
A. NOTES ON MODEL THEORY

The following are some extremely brief notes on a few important topics for the course.
I assume familiarity with first-order languages, structures, and the compactness theorem
(essentially the material in Chapters 1 and 2 of Marker’s book [1], although the first section
below repeats some notions). The notation follows [1] as closely as possible. The goal of these
notes is to briefly go through type spaces and saturated models (covered in Chapter 4 of [1]).
I end with some details on what is meant by a “sufficiently saturated” model (sometimes
called a “monster model”). The wiki article at: https://modeltheory.fandom.com/wiki/
Monster_model is well-written and goes into more detail on this topic.

A.1. Elementary extensions. Let L be a first-order language (with equality) and suppose
M and N are L-structures, with universes M and N , respectively. Recall that M and N
are elementarily equivalent, written M≡ N , if they satisfy the same L-sentences.

The following are a few ways to obtain elementarily equivalent structures.

Definition A.1.

(1) A function σ : M → N is an L-embedding if:
(i) for any n-ary function symbol f in L and a1, . . . , an ∈M , we have

σ(fM(a1, . . . , an)) = fN (σ(a1), . . . , σ(an));

(ii) for any n-ary relation symbol R in L and a1, . . . , an ∈M , we have

RM(a1, . . . , an) ⇔ RN (σ(a1), . . . , σ(an));

(iii) for any constant symbol c in L, we have σ(cM) = cN .
We write σ : M→N to denote that σ is an L-embedding. Note that an L-embedding
is automatically injective.

(2) An L-embedding σ : M→N is an L-isomorphism if it is surjective. M and N are
isomorphic, written M∼= N , if there is an L-isomorphism σ : M→N .

Exercise A.2.

(a) If σ : M → N is an L-embedding then, for any quantifier-free L-formula φ(x1, . . . , xn)
and a1, . . . , an ∈M , we have

M |= φ(a1, . . . , an) ⇔ N |= φ(σ(a1), . . . , σ(an)).

(b) If M∼= N then M≡ N .

Definition A.3.

(1) Given A ⊆ M , a function f : A → N is a partial elementary map if, for any
L-formula φ(x1, . . . , xn) and a1, . . . , an ∈ A, we have

M |= φ(a1, . . . , an) ⇔ N |= φ(σ(a1), . . . , σ(an)).

A partial elementary map σ : M → N is called an elementary L-embedding.
(Note that an elementary L-embedding is an L-embedding.)
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(2) M is an elementary substructure of N , written M � N , if M ⊆ N and the
inclusion map from M to N is an elementary L-embedding. In this case, we also say
that N is an elementary extension of M.

Exercise A.4.

(1) If σ : M→N is an L-isomorphism, then it is an elementary L-embedding.
(2) If M� N then M≡ N .
(3) If M is infinite then for any cardinal κ ≥ |M |, there is some N � M such that
|N | ≥ κ.

Theorem A.5 (Downward Löwenheim-Skolem). [1, Theorem 2.3.7] If M is an L-structure
and C ⊆M then there is N �M such that C ⊆ N and |N | ≤ |C|+ |L|+ ℵ0.

A.2. Type Spaces. Let T be a complete first-order L-theory with infinite models. (For
example, fix an infinite L-structureM and let T = Th(M).) We will no longer use different
notation for structures and their underlying universes.

Definition A.6. Fix M |= T and A ⊆M.

(1) A formula is over A if all of its parameters are in A.
(2) A type over A is a finitely consistent collection of L-formulas over A.
(3) Given a tuple of variables x̄ (possibly infinite), we say that p is a complete type

over A in the variables x̄ if p is a type over A, the free variables of any formula
in p come from x̄, and for any formula φ over A, with free variables from x̄, either
φ ∈ p or ¬φ ∈ p. Let SM

x̄ (A) denote the set of complete types over A in the variables
X. If x̄ has finite length n, then we may also write SM

n (A).

In general, we write a formula as φ(x̄) to indicate that the free variables in the formula
all come from the tuple x̄.

Given a tuple of variables x̄, we let Mx̄ denote M|x̄|, where |x̄| is the length of the tuple.
A subset X ⊆ Mx̄ is definable (over A) if there is a formula φ(x̄) (over A) such that
X = {ā ∈M x̄ :M |= φ(ā)}.

Remark A.7. The space SM
x̄ (A) above can be identified with the set of ultrafilters over the

Boolean algebra of subsets of Mx̄ definable over A.

Given the previous remark, we can think of type spaces as special cases of Stone spaces
over Boolean algebras. In particular, given a set X and a Boolean algebra B of subsets of
X, a complete B-type is a maximal finitely consistent collection of subsets of B (i.e., an
ultrafilter over B). In this context, we will often use the notation S(B) for the space of
complete B-types. (These spaces are topological spaces under the Stone topology, which we
will discuss during the course.)

We also give special notation for type spaces “generated” by a single formula. In general,
we often “partition” the free variables in a formula as φ(x̄; ȳ). The (lefthand) x̄ variables are
called object variables and the (righthand) ȳ variables are called parameter variables.

Definition A.8. Fix M |= T and let φ(x̄; ȳ) be a formula over ∅.
(1) A instance of φ(x̄; ȳ) is a formula of the form φ(x̄; ā) for some ā ∈Mȳ.
(2) A φ-formula is a finite Boolean combination of instances of φ(x̄; ȳ).
(3) A subset of Mx̄ is φ-definable (over A) if it is defined by a φ-formula (over A).
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(4) Given A ⊆M, a φ-type over A is a finitely consistent collection of φ-formulas over
A. A φ-type p over A is complete if for any φ-formula ψ(x̄), either ψ(x̄) ∈ p or
¬ψ(x̄) ∈ p.

(5) Let SM
φ (A) denote the set of complete φ-types over A.

Note that SM
φ (A) can be identified with S(B) where B is the Boolean algebra of subsets

of Mx̄ that are φ-definable over A.

Remark A.9. In the same way that any filter (or even any collection of sets with the finite
intersection property) extends to an ultrafilter, one can show that any type over A extends
to a complete type over A (and similarly for φ-types).

A.3. Saturation. Let T be a complete first-order L-theory with infinite models.

Definition A.10. Suppose p is a type in the variables x̄. A realization of p, in some model
M |= T , is a tuple ā ∈ Mx̄ such that M |= φ(ā) for all φ(x̄) ∈ p. We may also write
M |= p(ā), or ā |= p, or just say “p(ā) holds”.

Exercise A.11. If M |= T , A ⊆M, and p ∈ SM
x̄ (A), then p is realized in some N �M.

Definition A.12. Given an infinite cardinal κ, we say that M is κ-saturated if for any
A ⊆M, with |A| < κ, any p ∈ SM

1 (A) is realized in M. We say that M is saturated if it
is |M|-saturated.

Exercise A.13. Given M |= T and an infinite cardinal κ, the following are equivalent.

(i) M is κ-saturated.
(ii) Any type in one variable, over a set A ⊆M with |A| < κ, is realized in M.

(iii) Any type in κ variables, over a set A ⊆M with |A| < κ, is realized in M.

Note that if M is κ-saturated then κ ≤ |M| since the type {x 6= a : a ∈ M} (which is a
type) is not realized in M. On the other hand:

Theorem A.14. [1, Theorem 4.3.12] Given any M |= T and any infinite cardinal κ, there
is a κ+-saturated elementary extension N �M with |N | ≤ |M|κ.

In addition to saturation, we will also want structures to have “strong homogeneity”.

Definition A.15. Given an infinite cardinal κ, we say thatM is strongly κ-homogeneous
if for any A ⊆ M with |A| < κ, any partial elementary map f : A → M extends to an
automorphism of M.

If the cardinal is chosen carefully, then strong homogeneity follows from saturation:

Exercise A.16. If M is saturated then it is strongly |M|-homogeneous.

However, given a cardinal κ, there may not be a saturated model of T of cardinality κ.
The simplest way to address this is via certain set-theoretic assumptions, which we dicuss
below. But first, let us describe the goal more accurately.

Throughout the course, we will say that M |= T is sufficiently saturated if it is κ-
saturated and strongly κ-homogenous for some uncountable cardinal κ, which is large enough
to accomplish some prescribed list of tasks. It is usually annoying to write down precisely
what these tasks are beforehand, but one can always go back through a proof and figure out
exactly which properties of κ were used. For example:
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We will often be in the situation whereM is an expansion of a group G, and we will want
to know that if a subgroup Γ ≤ G has index less than κ then so does its “normal core”⋂
g∈G gΓg-1. For this, it suffices to have that 2λ < κ whenever λ < κ, i.e., that κ is a strong

limit. An example of an uncountable strong limit is the cardinal iω = sup{in : n ≥ 0},
where i0 = ℵ0 and in+1 = 2in .

On the other hand, iω may not be suitable for other tasks since it has countable cofinality.
(The cofinality of a cardinal κ is the smallest cardinal λ such that there is an unbounded
function f : λ → κ.) So instead one might work with κ = iω1 , where ω1 denotes the first
uncountable ordinal. But this still might not be good enough for some other tasks, e.g.,
applications of the Erdös-Rado Theorem.

Often, the easiest thing to do is assume that κ is strongly inaccessible, i.e., it is an
uncountable strong limit and is equal to its own cofinality. However, ZFC cannot prove that
such cardinals exist. So one usually makes a set-theoretic assumption like this and then, if
it is important enough, goes back and isolates precisely what properties of κ are needed and
checks that they are provable in ZFC.

Altogether, throughout the course, when we say that M |= T is “sufficiently saturated”,
we can take this to mean that M is κ-saturated and strongly κ-homogeneous for some
strongly inaccessible cardinal κ. Assuming we have such a κ, the existence of a “sufficiently
saturated” model is a consequence of Exercise A.16 and the following theorem.

Theorem A.17. [1, Theorem 4.3.14] If M |= T and κ > |M| is strongly inacessible, then
there is a saturated elementary extension N �M of cardinality κ.

Going back to the previous discussion, if one really did want to remove the “large cardinal
assumption” then the first thing to do would be to write down all properties of κ required
for the proof (e.g., strong limit, uncountable cofinality, etc.). The second thing to do is check
that such a cardinal κ can be proved to exist in ZFC. If one successfully does this, then the
following (ZFC) theorem can be used to obtain a “sufficiently saturated” model.

Theorem A.18. FixM |= T and let κ be an infinite cardinal. Then there is a κ+-saturated
and strongly κ+-homogeneous elementary extension N �M, with |N | ≤ iκ+(|M|).

As stated, this theorem doesn’t appear in [1], but the techniques are similar to Theorem
A.14 (see also Proposition 4.11 of Pillay’s course notes [2]).
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