Exam 1 Practice Problems

1) Determine the value of $(\sqrt{3}+i)^{42}$ in $a+b i$ form. You may leave whole numbers such as $7^{200}, 5^{80}$, etc. in exponential form.
2) Determine all $z_{0} \in \mathbf{C}$ such that the function $f(z)=\frac{1}{z^{4}+16}$ analytic at z_{0}.
3) Let $g(z)$ be the principal value of $z^{\log (z)}$, and let A be the domain $\left\{r e^{i \theta} \in \mathbf{C}\right.$: $r>0,-\pi<\theta<\pi\}$. Explain why $g(z)$ is analytic on A, and find an expression for $g^{\prime}(z)$.
4) Find the principal values of $(-1)^{i}$ and $(-1-i)^{-i}$.
5) Show that $u(x, y)=7 x-2 y$ is harmonic at every point of \mathbf{C}. Then determine all $v(x, y)$ such that $u(x, y)+i v(x, y)$ is analytic on \mathbf{C}.
6) Let C be the circle $|z|=1.5$. Determine $\int_{C} \frac{z+1}{z(z+2)} d z$ and $\int_{C} \frac{1}{z^{2}(z+2)} d z$
7) Let C_{R} denote the circle $|z|=R$. Prove that as long as $R>\sqrt{2}$, one has

$$
\left|\int_{C_{R}} \frac{e^{z}}{z^{2}+2 i} d z\right| \leq 2 \pi \frac{R e^{R}}{R^{2}-2}
$$

