Exam 1 Practice Problems

1) Determine the value of $(\sqrt{3}+i)^{42}$ in a+bi form. You may leave whole numbers such as 7^{200} , 5^{80} , etc. in exponential form.

2) Determine all $z_0 \in \mathbf{C}$ such that the function $f(z) = \frac{1}{z^4 + 16}$ analytic at z_0 .

3) Let g(z) be the principal value of $z^{\text{Log}(z)}$, and let A be the domain $\{re^{i\theta} \in \mathbf{C} : r > 0, -\pi < \theta < \pi\}$. Explain why g(z) is analytic on A, and find an expression for g'(z).

4) Find the principal values of $(-1)^i$ and $(-1-i)^{-i}$.

5) Show that u(x, y) = 7x - 2y is harmonic at every point of **C**. Then determine all v(x, y) such that u(x, y) + iv(x, y) is analytic on **C**.

- 6) Let C be the circle |z| = 1.5. Determine $\int_C \frac{z+1}{z(z+2)} dz$ and $\int_C \frac{1}{z^2(z+2)} dz$
- 7) Let C_R denote the circle |z| = R. Prove that as long as $R > \sqrt{2}$, one has

$$\left| \int_{C_R} \frac{e^z}{z^2 + 2i} \, dz \right| \le 2\pi \frac{Re^R}{R^2 - 2}$$