Math 417 Homework 3

Due September 22

1. Suppose $f(z)$ is defined on all of \mathbf{C}, is differentiable at $z=a$, and satisfies $f(a)=a$. Show that $g(z)=f(f(f(z)))$ is differentiable at $z=a$ and satisfies $g^{\prime}(a)=\left(f^{\prime}(a)\right)^{3}$.
2. Problem 3, page 61 of Churchill and Brown.
3. Let $f(x+i y)=i x^{2}$. Using the definition of derivative, similiarly to example 2 on page 57 of Churchill and Brown show that if $\operatorname{Re}(a) \neq 0$ then $f(z)$ is not differentiable at $z=a$.
4. Suppose $f(z)$ is defined on $A=\{z: \operatorname{Re}(z)>0\}$ such that $f(z)$ is differentiable at each point in A and such that $(f(z))^{2}=z$ for each z in A. Show that for each $z \in A, f^{\prime}(z)$ satisfies $\left(f^{\prime}(z)\right)^{2}=\frac{1}{4 z}$.
5. Let $z=x+i y$. Determine the values of z for which the Cauchy-Riemann equations are satisfied for the following functions.
(a) $f(z)=y^{2}+i x^{2}$
(b) $f(z)=2 x+i x y^{2}$
(c) $f(z)=x y+i x y$
6. Suppose $f(z)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$, with $f^{\prime}\left(z_{0}\right) \neq 0$. Show that the vectors $\nabla u\left(x_{0}, y_{0}\right)$ and $\nabla v\left(x_{0}, y_{0}\right)$ are perpendicular and have the same magnitude. Show that the same is true for $g(z)=\bar{z}$ at every point; hence the converse does not hold.
