Math 417 Homework 7

Due October 27

1. Find the contour integral

$$
\int_{|z-1|=1} \frac{e^{z}}{z^{3}-1} d z
$$

2. Let C denote the square with vertices $(-2,-2),(-2,2),(2,-2)$, and $(2,2)$, oriented counterclockwise. Find

$$
\int_{C} \frac{\cos \pi z}{z^{2}-1} d z
$$

3. Let D be the circle $|z+1|=1$, oriented positively. For any positive integer n compute the contour integral

$$
\int_{D}\left(\frac{z+1}{z-1}\right)^{n} d z
$$

Your answer should depend on n.
4. Suppose $\left\{z_{n}\right\}_{n=1}^{\infty}$ and $\left\{w_{n}\right\}_{n=1}^{\infty}$ are sequences of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} w_{n}=w$ for some complex numbers z and w. Show that for any complex numbers α and β one has $\lim _{n \rightarrow \infty} \alpha z_{n}+\beta w_{n}=$ $\alpha z+\beta w$.
5. Using the last question, show that if $\left\{z_{n}\right\}_{n=1}^{\infty}$ and $\left\{w_{n}\right\}_{n=1}^{\infty}$ are complex numbers such that $\sum_{n=1}^{\infty} z_{n}=s$ and $\sum_{n=1}^{\infty} w_{n}=t$ for some complex numbers s and t, then for any complex numbers α and β one has $\sum_{n=1}^{\infty} \alpha z_{n}+\beta w_{n}=$ $\alpha s+\beta t$.
6. Find the Taylor series of $\frac{z}{1+z^{2}}$ about $z=0$. Find the region of validity of this Taylor series.

