i$.

Proof: By Thm 3.26) [Peter-Weyl], G/T = lim Li where (Li) i=0 is an inverted system of compact Lie groups with surjective projection maps fi: G/T - Li.

Let $\Gamma_i = \ker(F_i \circ \pi)$ where $\pi: G \to G/T$. So Γ_i is a cottly defined normal subgroup of bounded index. Note $\Gamma \in \Gamma_i$ and $\Gamma = \bigcap_{i=0}^{\infty} \Gamma_i^i$.

Def 10.2 Suppose H∈G is all and I:H→In is a local subject of Here a Trappose. Bohr chip is a decreasing segmence (Wm) m=0 of desinable subject of H st kert = Mm + J segmence (4m) m=0 of Vm. 4m:H→In:

A let in approx. hom. with finite image + Wm = ExeH: d(4m(x),0) < 3/m?

Proposition 10.3 Any def. $\tau: H \to T^n$ as above admits a τ approx. Belt chain $P_{ros} = P_{ros} = P_{r$