Math 417 Homework 6

Due October 13

1. Let S be the line segment connecting i to 1 , oriented either way. Show that $\left|\int_{S} \frac{1}{z^{2}} d z\right| \leq 2 \sqrt{2}$.
2. Show that

$$
\left|\int_{|z|=2} \frac{e^{i z}}{z^{3}+3}\right| \leq \frac{4}{5} \pi e^{2}
$$

3. Show that

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{1}{z^{2}+4 z+3} d z=0
$$

4. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:

$$
\int_{i-1}^{i+1} z^{2} d z \quad \int_{-i}^{i} \sin (3 z) d z \quad \int_{0}^{\pi i} e^{2 z+\pi i} d z
$$

5. Problem 5, p. 147 of Churchill and Brown.
6. Using Green's Theorem similarly to as in the proof of a version of the Cauchy-Goursat Theorem from class (and the text), show that if C is a simple closed curve, oriented positively, then the area enclosed by C is given by $\frac{1}{2 i} \int_{C} \bar{z} d z$.
