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Abstract

We prove that if F is a finitely generated free group and φ is an automor-
phism of F then F oφ Z satisfies a quadratic isoperimetric inequality.

Our proof of this theorem rests on a direct study of the geometry of van
Kampen diagrams over the natural presentations of free-by-cylic groups. The
main focus of this study is on the dynamics of the time flow of t-corridors,
where t is the generator of the Z factor in F oφZ and a t-corridor is a chain of
2-cells extending across a van Kampen diagram with adjacent 2-cells abutting
along an edge labelled t. We prove that the length of t-corridors in any least-
area diagram is bounded by a constant times the perimeter of the diagram,
where the constant depends only on φ. Our proof that such a constant exists
involves a detailed analysis of the ways in which the length of a word w ∈ F
can grow and shrink as one replaces w by a sequence of words wm, where wm
is obtained from φ(wm−1) by various cancellation processes. In order to make
this analysis feasible, we develop a refinement of the improved relative train
track technology due to Bestvina, Feighn and Handel.
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metric inequalities, Dehn functions.
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Introduction

Associated to an automorphism φ of any group G one has the algebraic
mapping torus GoφZ. In this paper we shall be concerned with the case where
G is a finitely generated free group, denoted F . We seek to understand the
complexity of the word problem in the groups F oφ Z as measured by their
Dehn functions.

The class of groups of the form F oφ Z has been the subject of intensive
investigation in recent years and a rich structure has begun to emerge in keep-
ing with the subtlety of the classification of free group automorphisms [4], [6]
[7], [23], [29], [35]. (See [2] and the references therein.) Bestvina–Feighn and
Brinkmann proved that if F oφ Z doesn’t contain a free abelian subgroup of
rank two then it is hyperbolic [3], [18], i.e. its Dehn function is linear. Epstein
and Thurston [22] proved that if φ is induced by a surface automorphism (in
the sense discussed below) then F oφZ is automatic and hence has a quadratic
Dehn function. The question of whether or not all non-hyperbolic groups of
the form F oφ Z have quadratic Dehn functions has attracted a good deal of
attention.

Main Theorem. If F is a finitely generated free group and φ is an auto-
morphism of F then F oφ Z satisfies a quadratic isoperimetric inequality.

Papasoglu [33] proved that if a finitely presented group satisfies a quadratic
isoperimetric inequality, then all of its asymptotic cones are simply connected.

Corollary A. If F is a finitely generated free group and φ is an auto-
morphism of F then every asymptotic cone of F oφ Z is simply connected.

Ol’shanskii and Sapir [32, Theorem 2.5] proved that if a multiple HNN
extension of a free group has Dehn function less than n2 log n (with a somewhat
technical definition of ‘less than’) then it has a solvable conjugacy problem.
Our Main Theorem shows that free-by-cyclic groups fall into this class.

Corollary B. If F is a finitely generated free group and φ is an auto-
morphism of F , then the conjugacy problem for F oφ Z is solvable.

Corollary B was first proved in [8] using different methods.
Gromov [26] proved that a finitely presented group is hyperbolic if and

only if its Dehn function is linear. He also proved that if a Dehn function is

xi
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subquadratic then it must be linear. Thus if one ranks groups according to
the complexity of their Dehn functions, the groups that have a quadratic Dehn
function demand particular attention. The nature of these groups is far from
clear for the moment; in particular it is unclear what they have in common. It
is not known, for example, whether they all have a solvable conjugacy problem;
nor is it known whether the isomorphism problem is solvable amongst them.
Our Main Theorem provides a rich source of new examples on which to test
such questions.

Much of our modern understanding of the automorphisms of free groups has
been guided by the analogies with automorphisms of free-abelian groups and
surface groups [17]. The former analogy will prove useful is our analysis of how
elements of a free group grow when one repeatedly applies an automorphism,
but it offers offers us poor guidance at the level of Dehn functions: the Dehn
function of Zd oφ Z can be polynomial of degree 2, 3, . . . , d + 1 or it can be
exponential; it depends on the growth rate of φ and is quadratic only if φ ∈
GL(n,Z) has finite order [13].

The analogy with surface automorphisms is more apt. A self-homeomorphism
of a compact surface S defines an outer automorphism of π1S and hence a
semidirect product π1S oφ Z. This group is the fundamental group of a com-
pact 3-manifold, namely the mapping torus Mφ of the homeomorphism. By
using Thurston’s Geometrization Theorem for Haken manifolds, Epstein and
Thurston [22] were able to prove that π1S oφ Z is an automatic group; hence
its Dehn function is either linear or quadratic. If S has boundary then only
the quadratic case arises. A more geometric explanation for the existence of
a quadratic isoperimetric inequality in the bounded case comes from the fact
that Mφ supports a metric of non-positive curvature, as does any irreducible
3-manifold with non-empty boundary [11], [28].

If S has boundary, then π1S is free. Thus the foregoing considerations give
many examples of free-by-cyclic groups that have quadratic Dehn functions.
But there are many types of free group automorphisms that do not arise from
surface automorphisms, for example those φ that do not have a power leaving
any non-trivial conjugacy class invariant, and those φ for which there is a
word w ∈ F such that the function n 7→ |φn(w)| grows like a super-linear
polynomial.

The non-automaticity of certain F oφZ provides a more subtle obstruction
to realising φ as a surface automorphism: in contrast to the Epstein-Thurston
Theorem, Brady, Bridson and Reeves [9], [16] showed that certain mapping
tori F3oZ are not automatic, for example that associated to the automorphism
[a 7→ a, b 7→ ab, c 7→ a2c]. Such examples show that one cannot proceed via
automaticity in order to prove the Main Theorem. Nor can one rely on non-
positive curvature, because Gersten [25] showed that the above example F3oZ
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is not the fundamental group of any compact non-positively curved space.
Thus one needs a new approach to the quadratic isoperimetric inequality.

A technique for dealing with classes of linearly growing automorphisms is
described by Brady and Bridson in [9], while Macura [31] developed techniques
for dealing with polynomially growing automorphisms. But these techniques
apply only to restricted classes of automorphisms and do not speak to the core
problem of establishing the quadratic isoperimetric inequality for mapping
tori of general free group automorphisms. In the present work we attack this
core problem directly, undertaking a detailed analysis of the geometry of van
Kampen diagrams over the natural presentations of free-by-cyclic groups.

The focus of this analysis is on the dynamics of the time flow of t-corridors,
which is closely related to the dynamics of the given free group automorphism.
Here, t is the generator of the Z factor in F oφ Z and a t-corridor is a chain of
2-cells extending across a van Kampen diagram with adjacent 2-cells abutting
along an edge labelled t (see Subsection 1.1.4).

The key estimate – a linear bound on the length of t-corridors (Theorem
3.3.1) – admits the following algebraic formulation. This clarifies the manner
in which our results concerning the geometry of van Kampen diagrams give
rise to a non-deterministic quadratic time algorithm for the word problem in
free-by-cyclic groups (for an alternative approach see [34]).

Fix a set of generators A for F and let dF be the corresponding word
metric. We consider words over the ei ∈ (A∪{t})±1, where t is a generator of
the righthand factor of F oφ Z. A bracket β in a word w is a decomposition
w ≡ w1(w2)w3; the subword w2 is the content of β, and the initial and terminal
letters of w2 are its sentinels. A second bracket β′, giving w ≡ w′1(w′2)w′3 is
compatible with β if w′2 ⊂ wi for some i ∈ {1, 2, 3} or w2 ⊂ w′i. A t-complete
bracketing is a set of pairwise compatible brackets β1, . . . , βm such that the
sentinels of each βi are {t, t−1} and every t±1 in w is a sentinel of a unique
bracket. In such a bracketing, the content of each bracket is equal in F oφ Z
to an element of F .

Bracketing Theorem. There exists a constant K = K(φ,B) such that
any word w ≡ e1 . . . en that represents the identity in F oφ Z admits a t-
complete bracketing β1, . . . , βm such that the content ci of each βi satisfies
dF (1, ci) ≤ Kn.

In order to prove the above theorems one has to delve deeply into the nature
of free-group automorphisms. In particular, one needs a precise understanding
of how the iterated images φn(w) of an arbitrary element w ∈ F can evolve.
This delicate task is made possible by the existence of informative geometric
representatives for φ.

We already alluded to the fact that the study of automorphisms of free
groups is informed greatly by the analogies with automorphisms of free-abelian
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groups and surface groups. However, one often has to work considerably harder
in the free group case in order to obtain the appropriate analogues of familiar
results from these other contexts. Nowhere is this more true than in the
quest for suitable normal forms and geometric representatives. One can gain
insight into the nature of individual elements of GL(n,Z) by realizing them
as diffeomorphisms of the n-torus. Likewise, one analyzes individual elements
of the mapping class group by realizing them as diffeomorphisms of a surface.
The situation for Aut(F ) and Out(F ) is more complicated: the natural choices
of classifying space K(Fn, 1) are finite graphs of genus n, and no element of
infinite order in Out(F ) is induced by the action on π1(Y ) of a homeomorphism
of Y . Thus the best that one can hope for in this situation is to identify a
graph Yφ that admits a homotopy equivalence inducing φ and has additional
structure well-adapted to φ. This is the context of the train track technology
of Bestvina, Feighn and Handel [7, 4, 6].

Their work results in a decomposition theory for elements of Out(F ) that is
closely analogous to (but more complicated than) the Nielsen-Thurston theory
for surface automorphisms [20]. The finer features of the topological normal
forms that they obtain are adapted to the problems that they wished to solve
in each of their papers: the Scott conjecture in [7] and the Tits alternative in
the series of papers [4, 6, 5]. The problem that we solve in this book, that
of determining the Dehn functions of all free-by-cyclic groups, requires a fur-
ther refinement of the train-track technology. Specifically, we must adapt our
topological representatives so as to make tractable the problem of determining
the isoperimetric properties of the mapping torus of the homotopy equivalence
f : Yφ → Yφ realizing an iterate of φ.

Recall that an automorphism φ of a finitely generated free group F is
called positive if there is a basis a1, . . . , an for F such that the reduced word
representing each φ(ai) ∈ F contains no inverses a−1

j . On the rose (1-vertex
graph) with directed edges labelled ai, one has a natural representative for any
automorphism of F . The key feature of positive automorphisms is the fact that
the positive iterates of this representative restrict to injections on each edge of
the graph. Such maps are the prototypes for train-track representatives.

This discussion suggests a strategy that one might follow in order to prove
one Main Theorem: first, one should prove it in the case of positive automor-
phisms, relying on the simplifications afforded by the positivity hypothesis to
confront the web of large-scale cancellation phenomena that must be under-
stood if one is to have any chance of proving the theorem in general. Then,
in the general case, one should attempt to follow the architecture of the proof
in the positive case, using a suitably refined train-track description of the au-
tomorphism in place of the positivity assumption. We shall implement the
two stages of this plan in Parts 1 and 3 of this monograph, respectively. Ul-
timately, this strategy works. However, in Part 3, in order to bring our plan
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to fruition we have to deal with myriad additional complexities arising from
intricate cancellations that do not arise in the positive case.

Roughly speaking, these additional complexities correspond to the fact that
most free group automorphisms do not have train track representatives, only
relative train track representatives. In Part 2 of this monograph, we refine the
theory of improved relative train track maps due Bestvina, Feighn and Handel
[4], so as to tease-out features that allow us to adapt the crucial arguments
from Part 1. A vital ingredient in this approach is the identification of basic
units that will play the role in the general case that single edges (letters) played
in the positive case. To this end, we develop a theory of beads, whose claim to
the role is clinched by the Beaded Decomposition Theorem 3.2.1. This theorem
is the main objective of Part 2. Indeed we have gone to considerable lengths
to distill the entire contribution of Part 2 to Part 3 into this single statement
and the important technical refinement of it described in Addendum 2.0.1. We
have done so in order that the reader who is willing to accept it as an article
of faith may proceed directly from Part 1 to Part 3.

The introduction to each part of the book contains a more detailed expla-
nation of its contents.

Acknowledgements. The first author’s work was supported in part by Re-
search Fellowships from the EPSRC of Great Britain and by a Royal Society
Wolfson Research Merit Award. Much of this work was undertaken whilst
he was a Professor at Imperial College London, from which he was granted
two terms of sabbatical leave. The second author was supported in part by
a Junior Research Fellowship at Merton College, Oxford, by a Taussky-Todd
Instructorship and a Senior Research Fellowship at the California Institute of
Technology and by NSF Grant DMS-0504251. We thank these organisations
for their support. We also thank the anonymous referee for his careful reading
and helpful comments.
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An automorphism φ of a finitely generated free group F is called positive if
there is a basis a1, . . . , an for F such that the reduced word representing each
φ(ai) ∈ F contains no inverses a−1

j . Part 1 of this work is dedicated entirely
to proving the following special case of the Main Theorem.

Theorem C. Let F be a finitely generated free group. If φ is a positive
automorphism of F , then F oφZ satisfies a quadratic isoperimetric inequality.

This part of the book is organised as follows. In Section 1.1 we recall
some basic definitions associated to Dehn functions. In Sections 1.2 and 1.3
we record some simple but important observations concerning the large-scale
behaviour of the van Kampen diagrams associated to free-by-cyclic groups
and in particular the geometry of corridor subdiagrams. (The automorphisms
considered up to this point are not assumed to be positive.) These observations
lead us to a strategy for proving Theorem C based on the geometry of the
time flow of corridors. In Section 1.4 we state a sharper version of Theorem
C adapted to this strategy and reduce to the study of automorphisms with
stability properties that regulate the evolution of corridors. In Section 1.5 we
develop the notion of preferred future which allows us to trace the trajectory
of 1-cells in the corridor flow.

The estimates that we establish in Sections 1.5 and 1.6 reduce us to the
nub of the difficulties that one faces in trying to prove Theorem C, namely the
possible existence of large blocks of “constant letters”. A sketch of the strategy
that we shall use to overcome this problem is presented in Section 1.7. The
three main ingredients in this strategy are the elaborate global cancellation
arguments in Section 1.8, the machinery of teams developed in Section 1.9, and
the bonus scheme developed in Section 1.10 to accommodate a final tranche of
cancellation phenomena whose quirkiness eludes the grasp of teams. In a brief
final section we gather our many estimates to establish the bound required for
Theorem C. A glossary of constants is included for the reader’s convenience.

1.1. Van Kampen Diagrams

We recall some basic definitions and facts concerning Dehn functions and
van Kampen diagrams.

1.1.1. Dehn Functions and Isoperimetric Inequalities. Given a finitely
presented group G = 〈A | R〉 and a word w in the generators A±1 that repre-
sents 1 ∈ G, one defines

Area(w) = min
{
N ∈ N+ | ∃ equality w =

N∏
j=1

u−1
j rjuj in F (A) with rj ∈ R±1

}
.

The Dehn function δ(n) of the finite presentation 〈A | R〉 is defined by

δ(n) = max{Area(w) | w ∈ ker(F (A) � G), |w| ≤ n } ,
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where |w| denotes the length of the word w. Whenever two presentations
define isomorphic (or indeed quasi-isometric) groups, the Dehn functions of the
finite presentations are equivalent under the relation ' that identifies functions
[0,∞)→ [0,∞) that only differ by a quasi-Lipschitz distortion of their domain
and their range.

For any constants p, q ≥ 1, one sees that n 7→ np is ' equivalent to n 7→ nq

only if p = q. Thus it makes sense to say that the “Dehn function of a group”
is ' np.

A group Γ is said to satisfy a quadratic isoperimetric inequality if its Dehn
function is ' n or ' n2. A result of Gromov [26], detailed proofs of which
were given by several authors, states that if a Dehn function is subquadratic,
then it is linear — see [15, III.H] for a discussion, proof and references.

See [12] for a thorough and elementary account of what is known about
Dehn functions and an explanation of their connection with filling problems
in Riemannian geometry.

1.1.2. Van Kampen diagrams. According to van Kampen’s lemma (see

[27], [30] or [12]) an equality w =
∏N

j=1 ujrju
−1
j in the free group A, with

N = Area(w), can be portrayed by a finite, 1-connected, combinatorial 2-
complex with basepoint, embedded in R2. Such a complex is called a van
Kampen diagram for w; its oriented 1-cells are labelled by elements of A±1;
the boundary label on each 2-cell (read with clockwise orientation from one
of its vertices) is an element of R±1; and the boundary cycle of the complex
(read with positive orientation from the basepoint) is the word w; the number
of 2-cells in the diagram is N . Conversely, any van Kampen diagram with
M 2-cells gives rise to an equality in F (A) expressing the word labelling the
boundary cycle of the diagram as a product of M conjugates of the defining
relations. Thus Area(w) is the minimum number of 2-cells among all van
Kampen diagrams for w. If a van Kampen diagram ∆ for w has Area(w)
2-cells, then ∆ is a called a least-area diagram. If the underlying 2-complex
is homeomorphic to a 2-dimensional disc, then the van Kampen diagram is
called a disc diagram.

We use the term area to describe the number of 2-cells in a van Kampen
diagram, and write Area ∆. We write ∂∆ to denote the boundary cycle of the
diagram; we write |∂∆| to denote the length of this cycle.

Note that associated to a van Kampen diagram ∆ with basepoint p one
has a morphism of labelled, oriented graphs h∆ : (∆(1), p)→ (CA, 1), where CA
is the Cayley graph associated to the choice of generators A for G. The map
h∆ takes p to the identity vertex 1 ∈ CA and preserves the labels on oriented
edges.

We shall need the following simple observations.
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Lemma 1.1.1. If a van Kampen diagram ∆ is least-area, then every simply-
connected subdiagram of ∆ is also least-area.

Recall that a function f : N→ [0,∞) is sub-additive if f(n+m) ≤ f(n) +
f(m) for all n,m ∈ N. For example, given r ≥ 1, k > 0, the function n 7→ knr

is sub-additive.

Lemma 1.1.2. Let f : N → [0,∞) be a sub-additive function and let P be
a finite presentation of a group. If Area ∆ ≤ f(|∂∆|) for every least-area disc
diagram ∆ over P, then the Dehn function of P is ≤ f(n).

1.1.3. Presenting FoZ. We shall establish the quadratic bound required
for the Theorem C by examining the nature of van Kampen diagrams over the
following natural (aspherical) presentations of free-by-cyclic groups.

Given a finitely generated free group F and an automorphism φ of F , we
fix a basis a1, . . . , am for F , write ui to denote the reduced word equal to φ(ai)
in F , and present F oφ Z by

(1.1.1) P ∼= 〈a1, . . . , am, t | t−1a1tu
−1
1 , . . . , t−1amtu

−1
m 〉.

Throughout Part 1, we shall work exclusively with this presentation.

ui

t

ai

t

Figure 1. A 2-cell in a van Kampen diagram for F oφ Z.

1.1.4. Time and t-Corridors with naive tops. The use of t-corridors
as a tool for investigating van Kampen diagrams has become well-established
in recent years. In the setting of van Kampen diagrams over the above pre-
sentation, t-corridors are easily described.

Consider a van Kampen diagram ∆ over the above presentation P and
focus on an edge in the boundary ∂∆ that is labelled t±1 (read with positive
orientation from the basepoint). If this edge lies in the boundary of a 2-
cell, then the boundary cycle of this 2-cell has the form t−1aitu

−1
i (read with

suitable orientation from a suitable point, see Figure 1). In particular, there is
exactly one other edge in the boundary of the 2-cell that is labelled t; crossing
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this edge we enter another 2-cell with a similar boundary label, and iterating
the argument we get a chain of 2-cells running across the diagram; this chain
terminates at an edge of ∂∆ which (following the orientation of ∂∆ in the
direction of our original edge labelled t±1) is labelled t∓1. This chain of 2-
cells is called a t-corridor. The edges labelled t that we crossed in the above
description are called the vertical edges of the corridor. The vertical edge on
∂∆ labelled t−1 is called the initial end of the corridor, and at the other end
one has the terminal edge.

Formally, one should define a t-corridor to be a combinatorial map to ∆
from a suitable subdivision of [0, 1] × [0, 1]: the initial edge is the restriction
of this map to {0} × [0, 1]; the vertical edges are the images of the 1-cells of
the form {s}× [0, 1], oriented so that the edge joining (s, 0) to (s, 1) is labelled
t. The naive top of the corridor is the edge-path obtained by restricting the
above map to [0, 1]× {1}, and the bottom is the restriction to [0, 1]× {0}.
Left/Right Terminology: The orientation of a disc diagram induces an
orientation on its corridors. Whenever we focus on an individual corridor, we
shall regard its initial edge as being leftmost and its terminal edge as being
rightmost. (This is just a suggestive way of saying that the corridor map from
[0, 1]× (0, 1) ⊂ R2 to ∆ ⊂ R2 is orientation-preserving.)

t
t

t t
t

t

t
t

t t

t t

t

Figure 2. A t-corridor

See [13] for a detailed account of t-corridors. Here we shall need only the
following easy facts:

(1) distinct t-corridors have disjoint interiors;
(2) if σ is the edge-path in ∆ running along the (naive) top or bottom

of a t-corridor, then σ is labelled by a word in the letters A±1 that is
equal in F o Z to the words labelling the subarcs of ∂∆ which share
the endpoints of σ (given appropriate orientations);

(3) if we are in a least-area diagram then the word on the bottom of the
corridor is freely reduced;
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(4) the number of 2-cells in the t-corridor is the length of the word la-
belling the bottom side.

(5) In subsection 1.2 we described the map h∆ associated to a van Kampen
diagram. This map sends vertices of ∆ to vertices of the Cayley graph
CA, i.e. elements of F o 〈t〉. If the initial vertex of a directed edge in
∆ is sent to an element of the form wtj, with w ∈ F , then the edge
is defined to occur at time j. Note that the vertical edges of a fixed
corridor all occur at the same time.

We will consider the dynamics of the automorphism φ with respect to this
notion of time.

Definition 1.1.3 (Time and Length). Item (5) above implies that the
time of each t-corridor S is well-defined; we denote it time(S).

We define the length of a corridor S to be the number of 2-cells that it
contains, which is equal to the number of 1-cells along its bottom. We write
|S| to denote the length of S.

1.1.5. Conditioning the Diagram. We are working with the following
presentation of F oφ Z

P = 〈a1, . . . , am, t | t−1a1tu
−1
1 , . . . , t−1amtu

−1
m 〉.

In the light of Lemma 1.1.2, in order to prove the Theorem C it suffices
to consider only disc diagrams. Therefore, henceforth we shall assume that
all diagrams are topological discs. We shall also assume that all of the discs
considered are least-area diagrams for freely reduced words.

Lemma 1.1.4. Every least-area disc diagram over P is the union of its
t-corridors.

Proof. Since the diagram is a disc, every 1-cell lies in the boundary of
some 2-cell. The boundary of each 2-cell contains two edges labelled t. Con-
sider the equivalence relation on 2-cells generated by e ∼ e′ if the boundaries
of e and e′ share an edge labelled t. Each equivalence class forms either a
t-corridor or else a t-ring, i.e. the closure of an annular sub-diagram whose in-
ternal and external cycles are labelled by a word in the generators of F . If the
latter case arose, then since F is a free group, the word u on the external cycle
would be freely equal to the empty word (since it contains no edges labelled
t). This would contradict the hypothesis that the diagram is least-area, be-
cause one could reduce its area by excising the simply-connected sub-diagram
bounded by this cycle, replacing it with the zero-area diagram for u over the
free presentation of F . �

1.1.6. Folded Corridors. In the light of the above lemma, we see that
the diagrams ∆ that we need to consider are essentially determined once one
knows which pairs of boundary edges are connected by t-corridors. However,
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there remains a slight ambiguity arising from the fact that free-reduction in
the free group is not a canonical process (e.g. x = (xx−1)x = x(x−1x)).

To avoid this ambiguity, we fix a least area disc diagram ∆ and assume that
its corridors are folded in the sense of [10]. The topological closure T ⊂ ∆ of
each corridor is a combinatorial disc. The hypothesis “least area” alone forces
the label on the bottom of the corridor to be a freely reduced word in the letters
a±1
i . We define the top of the (folded) corridor to be the injective edge-path

that remains when one deletes from the frontier of T the bottom and ends of
the corridor. The word labelling this path is the freely reduced word in F that
equals the label on the naive top of the corridor. Note that, unlike the bottom
of the corridor, the top may fail to intersect the closure of some 2-cells — see
Figures 3 and 4 (where the automorphism is a 7→ a, b 7→ ba2, c 7→ ca).

Notation 1.1.5. We write >(S) and ⊥(S), respectively, to denote the top
and bottom of a folded corridor S.

Henceforth we shall refer to folded t-corridors simply as “corridors”.

c

aab a a c

ab

t t t t

Figure 3. An unfolded corridor

cb
a

b

t

a
t

a

t t

c

Figure 4. The corresponding folded corridor.

1.1.7. Naive Expansion and Death. For each generator ai ∈ F we
have the reduced word ui = φ(ai). Given a reduced word v = ai(1) . . . ai(m)

we define the naive expansion of φ(v) to be the (unreduced) concatenation
ui(1) . . . ui(m).

Note that if v is the label on an interval of the bottom of a corridor, then
the naive expansion of φ(v) is the label on the corresponding arc of the naive
top of the corridor.
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An edge ε on the bottom of a corridor S is said to die in S if the 2-cell
containing that edge does not contain any edge of >(S). (Equivalently, if w
is the label on ⊥(S) and ai is the label on ε, then the subword ui = φ(ai) in
the naive expansion of φ(w) is cancelled completely during the free reduction
encoded in ∆.) In Figure 4 the edge labelled a on the bottom of the corridor
dies.

1.2. Singularities and Bounded Cancellation

We have noted that the structure of a (folded, least-area disc) diagram over
the natural presentation of a free-by-cyclic group is the union of its corridors.
In this section we pursue an understanding of how these corridors meet.

.

.
.

.

.
.

.

.
.

.
.

.

Figure 5. Corridors cannot meet this way in a least-area diagram

The first observation to make is that corridors cannot meet as in Figure 5.

Lemma 1.2.1. If S 6= S ′, then ⊥(S)∩⊥(S ′) consists of at most one point.

Proof. For each letter a, there is only one type of 2-cell which has the
label a on its bottom side. Thus, if two corridors were to meet in the manner
of Figure 5, then we would have a pair of 2-cells whose union was bounded by
a loop labelled uit

−1tu−1
i t−1t, which is freely equal to the identity. By excising

this pair of 2-cells and filling the loop with a diagram of zero area, we would
reduce the area of ∆ without altering its boundary label — but ∆ is assumed
to be a least-area diagram.

Thus ⊥(S) ∩ ⊥(S ′) contains no edges. To see that it cannot contain more
than one vertex, follow the proof of Proposition 1.2.3(1). �

Definition 1.2.2. A singularity in ∆ is a non-empty connected component
of the intersection of the tops of two distinct folded corridors. A 2-cell is said
to hit the singularity if it contains an edge of the singularity.

The singularity is said to be degenerate if it consists of a single point, and
otherwise it is non-degenerate.

Let L be the maximum of the lengths of the words ui in our fixed presen-
tation P of F oφ Z.
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. . ....

...
. . .

t

tt

t

Figure 6. A ‘singularity’

Proposition 1.2.3 (Bounded singularities).

1. If the tops of two corridors in a least-area diagram meet, then their
intersection is a singularity.

2. There exists a constant B depending only on φ such that less than B
2-cells hit each singularity in a least-area diagram over P.

3. If ∆ is a least-area diagram over P, then there are less than 2|∂∆|
non-degenerate singularities in ∆, and each has length at most LB.

Proof. Suppose that the intersection of the tops of two corridors S and
S ′ contains two distinct vertices, p and q say. Consider the unique subarcs
of >(S) and >(S ′) connecting p to q. Each of these arcs is labelled by a
reduced word in the generators of F ; since the arcs have the same endpoints
in ∆, these words must be identical. If the arcs did not coincide, then we
could excise the subdiagram that they bounded and replace it with a zero-area
diagram, contradicting our least-area hypothesis. This proves (1).

.

.

.

.

.
.

.
. .

. .
.

t

t

t

t
x2

x1 U1

U2

w

w′

Figure 7. The proof of Proposition 1.2.3

Figure 7 portrays the argument we use to prove (2). In S (respectively
S ′), we choose an outermost pair of oriented edges ε1, ε2 (resp. ε′1, ε

′
2) labelled

t whose termini lie on the singularity. We then connect their endpoints by
shortest arcs in the singularity as shown. Note that each of the arcs labelled
x1 and x2 is contained in the top of a single 2-cell, and hence has length at
most L. We write αi to denote the concatenation of εi, the arc labelled xi and
the inverse of ε′i.
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Let U−1
i ∈ F be the reduced word representing φ−1(xi). In F oφ Z we

have txit
−1Ui = 1; let ∆i be a least-area van Kampen diagram portraying this

equality.
Let w (resp. w′) be the label on the edge-path in ⊥(S) (resp. ⊥(S ′)) that

connects the initial point of ε1 (resp. ε′1) to the initial point of ε2 (resp. ε′2).
If we excise from ∆ the subdiagram bounded by the loop whose label is

t−1wtx2t
−1w′−1tx−1

1 , then we reduce the area of ∆ by |w| + |w′|. (Recall that
the edges on the bottom of a corridor are in 1-1 correspondence with the 2-
cells of the corridor.) We may then attach a copy of ∆i along αi and fill the
resulting loop labelled U1wU

−1
2 w′−1 with a diagram of zero area, because this

word is equal to 1 in the free group F . Thus we obtain a new van Kampen
diagram whose boundary label is the same as that of ∆ and which has area

Area(∆) + Area(∆1) + Area(∆2)− |w| − |w′|.
Since ∆ is assumed to be least-area, this implies that Area(∆1) + Area(∆2) ≥
|w|+ |w′|.

Let B0 be an upper bound on the area of all least-area van Kampen dia-
grams portraying equalities of the form txt−1φ−1(x)−1 = 1 with |x| ≤ L. (It
suffices to take B0 = LLinv, where Linv is the maximum of the lengths of the
reduced words φ−1(ai).) By definition, Area(∆1)+Area(∆2) ≤ 2B0, and hence
|w|+ |w′| ≤ 2B0. Thus for (2) it suffices to let B = 2B0 + 1.

The length of the singularity in the above argument is less than the sum of
the lengths of the naive expansions of φ(w) and φ(w′). Since |w| + |w′| ≤ B,
the singularity has length less than LB.

It remains to bound the number of non-degenerate singularities in ∆. To
this end, we consider the subcomplex Γ ⊂ ∆ formed by the union of the tops
of all folded corridors. Arguing as in (1), we see that the graph Γ contains
no non-trivial loops, i.e. it is a forest. Let V denote the set of vertices in Γ
that have valence at least 3 or else lie on ∂∆. (Thus V is the set of degenerate
singularities, endpoints of non-degenerate singularities, and endpoints of the
tops of corridors.) Let E be the set of connected components of Γ r V .
|V | − |E| is the number π0 of connected components of the forest Γ. The

valence 1 vertices V 1 ⊂ Γ are a subset of the endpoints of the tops of corridors,
so there are less than |∂∆| of them. One can calculate |E| as half the sum of
the valences of the vertices v ∈ V , so 3(|V | − |V 1|) + |V 1| ≤ 2|E|. Hence

|E| = |V | − π0 ≤
2

3

(
|E|+ |V 1|

)
− π0 <

2

3

(
|E|+ |∂∆|

)
.

Therefore |E| < 2|∂∆|.
Each non-degenerate singularity determines an element of E, so the (crude)

estimate in (3) is established. �

Lemma 1.2.4 (Bounded Cancellation Lemma). There is a constant B, de-
pending only on φ, such that if I is an interval consisting of |I| edges on the
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bottom of a (folded) corridor S in a least-area diagram over P, and every edge
of I dies in S, then |I| < B.

.

.

.
.

.

.

Figure 8. Bounded Cancellation Lemma

Proof. The argument is entirely similar to that given for part (2) of the
previous proposition. �

The above lemma is a reformulation of the Bounded Cancellation Lemma
from [21], which Cooper attributes to Thurston.

Remark 1.2.5. ‘Singularities are only 1 pixel large.’ The reader may find it
useful to keep in mind the following picture: think of a least-area van Kampen
diagram rendered on a computer screen and assume that the length of the
boundary of the diagram is large, so large that the constant B in Proposition
1.2.3 has to be scaled to something less than 1 pixel in order to fit the picture on
to the computer’s screen. In the resulting image one sees blocks of t-corridors
as shown in Figure 9 below, and the singularities take on the appearance of
classical k-prong singularities in the time-flow of t-corridors.

1.3. Past, Future and Colour

Our investigations thus far have led us to regard van Kampen diagrams
over P as flows of corridors (at least schematically). We require some more
vocabulary to pursue this approach.

We continue to work with a fixed disc diagram ∆ over P .

Definition 1.3.1 (Ancestors and Colour). Each edge ε1 on the bottom of
a corridor either lies in the boundary of ∆, or else lies in the top of a unique
2-cell, the bottom of which we denote ε0. We consider the partial ordering on
the set E of edges from the bottom of all corridors generated by setting ε0 < ε1

whenever edges are related in this way.
If ε′ < ε then we call ε′ an ancestor of ε. The past of ε is the set of its

ancestors, and the future of ε is the set of edges ε′′ such that ε < ε′′.
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t

tt

t

Figure 9. Schematic depiction of a singularity

Two edges are defined to be of the same colour if they have a common
ancestor. Since every edge has a unique ancestor on the boundary, colours are
in bijection with a subset1 of the edges in ∂∆ whose label is not t; in particular
there are less than |∂∆| colours.

Each 2-cell in ∆ has a unique edge in the bottom of a corridor. Thus we
may also regard ≤ as a partial ordering on the 2-cells of ∆ and define the past,
future and colour of a 2-cell.

We define the past (resp. future) of a corridor to be the union of the pasts
(resp. futures) of its closed 2-cells.

Remark 1.3.2. Each e ∈ E and each 2-cell has at most one immediate
ancestor (i.e. one that is maximal among its ancestors). Consider the graph
F with vertex set E that has an edge connecting a pair of vertices if and only
if one is the immediate ancestor of the other. Note that F is a forest (union
of trees).

The colours in the diagram correspond to the connected components (trees)
of this forest.

There is a natural embedding of F ↪→ ∆: choose a point (‘centre’) in the
interior of each 2-cell and connect it to the centre of its immediate ancestor by
an arc that passes through their common edge.

If the future of a corridor S ′ intersects a corridor S then the intersection is
connected:

Lemma 1.3.3 (Connected Pasts). If a pair of 2-cells α and β in a corridor
S have ancestors α′ and β′ in a corridor S ′, then every 2-cell γ that lies between
α and β in S has an ancestor γ′ that lies between α′ and β′ in S ′.

1namely, those edges of ∂∆ that lie on the bottom of some 2-cell
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. . .

. . . . . . 

. . . 

S ′

γ β

α′ γ′ β′

S α

Figure 10. The ‘loop’ picture

Proof. Connect the centres of α and β by an arc in the interior of S that
intersects only those 2-cells lying between α and β, and connect the centres
of α′ and β′ by a similar arc in the interior of S ′. Along with these two arcs,
we consider the embedded arcs connecting α to α′ and β to β′ in the forest F
described in Remark 1.3.2. These four arcs together form a loop, and the disc
that this loop encloses does not intersect the boundary of ∆. (Recall that ∆
is a disc.)

Consider the tree from F that contains γ. We may assume that the arc in
this tree that connects γ to its ancestor on the boundary does not intersect the
arc we chose in S. It must therefore intersect our loop either in S ′, yielding
the desired ancestor γ′ in S ′, or else in one of the arcs connecting α to α′, or
β to β′. If the latter alternative pertains, α′ or β′ is an ancestor of γ, and we
are done. �

We highlight the degenerate case where the 2-cells α′ and β′ are equal and
have their bottom on ∂∆:

Corollary 1.3.4. Within a corridor, the 2-cells of each colour form a
connected region.

1.4. Strategy, Strata and Conditioning

Everything that has been said up to this point has been true for mapping
tori of arbitrary automorphisms of finitely generated free groups. Henceforth,
for the remainder of Part 1, we assume that the automorphism φ is positive.

A van Kampen diagram whose boundary cycle has length n contains at
most n/2 corridors. Thus Theorem C is an immediate consequence of:

Theorem 1.4.1. There is a constant K depending only on φ such that each
corridor in a least-area diagram ∆ over P has length at most K |∂∆|.
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In order to establish the desired bound on the length of corridors, we must
analyse how corridors grow as they flow into the future, and assess what can-
cellation can take place to inhibit this growth. In the remainder of this section
we shall condition the automorphism to simplify the discussion of growth.

Remark 1.4.2. The mapping torus F oφk Z is isomorphic to a subgroup
of finite index in F oφ Z, namely F oφ kZ. Thus, since the Dehn functions
of commensurable groups are ' equivalent, we are free to replace φ by a
convenient positive power in our proof of the Main Theorem.

1.4.1. Strata. In the following discussion we shall write x to denote an
arbitrary choice of letter from our basis {a1, . . . , am} for F .

Naturally associated to any positive automorphism one has supports and
strata. The support Supp(x) associated to x is the set of all letters which
appear in the freely reduced word φj(x) for some j ≥ 0. The stratum Σ(x) ⊂
Supp(x) associated to x consists of those y ∈ Supp(x) such that Supp(x) =
Supp(y).

Note that y ∈ Supp(x) implies Supp(y) ⊆ Supp(x), and y ∈ Σ(x) implies
Σ(y) = Σ(x).

There are two kinds of strata. The first are parabolic2 strata, which are those
of the form Σ(x) with x /∈ Supp(y) for all y ∈ Supp(x)r{x}. The second kind
are exponential strata, where one has Σ(x) = Σ(y) for some distinct x and y.
The letter x is defined to be parabolic or exponential according to the type of
Σ(x).

If x is exponential then |φj(x)| grows exponentially with j. If all the edges
of Supp(x) are parabolic then |φj(x)| grows polynomially with j. However, it
may also happen that x is a parabolic letter but |φj(x)| grows exponentially;
this will be the case if Supp(x) contains exponential letters.

Example 1.4.3. Define φ : F3 → F3 by a1 7→ a2
1a2, a2 7→ a1a2, a3 7→

a1a2a3. Then Σ(a1) = Σ(a2) = {a1, a2} is an exponential stratum, while
Σ(a3) = {a3} is a parabolic stratum with Supp(a3) = {a1, a2, a3}.

Remark 1.4.4. The relation [y < x if Σ(y) ⊂ Supp(x) r Σ(x)] generates
a partial ordering on the letters {a1, . . . , am}. For each x, the subgroup of
F generated by Pre(x) = {y | y < x} is φ-invariant. Let F bxc denote the
quotient of 〈Supp(x)〉 by the normal closure of Pre(x) ⊂ Supp(x), and let
F dxe denote the quotient of F by the normal closure of Pre(x) ⊂ F . Note
that F bxc is a free group with basis (the images of) the letters in Σ(x), and
F dxe is the free group with basis {a1, . . . , am}r Pre(x).

The automorphisms of Pre(x), F bxc and F dxe induced by φ are positive
with respect to the obvious bases, and their strata are images of the strata of
φ.

2Bestvina et al. [4] use the terminology non-exponentially-growing strata
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1.4.2. Conditioning the automorphism. In the following proposition,
the strata considered are those of φk. (These may be smaller than the strata
of φ; consider the periodic case for example.)

Proposition 1.4.5. There exists a positive integer k such that φ0 := φk

has the following properties:

1. Each letter x appears in its own image under φ0.
2. Each exponential letter x appears at least 3 times in its own image

under φ0.
3. For all x, each letter y ∈ Supp(x) appears in φ0(x).
4. For all x and all j ≥ 1, the leftmost and rightmost letters of φj0(x) are

the same as those of φ0(x).
5. For all x, all j ≥ 1 and all strata Σ ⊆ Supp(x), the leftmost (respec-

tively, rightmost) letter from Σ in the reduced word φj0(x) is the same
as the leftmost (resp. rightmost) letter from Σ in φ0(x).

Proof. Items (1) to (3) can be seen as simple facts about positive integer
matrices, read-off from the action of φ on the abelianization of F . (By defi-
nition aj ∈ Σ(ai) if and only if the (i, j) entry of some power of the matrix
describing this action is non-zero.)

Assume that φ1 is a power of φ that satisfies (1) to (3). Note that (3)
implies that the strata of φ1 coincide with those of any proper power of it.

Replacing φ1 by a positive power if necessary, we may assume that if φj1(x)
begins with the letter x, for any j ≥ 1, then φ1(x) begins with x. This ensures
that [y �L x if some φj(x) begins with y] is a partial ordering, for if φjk1 (xk)

begins with xk+1 for k = 1, . . . , r and if xr+1 = x1, then φΣjk
1 (x1) = x1 and

hence x1 = x2 = · · · = xr.
If φ1(x) begins with z then z �L x, so by raising φ1 to a suitable power we

can ensure for all x that φ1(x) begins with a letter that is �L-minimal. The
�L-minimal letters y are precisely those such that φ1(y) begins with y. An
entirely similar argument applies to the relation [y �R x if some φj(x) ends
with y]. This proves (4).

Now assume that φ0 satisfies (1) to (4). The assertion in (5) concerning
leftmost letters from Σ is clear for those x where φ0(x) begins with x. If φ0(x)
begins with y 6= x, then either Σ ⊂ Supp(y) or else the occurrences of letters
from Σ in φj0(x) are in 1-1 correspondence with the occurrences in the image
of φj0(x) in F dye. (Notation of Remark 1.4.4.) In the latter case, arguing by
induction on the size of Pre(y) we may assume that the induced automorphism
dφ0ey : F dye → F dye has the property asserted in (5); the desired conclusion

for φj0(x) is then tautologous. In the former case, if we replace φ0 by φ2
0 then

the conclusion becomes as immediate as it was when φ0(x) began with x.
An entirely similar argument applies to rightmost letters. �
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Remark 1.4.6. Although we shall have no need of it here, it seems worth
recording that item (5) of the above proposition remains true if one replaces
strata Σ ⊂ Supp(x) by supports Supp(y) ⊂ Supp(x).

We now fix an automorphism φ = φ0 and assume that is sat-
isfies conditions (1)-(5) above. All of the constants discussed
in the sequel will be calculated with respect to this φ.

1.5. Preferred Futures, Fast Letters and Cancellation

Having conditioned our automorphism appropriately, we are now in a po-
sition to analyse the fates of (blocks of) edges as they evolve in time.

Definition 1.5.1 (Preferred futures). For each element x ∈ {a1, . . . , an}
of the basis, we choose an occurrence of x in the reduced word φ(x) to be the
(immediate) preferred future of x: if x is a parabolic letter, there is only one
possible choice; if x is an exponential letter, we choose an occurrence of x that
is neither leftmost nor rightmost (recall that we have arranged for x to appear
at least three times in φ(x)). More generally, we make a recursive definition
of the preferred future of x in φn(x): this is the occurrence of x in φn(x) that
is the preferred future of the preferred future of x in φn−1(x).

The above definition distinguishes an edge ε1 on the top of each 2-cell in
our diagram ∆, namely the edge labelled by the preferred future of the label
at the bottom ε0 of the 2-cell. We define ε1 to be the (immediate) preferred
future of ε0. As with letters, an obvious recursion then defines a preferred
future of ε0 at each step in its future (for as long as it continues to exist).

Note that ε0 has at most one preferred future at each time. (It has exactly
one until a preferred future dies in a corridor, lies on the boundary, or hits a
singularity.)

If the bottom edge of a 2-cell is ε0, then we define the preferred future of
that 2-cell at time t to be the unique 2-cell at time t whose bottom edge is the
preferred future of ε0.

1.5.1. Left-fast, constant letters, etc. In this paragraph, we divide the
letters x ∈ {a±1

1 , . . . , a±1
m } into classes according to the growth of the words

φj(x), j = 1, 2, . . . , and divide the edges of ∆ into classes correspondingly.

• If φ(x) = x then x is called a constant letter.
• If x is a non-constant letter, then the function n 7→ |φn(y)| grows like

a polynomial of degree d ∈ {1, . . . ,m − 1} or else as an exponential
function of n.
• Let x be a non-constant letter. If the distance between the preferred

future of x and the beginning of the word φn(x) grows at least quadrat-
ically as a function of n, we say that x is left-fast; if this is not the
case, we say that x is left-slow. Right-fast and right-slow are defined
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similarly. Note that x is left-fast (resp. slow) if and only if x−1 is
right-fast (resp. slow).
• Let x be a non-constant letter. If φ(x) = uxv (the shown occurrence of
x need not be the preferred future), where u consists only of constant
letters, then we say that x is left para-linear . (We place no restriction
on v; in particular it may contain occurrences of x.) Right para-linear
is defined similarly.

Definition 1.5.2. For left para-linear letters, we define the (left) para-
preferred future (pp-future) to be the left-most occurrence of x in φ(x). The
(right) pp-future of a right para-linear letter is defined similarly, and edges in
∆ inherit these designations from their labels.

(It is possible that a letter might be both left para-linear and right para-
linear, and in such cases the left and right pp-futures need not agree. But
when we discuss pp-futures, it will always be clear from the context whether
we are favouring the left or the right.)

The following lemma indicates the origin of the terminology ‘left-fast’
(cf. [4, Lemma 4.2.2]). (A slight irritation arises from the fact that there
may exist letters x such that x is not left-fast but φ(x) contains left-fast let-
ters; this difficulty accounts for a certain clumsiness in the statement of the
lemma.)

Lemma 1.5.3. There exists a constant C0 with the following property: if
x ∈ {a1, . . . , an} is such that φ(x) contains a left-fast letter x′ and if UV x ∈ F
is a reduced word with V positive3 and |V | ≥ C0, then for all j ≥ 1, the pre-
ferred future of x′ is not cancelled when one freely reduces φj(UV x). Moreover,
|φj(UV x)| → ∞ as j →∞.

Proof. We factorize the reduced word φj(x) as Yx,jx
′Zx,j to emphasise

the placement of the preferred future of a fixed left-fast letter x′ from φ(x).
The fact that x′ is left-fast implies that j 7→ |Yx,j| grows at least quadratically.

Fix C0 sufficiently large to ensure that for each of the finitely many possible
x ∈ {a1, . . . , an}, the integer |Yx,j| is greater than Bj whenever j ≥ C0/B,
where B is the bounded cancellation constant.

The Bounded Cancellation Lemma assures us that during the free reduction
of the naive expansion of φ(UV x), at most B letters of the positive word φ(V x)
will be cancelled. At most B further letters will be cancelled when the naive
expansion of φ2(UV x) is freely reduced, and so on. Since V and φ are positive
and |V | ≥ C0, it follows that φj(V ) will not be completely cancelled during
the free reduction of φj(UV x) if j ≤ C0/B. When j reaches j0 := dC0/Be
the distance from the preferred future of x′ to the left end of the uncancelled
segment of φj(V x) is at least |Yx,j0|, which is greater than Bj0 and hence C0.

3i.e. no inverses a−1
j appear in V
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Repeating the argument with Yx,j0 in place of V , we conclude that the length
of the uncancelled segment of φj(V x) in φj(UV x) remains positive and goes
to infinity with j. �

Significant elaborations of the previous argument will be developed in Sec-
tion 1.8.

Definition 1.5.4 (New edges, cancellation and consumption). Fix a 2-cell
in ∆. One edge in the top of the cell is the preferred future of the bottom
edge; this will be called old and the remaining edges will be called new. (These
concepts are unambiguous relative to a fixed 2-cell or (folded) corridor, but
‘old edge’ would be ambiguous if applied simply to a 1-cell of ∆.)

Two (undirected) edges ε1, ε2 in the naive top of a corridor are said to
cancel each other if their images in the folded corridor coincide. If ε1 lies to
the left4 of ε2, we say that ε2 has been cancelled from the left and ε1 has been
cancelled from the right. If ε1 is the preferred future of an edge ε in the bottom
of the corridor and ε2 is a new edge in the 2-cell whose bottom is ε′, then we
say that ε′ has (immediately) consumed ε from the right. ‘Consumed from the
left’ is defined similarly.

Let e and e′ be edges in ⊥(S) for some corridor S, with e to the left (resp.
right) of e′. If an edge in the future of e cancels a preferred future of e′, then
we say that e eventually consumes e′ from the left (resp. right).

Lemma 1.5.5. No pair of old edges can cancel each other.

Proof. Suppose that two old edges in the naive top of a corridor S are
labelled x and cancel each other. These edges are the preferred futures of
edges on ⊥(S) that bound an arc α labelled by a reduced word x−1wx. Con-
sider the freely-reduced factorisation φ(x) = uxv where the visible x is the
preferred future. The arc in the naive top of S corresponding to α is labelled
v−1x−1u−1Wuxv, where W is the naive expansion of φ(w). The old edges
that we are considering are labelled by the visible occurrences of x in this
word and our assumption that these edges cancel means that the subarc la-
belled x−1u−1Wux becomes a loop (enclosing a zero-area sub-diagram) in the
diagram ∆.

But this is impossible, because x−1wx is freely reduced, which means that
W is not freely equal to the empty word, and hence neither is x−1u−1Wux. �

Corollary 1.5.6. An edge labelled by a parabolic letter x can only be
consumed by an edge labelled y with Supp(x) strictly contained in Supp(y).

Remark 1.5.7. A non-constant letter can only be (eventually) consumed
from the left (resp. right) by a right-fast (resp. left-fast) letter.

4Recall that corridors have a left-right orientation.
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Remark 1.5.8. The number of old letters in the naive top of a corridor S
is |S|, so the length of corridors in the future of S will grow relentlessly unless
old letters are cancelled by new letters or the corridor hits a boundary or a
singularity.

An obvious separation argument provides us with another useful observa-
tion concerning cancellation:

Lemma 1.5.9. Let ε1, ε2 and ε3 be three (not necessarily adjacent) edges
that appear in order of increasing subscripts as one reads from left to right
along the bottom of a corridor. If the future of ε2 contains an edge of ∂∆ or
of a singularity, then no edge in the future of ε1 can cancel with any edge in
the future of ε3.

1.6. Counting Non-constant Letters

In this section we fix a corridor S0 in ∆ and bound the contribution of
non-constant letters to the length of ⊥(S0).

1.6.1. The first decomposition of S0. Choose an edge ε on the bottom
of S0. As we follow the preferred future of ε forward one of the following
(disjoint) events must occur:

1. The last preferred future of ε lies on the boundary of ∆.
2. The last preferred future of ε lies in a singularity.
3. The last preferred future of ε dies in a corridor S (i.e. cancels with

another edge from the naive top of S).

We shall bound the length of S0 by finding a bound on the number of edges
in each of these three cases.

We divide Case (3) into two sub-cases:

3a. The preferred future of ε dies when it is cancelled by an edge that is
not in the future of S0.

3b. The preferred future of ε dies when it is cancelled by an edge that is
in the future of S0.

1.6.2. Bounding the easy bits. Label the sets of edges in S0 which fall
into the above classes S0(1), S0(2), S0(3a) and S0(3b) respectively. We shall
see that S0(3b) is by far the most troublesome of these sets.

The first of the bounds in the following lemma is obvious, and the second
follows immediately from Proposition 1.2.3.

Lemma 1.6.1. |S0(1)| ≤ |∂∆| and |S0(2)| ≤ 2B |∂∆|.

Lemma 1.6.2. |S0(3a)| ≤ B |∂∆|.

Proof. The preferred future of each ε ∈ S0(3a) dies in some corridor in
the future of S0. Since there are less than |∂∆|/2 corridors, we will be done
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if we can argue that the preferred future of at most 2B such edges can die in
each corridor S.

Lemma 1.3.3 tells us that the future of S0 intersects S in a connected region,
the bottom of which is an interval I. The Bounded Cancellation Lemma
assures us that only the edges within a distance B of the ends of I can be
consumed in S by an edge from outside the interval. And by definition, if a
preferred future of an edge from S0(3a) is to die in S, then it must be consumed
by an edge from outside I. �

We have now reduced Theorem 1.4.1 to the problem of bounding S0(3b),
i.e. of understanding cancellation within the future of S0. This will require
a great deal of work. As a first step, we further decompose S0, mingling the
above decomposition based on the fates of preferred futures of edges with the
natural decomposition of S0 into colours, as defined in Definition 1.3.1.

1.6.3. The chromatic decomposition of S0. We fix a colour µ and
write µ(S0) to denote the interval of ⊥(S0) consisting of edges coloured µ. We
shall abuse terminology to the extent of referring to µ(S0) as a colour, evoking
the mental picture of the 2-cells in S0 being painted with their respective
colours. (Recall that the 2-cells of S0 are in 1-1 correspondence with the edges
of ⊥(S0).)

We shall subdivide µ(S0) into five subintervals according to the fates of
the preferred futures of edges. To this end, we define lµ(S0) to be the right-
most edge in µ(S0) whose immediate future contains a left-fast edge that is
ultimately consumed from the left by an edge of S0, and we define A1(S0, µ)
to be the set of edges in ⊥(S0) from the left end of µ(S0) to lµ(S0), inclusive.
We define A2(µ, S0) ⊂ µ(S0) to consist of the remaining edges in µ(S0) whose
preferred futures are ultimately consumed from the left by an edge of S0.

Similarly, we define rµ(S0) to be the leftmost edge µ(S0) that has a right-
fast edge in its immediate future that is ultimately consumed from the right
by an edge of S0, and we define A5(S0, µ) to be the set of edges in ⊥(S0) from
the right end of µ(S0) to rµ(S0), inclusive. We define A4(µ, S0) ⊂ µ(S0) to
consist of the remaining edges in µ(S0) whose preferred futures are ultimately
consumed from the right by an edge of S0.

Finally, we define A3(S0, µ) to be the remainder of the edges in µ(S0).

. . .. . . A1(S0, µ) A5(S0, µ)A4(S0, µ)A3(S0, µ)A2(S0, µ)

Figure 11. The second decomposition of S0

Modulo the fact that any of the Ai(S0, µ) might be empty, Figure 10 is
an accurate portrayal of µ: the Ai(S0, µ) are connected and they occur in
ascending order of suffix from left to right.
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The chromatic decomposition of S0 is connected to the decomposition of
Subsection 1.6.1 by the equality in the following lemma, which is a tautology.
The inequality in this lemma is a restatement of Lemmas 1.6.1 and 1.6.2.

Lemma 1.6.3.⋃
µ

A3(S0, µ) = S0 r S0(3b) and
∑
µ

|A3(S0, µ)| ≤ (3B + 1) |∂∆|.

Thus the following lemma is a step towards bounding the size of S0(3b).

Lemma 1.6.4.

|A1(S0, µ)| ≤ C0 and |A5(S0, µ)| ≤ C0.

Proof. We prove the result only for A1(S0, µ); the proof for A5(S0, µ) is
entirely similar.

As in Lemma 1.5.9, we know that the entire future of the edges of A1(S0, µ)
to the left of lµ(S0) must eventually be consumed from the left by edges of S0.
This means that we are essentially in the setting of Lemma 1.5.3, with lµ(S0)
in the role of x and A1(S0, µ) in the role of V x.

Thus if the length of A1(S0, µ) were greater than C0, then we would con-
clude that no left-fast edge in the immediate future of lµ(S0) would be cancelled
from the left by an edge of ⊥(S0), contradicting the definition of lµ(S0). �

Corollary 1.6.5.∑
µ

|A1(S0, µ)| ≤ C0 |∂∆| and
∑
µ

|A5(S0, µ)| ≤ C0 |∂∆|.

1.6.4. A further decomposition of A2(S0, µ) and A4(S0, µ). It remains
to bound A2(S0, µ) and A4(S0, µ). We deal only with A4(S0, µ), the argument
for A2(S0, µ) being entirely similar.

First partition A4(S0, µ) into subintervals C(µ,µ′) that consist of edges that
are eventually consumed by edges of a specified colour µ′. Then partition
C(µ,µ′) into two subintervals: C(µ,µ′)(1) begins at the right of C(µ,µ′) and ends
with the last non-constant edge; C(µ,µ′)(2) consists of the remaining (constant)
edges. See Figure 12.

.  .  . .  .  .

A4(S0, µ)

C(µ,µ′)(2) C(µ,µ′)(1) C(µ,µ′′)(2) C(µ,µ′′)(1)

Figure 12. C(µ,µ′)(1) and C(µ,µ′)(2).

In the course of this section we will bound the size of the intervals C(µ,µ′)(1)
and during the following four sections we bound the sum over all pairs (µ, µ′)
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of the sizes of the intervals C(µ,µ′)(2) to get the desired bound on |S0(3b)|. In
order to control this sum, we have to address the question of which colours
can be adjacent.

1.6.5. Adjacent Colours. In Corollary 1.3.4 we saw that in any corridor
S, the edges in⊥(S) of a fixed colour form an interval. We say that two distinct
colours µ and µ′ are adjacent in S if the closed intervals µ(S) and µ(S ′) have
a common endpoint in ⊥(S). (Equivalently, there is a pair of 2-cells in S, one
coloured µ and the other µ′, that share an edge labelled t.) We write Z to
denote the set of ordered pairs (µ, µ′) such that µ and µ′ are adjacent in some
corridor S with µ(S) to the left of µ′(S) in ⊥(S).

Lemma 1.6.6.
|Z| < 2 |∂∆| − 3.

Proof. We shall express this proof in the language of the forest F intro-
duced in Remark 1.3.2. Suppose that µ and µ′ are adjacent in S. In S we
can connect the centre of some 2-cell coloured µ to the centre of some 2-cell
coloured µ′ by an arc contained in the union of the pair of 2-cells. The union of
this arc and the trees in F corresponding to the colours µ and µ′ disconnects
the disc ∆; each of the other trees in F is entirely contained in a component of
the complement, and the colours with trees in different components can never
be adjacent in any corridor.

We can encode adjacencies of colours by a chord diagram: draw a round
circle with marked points representing the colours of ∆ in the cyclic order that
they appear in ∂∆, then connect two points by a straight line if the correspond-
ing colours are adjacent in some corridor. The final phrase of the preceding
paragraph tells us that the lines in this chord diagram do not intersect in the
interior of the disc. A simple count shows that since there are less than |∂∆|
colours, there are less than 2 |∂∆| − 3 lines in this diagram. �

1.6.6. Non-constant letters in C(µ,µ′) that are not left-fast. We
stated in the introduction that a careful analysis of van Kampen diagrams
would allow us to reduce Theorem C to the study of blocks of constant letters.
In this section we achieve the last step of this reduction.

Lemma 1.6.7. There is a constant C1 depending only on φ with the follow-
ing property:

Let S be a corridor and let µ1 and µ2 be colours that occur in S with µ1

to the left of µ2 (but do not assume that µ1(S) is adjacent to µ2(S)). Let
I ⊂ A4(S, µ1) be a sub-interval that satisfies the following conditions

1. the left-most edge of I is non-constant and
2. the preferred future of each edge in I is eventually consumed by an

edge of µ2(S).
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Then |I| ≤ C1. In particular, |C(µ,µ′)(1)| ≤ C1 for all (µ, µ′) ∈ Z.
It suffices to take C1 = 2mB2, where m is the rank of F , and B is the

constant from the Bounded Cancellation Lemma.

Proof. The region I being considered contains no edge with a right-fast
letter in the φ-image of its label. Since all exponential letters are both left-fast
and right-fast, all non-constant edges in the future of I are parabolic.

We begin the argument at the stage in time where µ2 starts cancelling I.
For notational convenience we assume that this time is in fact time(S). (If it
is not, then the fact that the length of I may have increased in passing from
time(S) to this time adds greater strength to the bound we obtain.)

We focus on the leftmost edge ε0 of I that is labelled by a non-constant
letter x for which Supp(x) is maximal among the supports of all edge-labels
from I (with respect to inclusion). Let y be the label on the edge ε′0 of µ2(S)
that eventually consumes ε0 (oriented as shown in Figure 13). Note that
Supp(x) is strictly contained in Supp(y), by Corollary 1.5.6. If ε′0 consumes
ε0 immediately, then the Bounded Cancellation Lemma tells us that ε0 is a
distance less than B from the righthand end of I. If not, then we proceed
one step into the future5 and appeal to the conditioning done in Proposition
1.4.5(5) to assume that for all j ≥ 1, the rightmost letter in φj(y) whose
support includes x is y. We shall call the edge in the future of ε′0 carrying the
rightmost y the highlighted future of ε′0 (perhaps it is not the preferred future).

ε′0

x yx x

ε0

x y

µ1

Figure 13. The edge labelled ε′0 will eventually consume ε0.

The first important point to observe is that the maximality of Supp(x)
ensures that there will never be any new edges labelled x in the future of I
(‘new’ in the sense of 1.5.4).

5proceeding one step into the future also allows us to assume that there are no letters
coloured µ1 to the right of I



24 MARTIN R. BRIDSON AND DANIEL GROVES

The second important point to note is that the edges labelled x in the future
of ε′0 that are to cancel with the futures of the edges labelled x in I must all lie
to the left of the highlighted future of ε′0. The point here is that the highlighted
future of ε′0 cannot be cancelled by an edge of I (by the maximality of x), and
in order for it to be cancelled from the other side, all the edges to its right
labelled x would have to be cancelled first, which would mean that they too
were cancelling with something not in the future of I.

We now come to the key observation of the proof: at each stage j steps
into the future of S, the leftmost6 edge ε′j in the future of ε′0 that is labelled
x must be cancelled by an edge from the future of I immediately, i.e. in the
corridor where it appears at time(S)+ j. Indeed if this were not the case, then
ε′j would develop a preferred future which, being an old edge (in the sense
of Definition 1.5.4), could only cancel with a new edge (Lemma 1.5.5) in the
future of I. And since we have arranged that there be no new edges labelled x,
the preferred future of ε′j would never cancel with an edge in the future of I.
But this cannot be, because the continuing existence of a preferred future for
ε′j would prevent anything to its right consuming an edge in the future of I,
and the penultimate sentence in the third paragraph of this proof implies that
no new edges labelled x will ever appear to its left in the future of ε′0. Thus if
ε′j is not cancelled immediately then we have a contradiction to the fact that
ε′0 must eventually consume ε0.

We have just proved that at time(S) + j the edge ε′j must cancel with
the preferred future of an edge εj in I that is labelled x. According to the
Bounded Cancellation Lemma, the preferred future of εj at (time(S) + j − 1)
must lie within a distance B of the right end of the future of I. Since there is
no cancellation within the future I, an iteration of this argument shows that
for as long as there exist edges labelled x in the future of I, each successive
pair of these edges is separated by less than B + |φ(y)| ≤ 2B edges at each
moment in time, and the rightmost must be within a distance B of the right
end of the future of I.

But since φ(x) contains at least one letter other than the preferred future
of x, it follows that there cannot be a pair of edges of I labelled x that remain
unconsumed at time(S) + 2B, for otherwise they would have grown a distance
more than 2B apart, contradicting the conclusion of the previous paragraph.
And proceeding one more step into the future, the last edge labelled x must
be consumed.

Since at most B letters of I are cancelled at the right at each stage in its
future, all of the edges of I labelled x are within a distance less than 2B2 of
the right end of I, and they are all consumed when I has flowed 2B steps into
the future. If no non-constant edges remain in the future of I at this stage,
then we know that |I| ≤ 4B2.

6we have already noted that this is to the left of the highlighted future of ε′0
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If there do remain non-constant edges, we take the maximal interval of
the future of I at time(S) + 2B whose leftmost edge is non-constant, and we
repeat the argument. (This interval is obtained from the complete future of I
by removing a possibly-empty collection of constant edges at its left extremity.)

We proceed in this manner. The interval that we begin with at each iter-
ation has strictly fewer strata than the previous one and therefore the proce-
dure stops before m = rank(F ) iterations. At the time when it stops (at most
time(S) + 2mB), the future of I has been cancelled entirely, except possibly
for a block of constant edges at its left extremity. With one final appeal to the
Bounded Cancellation Lemma, we deduce that |I| ≤ 2mB2. �

Corollary 1.6.8. ∑
(µ,µ′)∈Z

|C(µ,µ′)(1)| < 2C1 |∂∆|.

Proof. This follows immediately from Lemmas 1.6.6 and 1.6.7. �

1.7. The Bound on
∑
µ∈S0

|A4(S0, µ)| and
∑
µ∈S0

|A2(S0, µ)|

The sum of our previous arguments has reduced us to the nub of the dif-
ficulties that one faces in trying to prove the Theorem C, namely the possible
existence of large blocks of constant letters in the words labelling the bottoms
of corridors. Now we must obtain a bound on∑

(µ,µ′)∈Z

|C(µ,µ′)(2)|

that will enable us to bound
∑
µ∈S0

|A4(S0, µ)| and7
∑
µ∈S0

|A2(S0, µ)| by a linear

function of |∂∆|. These are the final estimates required to complete the proof
of Theorem C — see Section 1.11 for a résumé of the proof.

The regions C(µ,µ′)(2) are static, in the sense that they do not change under
iteration by φ, so the considerations of future growth that helped us so much in
previous sections cannot be brought to bear directly. Rather, we must analyse
the complete history of blocks of constant letters, understand how large blocks
come into existence, and use global considerations to limit the sum of the sizes
of all such blocks.

Because of the global nature of the arguments, we shall not obtain bounds
on the sizes of the individual sets C(µ,µ′)(2). Instead, we shall identify an
associated block of constant letters elsewhere in the diagram (a “team”) that
is amenable to a delicate string of balancing arguments that facilitates a bound
on a union of associated regions C(µ,µ′)(2).

7In practice we only need concern ourselves with A4, the arguments for A2 being entirely
similar
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Our strategy is motivated by the following considerations. Believing The-
orem 1.4.1 to be true, we seek payment from the global geometry of ∆ to
compensate us for having to handle the troublesome blocks of constant edges
C(µ,µ′)(2); the currencies of payment are consumed colours and dedicated sub-
sets of edges on ∂∆ — since ∆ can have at most |∂∆| of each, if we prove that
adequate payment is available then our troubles will be bounded and Theorem
C will follow. The chosen currencies are apposite because, as we shall see in
Section 1.8, a large block of edges labelled by constant letters can only come
into existence if a colour (or colours) associated to a component of this block
in the past was consumed completely, or else the boundary of ∆ intruded into
the past of the block (or else something nearby) causing smaller regions of
constant edges to elide.

In the remainder of this section we shall explain how various estimates on
the behaviour of blocks of constant letters in ∆ can be combined to obtain the
bounds that we require on

∑
µ∈S0

|A4(S0, µ)| and
∑
µ∈S0

|A2(S0, µ)|. We hope that

this explanation will provide the diligent reader with a useful road map and
sufficient motivation to sustain them through the many technicalities needed
to establish the estimates in subsequent sections.

In the following proposition, L is the maximum length of the images φ(x)
of the basis elements of F , while T1 is the constant from the Pincer Lemma
1.8.26, and C1 is the upper bound on the lengths of the intervals C(µ,µ′)(1)
from Lemma 1.6.7, T0 comes from the Two Colour Lemma 1.8.4 and C4 comes
from Lemma 1.9.4. The constant λ0 is defined above Definition 1.8.22, and B
is the Bounded Cancellation constant from Lemma 1.2.4.

The Constant K1 is defined to be

2C1+6λ0+2B(5T0+6T1+2)+2LC4(6T1+8T0+3)+(B+3)(3T1+2T0)L+5L+2.

Proposition 1.7.1. ∑
µ∈S0

|A4(S0, µ)| ≤ K1 |∂∆|.

1.7.1. Dramatis Personae. The “proof” that we are about to present is
essentially a scheme for reducing the proposition to a series of technical lemmas
that will be proved in Sections 1.9 and 1.10. These lemmas are phrased in the
language associated to teams, the precise definition of which will also be given
in Section 1.9. Many of the proofs involve global cancellation arguments based
on the Pincer Lemma, which will be proved in the next section. Intuitively
speaking, a team (typically denoted T ) is a contiguous region of || T || constant
letters all of which are to be consumed by a fixed left para-linear edge (the
reaper). Notwithstanding this intuition, it is preferable for technical reasons
to define a team to be a set of pairs of colours (µ, µ′) ∈ Z, where µ′ is fixed
and the different members of the team correspond to different values of µ. We
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write (µ, µ′) ∈ T to denote membership. Teams also have virtual members,
denoted (µ, µ′) ∈v T (see Definition 1.9.8). There are less than 2 |∂∆| teams
(Lemma 1.9.10).

Each pair (µ, µ′) with C(µ,µ′)(2) non-empty is either a member or a virtual
member of a team (Lemma 1.9.10). There are short teams (Definition 1.9.6)
and long teams, of which some are distinguished (Lemma 1.9.29). There are
four types of genesis of a team, (G1), (G2), (G3) and (G4) (see Subsection
1.9.2). Teams of genesis (G3) have associated to them a pincer ΠT (Definition
1.9.12) yielding an auxiliary set of colours χ(ΠT ). There is also a set of colours
χP (T ) associated to the time before the pincer ΠT comes into play. For long,
undistinguished teams, we also need to consider certain sets χc(T ) and χδ(T ) of
colours consumed in the past of T (see the proof of Lemma 1.9.29). Such teams
may also have three sets of edges in ∂∆ associated to them: ∂T , down1(T )
and down2(T ). An important feature of the definitions of ∂T and down1(T )
is that the sets associated to different teams are disjoint. This disjointness
is crucial in the following proof, where we use the fact that the sum of their
cardinalities is at most |∂∆|. Similarly, the disjointness of the sets χc(T ) is
used to estimate the sum of their cardinalities by |∂∆| and likewise for χδ(T )
and χP (T ).

It is not necessarily true that the sets down2(T ) are disjoint for different
teams, but we shall explain how to account for the amount of ‘double-counting’
that can occur (see Lemma 1.9.29).

Associated to every team one has the time t1(T ) at which the reaper starts
consuming the team (see Subsection 1.9.1). Teams of genesis (G3) also have
two earlier times t2(T ) and t3(T ) associated to them as well as an auxiliary set
of edges Q(T ), the definitions of which are somewhat technical (see Definition
1.9.13 et seq.).

In Section 1.10 we describe a bonus scheme that assigns a set of extra
edges, bonus(T ) to each team. These bonuses are assigned so as to ensure
that |bonus(T )| + || T || dominates the sum of the cardinalities of the sets
C(µ,µ′)(2) associated to the members and virtual members of T .

Proof of Proposition 1.7.1.
Recall that A4(S0, µ) is partitioned into disjoint regions C(µ,µ′) which in

turn are partitioned into C(µ,µ′)(1) and C(µ,µ′)(2).
Given any µ1 and µ2, at most one ordering of {µ1, µ2} can arise in S0.

Thus Lemma 1.6.6 implies that there are less than 2 |∂∆| pairs (µ, µ′) ∈ Z
with C(µ,µ′) ⊂ ⊥(S0) non-empty. It follows immediately from this observation
and Lemma 1.6.7 that

∑
(µ,µ′)∈Z

|C(µ,µ′)(1)| ≤ 2C1 |∂∆|.
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Lemma 1.9.29 accounts for the set of distinguished long teams DΛ:∑
T ∈DΛ

∑
(µ,µ′)∈T

|C(µ,µ′)(2)| ≤ 6B |∂∆|(T1 + T0).

For all other teams T we rely on Lemma 1.10.2 which states

(1.7.1)
∑

(µ,µ′)∈T or (µ,µ′)∈vT

|C(µ,µ′)(2)| ≤ || T || + |bonus(T )|+B.

We next consider the genesis of teams. All teams of genesis (G4) are short
(Lemma 1.9.7). And by Definition 1.9.6 for the short teams T ∈ Σ we have∑

T ∈Σ

∑
(µ,µ′)∈T

|C(µ,µ′)(2)| ≤ 2λ0 |∂∆|+
∑
T ∈Σ

(
|bonus(T )|+B

)
.

Lemma 1.9.20 tells us that for teams of genesis (G1) and (G2) we have

|| T || ≤ 2LC4|down1(T )|+ |∂T |,
whilst for teams of genesis (G3) we have

|| T || ≤ 2LC4

(
|down1(T )|+ |Q(T )|

)
+ T0

(
|χP (T )|+ 1

)
+ |∂T |+ λ0.

Let G3 denote the set of teams of genesis (G3) with Q(T ) non-empty. In
Definition 1.9.25 we break Q(T ) into pieces so that

|Q(T )| = t3(T )− t2(T ) + |down2(T )|.
Making crucial use of the Pincer Lemma, in Corollary 1.9.24 we prove that∑

T ∈G3

t3(T )− t2(T ) ≤ 3T1 |∂∆|,

and in Corollary 1.9.31 we prove that∑
T ∈G3

|down2(T )| ≤ (2 + 3T1 + 5T0) |∂∆|.

This completes the estimate on |Q(T )| and hence || T || .
Section 10 is dedicated to the proof of Proposition 1.10.13, which states∑

teams
|bonus(T )| ≤

(
(B+3)(3T1+2T0)L+6BT1+4BT0+2λ0+2B+5L+1

)
|∂∆|.

Adding all of these estimates and recalling that there are less than 2 |∂∆|
teams, we deduce: ∑

µ∈S0

|A4(S0, µ)| ≤ K1 |∂∆|,

where K1 is

2C1+6λ0+2B(5T0+6T1+2)+2LC4(6T1+8T0+3)+(B+3)(3T1+2T0)L+5L+2.

Thus the proposition is proved. �
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Remark 1.7.2. The stated value of the constant K1 is an artifact of our
proof: we have simplified the estimates at each stage for the sake of clarity
rather than trying to optimise the constants involved. Nevertheless, we have
made some effort to make the arguments constructive so as to prove that there
exists an algorithm to calculate the Dehn function of F oφ Z directly from φ.

By a precisely analogous argument, we also have:

Proposition 1.7.3. ∑
µ∈S0

|A2(S0, µ)| ≤ K1 |∂∆|,

where K1 is the constant defined prior to Proposition 1.7.1.

1.8. The Pleasingly Rapid Consumption of Colours

This section contains the cancellation lemmas that we need to control the
manner in which colours are consumed. The key result in this direction is the
Pincer Lemma (Theorem 1.8.26).

1.8.1. The Buffer Lemma.

Lemma 1.8.1. Let I ⊂ ⊥(S) be an interval of edges labelled by constant
letters, and suppose that the colours µ1(S) and µ2(S) lie either side of I,
adjacent to it. Provided that the whole of I does not die in S, no non-constant
edge coloured µ1 will ever cancel with a non-constant edge coloured µ2.

Proof. Suppose that the future of I in >(S) is a non-empty interval
labelled w0. If µ1(S) is to the left of I, then reading from the left beginning
with the last non-constant edge coloured µ1, on the naive top of S we have
an interval labelled xw1y, where y is a non-constant letter coloured µ2 and w1

contains w0 and perhaps some constant letters from µ1 and µ2.
Our conditioning of φ (Proposition 1.4.5) ensures that, for all non-constant

letters z, the rightmost non-constant letter in φj(z) is the same for all j ≥ 1.
Therefore, in order for there to ever be cancellation between non-constant
letters coloured µ1 and µ2, we must have x = y−1. Thus on >(S) there is an
interval labelled xwx−1, where w is the (non-empty) free-reduction of w1.

At times greater than time(S), the future of the interval that we are con-
sidering will continue to have a core subarc labelled xwjx

−1, where wj is a
conjugate of w by a (possibly-empty) word in constant letters (unless the
interval hits a singularity or the boundary). In particular, no non-constant
letters from µ1 and µ2 can ever cancel each other. �

In the light of the Bounded Cancellation Lemma we deduce:

Corollary 1.8.2. Let I ⊂ ⊥(S) be an interval of edges labelled by constant
letters, and suppose that the colours µ1(S) and µ2(S) lie either side of I,
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adjacent to it. If |I| ≥ B then there is never any cancellation between non-
constant letters in µ1 and µ2.

1.8.2. The Two Colour Lemma.

Definition 1.8.3. Suppose that U and V are positive words8 and that
for some k > 0 the only negative exponents occurring in φk(UV −1) are on
constant letters. Then we say that U φ-neuters V −1 in at most k steps.

We shall also apply the term φ-neuters to describe the cancellation between
colours µ(S), µ′(S) ⊆ ⊥(S) that are adjacent in corridors of van Kampen
diagrams, and the following lemma remains valid in that context.

Proposition 1.8.4 (Two Colour Lemma). There exists a constant T0 de-
pending only on φ so that for all positive words U and V , if U φ-neuters V −1

then it does so in at most T0 steps.

Proof. We express V −1 as a product of three subwords: reading from the
left of V −1, the first subword ends with the last letter y such that φ(y) contains
a left-fast letter; the second subword follows the first and ends with the last
non-constant letter in V −1; the remainder of V −1 consists entirely of constant
letters.

Lemma 1.5.3 tells us that the length of the first subword is less than C0,
and the proof of Lemma 1.6.7 provides a bound of C1 on the length of the
second subword.

Now consider the freely reduced form of φk(UV −1), and let vk denote its
subword that begins with the first letter of negative exponent and ends with
the final non-constant letter. The argument just applied to V −1 shows that vk
has length less than C0 + C1 for all k ≥ 0.

Suppose that U φ-neuters V −1 in exactly N steps, let αN−1 be the letter of
φN−1(UV −1) that consumes the last letter of vN−1, and let αk be the ancestor
of αN−1 in φk(UV −1). Write φk(UV −1) = wkαkukvkw

′
k.

Lemma 1.5.3 shows that |uk| < C0 for all k < N , and we have just argued
that |vk| < C0 + C1. Thus we obtain a bound (independent of U and V ) on
the number of words αkukvk that arise as k varies — call this number T0. If N
were greater than T0, then some configuration αkukvk with vk non-empty would
recur. But this is nonsense, because once there is this repetition, the words
vk will continue to repeat, and thus V −1 will never be φ-neutered, contrary to
assumption. �

Corollary 1.8.5. There exists a constant T0
′, depending only on φ, with

the following property: if U and V are positive words, V begins with a non-
constant letter and φk(UV −1) is positive for some k > 0, then the least such k
is less than T0

′.

8i.e. none of their letters are inverses a−1
j
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Proof. The preceding lemma provides an upper bound on the least in-
teger N such that φN(UV −1) contains no non-constant letters with negative
exponent. Up to this point, the rightmost non-constant letter in φk(UV −1)
may have been spawning constant letters to its right, and thus φk(UV −1) may
have a terminal segment consisting of constant letters. Since the rightmost
non-constant letter of φk(V −1) does not vary with k when k < N (by Propo-
sition 1.4.5), the length of this segment grows at a constant rate (< L) during
each application of φ. Similarly, its length changes at a constant rate after
time N , decreasing until it is eventually cancelled.

Since N ≤ T0, this segment of constant letters has length less than LT0 at
time N , and hence is cancelled entirely before time T0(L+ 1). �

1.8.3. The disappearance of colours: Pincers and implosions. In
this subsection we turn our attention to the detailed study of how non-adjacent
colours along a corridor in ∆ can come together solely as a result of the mutual
annihilation of the intervening colours. Such an event determines a pincer
(Figure 14), which is defined as follows.

p1

time(St)

time(SΠ)

time(Sb)

e1 e2

p2

Figure 14. A pincer.

Definition 1.8.6. Consider a pair of paths p1, p2 in F ⊆ ∆ tracing the
histories of 2 non-constant edges e1, e2 that cancel in a corridor St. Let µi
denote the colour of the 2-cells along pi. Suppose that at time τ0 these paths
lie in a common corridor Sb. Under these circumstances, we define the pincer
Π = Π(p1, p2, τ0) to be the subdiagram of ∆ enclosed by the chains of 2-cells
along p1 and p2, and the chain of 2-cells connecting them in Sb.

When it creates a desirable emphasis, we shall write Sb(Π) and St(Π) in
place of Sb and St.

We define SΠ to be the earliest corridor of the pincer in which µ1(SΠ) and
µ2(SΠ) are adjacent. We define χ̃(Π) to be the set of colours µ /∈ {µ1, µ2} such
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that there is a 2-cell in Π coloured µ. And we define

Life(Π) = time(SΠ)− time(Sb).

Proposition 1.8.7 (Unnested Pincer Lemma). There exists a constant T̂1,
depending only on φ, such that for any pincer Π

Life(Π) ≤ T̂1(1 + |χ̃(Π)|).

Fix a pincer Π and assume Life(Π) 6= 0. The idea of the proof of Proposi-

tion 1.8.7 is as follows: we shall identify a constant T̂1 and argue that if none
of the colours µ ∈ χ̃(Π) were consumed entirely by time(Sb)+ T̂1, the situation
reached would be so stable that no colours could be consumed in Π at subse-
quent times, contradicting the fact that all but µ1 and µ2 must be consumed
by time(SΠ).

With this approach in mind, we make the following definition:

Definition 1.8.8. Let p be a positive integer. A p-implosive array of
colours in a corridor S is an ordered tuple A(S) = [ν0(S), . . . , νr(S)], with
r > 1, such that:

(1) each pair of colours {νj, νj+1} is essentially adjacent in S, meaning
that there are no non-constant edges of any other colour separating
νj(S) from νj+1(S);

(2) in each of the corridors S = S1, S2, . . . , Sp in the future of S, every
νj(S

i) contains a non-constant edge;
(3) in Sp, either a non-constant edge coloured ν0 cancels a non-constant

edge coloured νr (and hence the colours νj with j = 1, . . . , r − 1 are
consumed entirely), or else all of the non-constant letters in νj(S

p),
for j = 1, . . . , r − 1, are cancelled in Sp by edges from one of the
colours of the array, while ν0(Sp) and νr(S

p) contain non-constant
letters that survive in the free-reduction of the naive future of the
interval ν0(Sp) . . . νr(S

p) ⊂ ⊥(Sp) (but may nevertheless be cancelled
in Sp by edges from colours external to the array).

Arrays satisfying the first of the conditions in (3) are said to be of Type I, and
those satisfying the second condition are said to be of Type II. (These types
are not mutually exclusive.)

The residual block of an array of Type II is the interval of constant edges
between the rightmost non-constant letter of ν0 and the leftmost non-constant
letter of νr in the free reduction of the naive future of ν0(Sp) . . . νr(S

p). The
enduring block of the array is the set of constant edges in ⊥(S) that have a
future in the residual block.

Note that there may exist unnamed colours between νj(S) and νj+1(S)
consisting entirely of constant edges.
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Remarks 1.8.9. Let [ν0(S), . . . , νr(S)] be a p-implosive array.

(1) Any implosive subarray of [ν0(S), . . . , νr(S)] is p-implosive (same p).
(2) If an edge of νi cancels with an edge of νj and j − i > 1, then this

cancellation can only take place in Sp. If the edges cancelling are non-constant,
then the subarray [νi(S), . . . , νj(S)] is p-implosive of Type I.

(3) Given x, y, w ∈ F , if the freely reduced words representing x, y and
φ(xwy) consist only of constant letters, then so does the reduced form of w,
since the subgroup generated by the constant letters is invariant under φ±1. It
follows that the residual block of any array of Type II contains edges from at
most two of the colours νj, and if there are two colours they must be essentially
adjacent, i.e. νj(S

p), νj+1(Sp).
(4) For the same reason, the enduring block of an implosive array of Type

II is an interval involving at most two of the νj, and if there are two such
colours then they must be essentially adjacent.

Lemma 1.8.10. The ordered list of colours along each corridor before time(SΠ)
in a pincer Π must contain an implosive array.

Proof. At the top of the pincer there is cancellation between non-constant
edges. Lemma 1.8.1 tells us that before time(SΠ) the colours of these edges
must have been separated by a non-constant letter of a different colour, hence
the list of non-constant colours along the bottom of SΠ is a 1-implosive ar-
ray. This same list of colours defines an implosive array at each earlier time
in the pincer until, going backwards in time, further non-constant colours ap-
pear. Suppose µ has non-constant letters in Π at time t but not time t + 1.
Let ν0 be the first colour to the left of µ that contains non-constant letters
at time t + 1, and let νr be the first such colour to the right. If St is the
corridor at time t, then the list of essentially-adjacent non-constant colours
[ν0(St), . . . , µ(St), . . . , νr(St)] is a 1-implosive array. Furthermore, the array
[ν0(St′), . . . , µ(St′), . . . , νr(St′)] is a (t′ − t+ 1)-implosive array for each earlier
time t′ until (going backwards in time) either further non-constant colours
appear or else we reach the bottom of the pincer. �

If, further to the above lemma, we can argue that there is a constant T̂1 such
that each corridor before time(SΠ) contains a p-implosive array with p ≤ T̂1,
then we will know that at least one of the colours from χ̃(P) is essentially
consumed (i.e. comes to consist of constant edges only) during each interval

of T̂1 units in time during the lifetime of the pincer. Thus Proposition 1.8.7
is an immediate consequence of the following result, which will be proved in
(1.8.18).

Proposition 1.8.11 (Regular Implosions). There is a constant T̂1 depend-
ing only on φ such that every implosive array in any minimal area diagram ∆
is p-implosive for some p ≤ T̂1.
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The first restriction to note concerning implosive arrays is this:

Lemma 1.8.12. If [ν0(S), . . . , νr(S)] is implosive of Type I, then r ≤ B. If
it is implosive of Type II, then r < 2B.

Proof. In Type I arrays, the interval ν1(Sp) . . . νr−1(Sp) ⊂ ⊥(Sp) is to die
in Sp, so r− 1 < B by the Bounded Cancellation Lemma. For Type II arrays,
one applies the same argument to the intervals joining ν0(Sp) and νr(S

p) to
the residual block of constant letters. �

Remark 1.8.13. In the light of Lemma 1.8.12, an obvious finiteness argu-
ment would provide the bound required for Lemma 1.8.11 if we were willing
to restrict ourselves to implosive arrays with a uniform bound on their length.
Motivated by this observation, we seek to prove that every implosive array
contains an implosive sub-array that is uniformly short.

In order to identify a suitable notion of short, we need to consider a further
decomposition of the colours νj(Sb) in a p-implosive array [ν0(Sb), . . . , νr(Sb)].

Previously (Subsection 1.6.3) we partitioned each colour νj(Sb) into five
intervals A1(Sb, νj), . . . , A5(Sb, νj) and then further decomposed A4 into subin-
tervals C(νj ,ν′)(1) and C(νj ,ν′)(2) according to the colours of the edges that were
going to consume these subintervals in the future. There is a corresponding
decomposition of A2 into intervals which we denote C2

(νj ,ν′)
(1) and C2

(νj ,ν′)
(2)

(where ν ′ is now to the left of νj in Sb).
Adapting to our new focus, we now define Rj(Sb) = A5(ν1, Sb)∪C(νj ,νj+1)(1),

and Lj(Sb) = A1(ν1, Sb)∪C2
(νj ,νj+1)(1). We also define CR

j (Sb) to be C(νj ,νj−1)(2)

minus any edges from the excluded block, and CL
j (Sb) to be C2

(νj ,νj−1)(2) minus

any edges from the excluded block. Thus we obtain a decomposition of νj(Sb)
into five intervals (see Figure 15)

Lj(Sb), C
L
j (Sb), Mess(Sb, νj), C

R
j (Sb), Rj(Sb)

where Mess(Sb, νj) contains the edges whose preferred future dies at the time
of implosion together with edges from the excluded block9.

. . . . . .Lj(Sb) Rj(Sb)CRj (Sb)Mess(Sb, νj)CLj (Sb)

Figure 15. The decomposition of the colour νj

The terminal colours in our array, ν0 and νr, play a special role. This is
reflected in the fact that we shall only need to consider the segment of ν0 from

9At this point the reader may find it helpful to recall that only arrays of Type II have
excluded blocks, and such a block is either contained in a single colour, or in adjacent colours
νj(Sb) ∪ νj+1(Sb) with the intervening intervals Rj(Sb) . . . Lj+1(Sb) empty.
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its right end up to and including the edge one to the left of Mess(Sb, ν0). And
in νr we shall only need to consider the segment from its left end up to and
including the edge one to the right of Mess(Sb, νr). We write L(νj, Sb) and
R(νj, Sb), respectively, to denote these sub-intervals of νj(Sb).

Definition 1.8.14. The length ofA(S) = [ν0(S), . . . , νr(S)], written ||A(S) || ,
is the number of edges in the interval L(ν0, S) . . .R(νr, S) ⊂ ⊥(S). (Note that
||A(S) || takes account of the unnamed colours.)

In keeping with the notation in the definition of p-implosive, we shall write
St for the corridor t steps into the future of Sb; in particular S0 = Sb and each
νj with j = 1, . . . , r − 1 essentially vanishes in Sp.

By definition, no preferred future of any edge in Mess(νj, Sb) is cancelled
before Sp. Hence these intervals do not shrink in length before that time, and
as in the proof of Lemma 1.8.12 we can use the Bounded Cancellation Lemma
to bound the sum of their lengths:

Lemma 1.8.15. After excluding the edges of the enduring block, the sum of
the lengths of the intervals Mess(νj, Sb) is at most 2B.

Combining this estimate with the bounds from Lemmas 1.5.3 and 1.6.7, we
deduce that for j = 1, . . . , r − 1

|νj(Sb)| ≤ |CL
j (Sb)|+ |CR

j (Sb)|+ 2C0 + 2C1 + 2B + Ej,
where Ej is the number of edges from the excluded block coloured νj.

Similarly,
|L(ν0, Sb)| ≤ |CR

0 (Sb)|+ C0 + C1 +B + E0

and
|R(νr, Sb)| ≤ |CL

r (Sb)|+ C0 + C1 +B + Er.
This motivates us to define an array of colours [ν0(S), . . . , νr(S)] to be very
short if for j = 1, . . . , r − 1 we have

|νj(S)| ≤ 2C0 + 2C1 + 5B + 1,

and
|L(ν0, S)| ≤ C0 + C1 + 5B + 1,

and
|R(νr, S)| ≤ C0 + C1 + 5B + 1,

and for j = 0, . . . , r − 1 the interval formed by the unnamed colours between
νj(S) and νj+1(S) has total length at most B.

An implosive array is said to be short if it satisfies the weaker inequalities
obtained by increasing each of these bounds by 2BT0.

Lemma 1.8.16. Let A = [ν0(S0), . . . , νr(S
0)] be a p-implosive array with

p ≥ T0.
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(1) If [ν0(ST0), . . . , νr(S
T0)] is very short, then A is short.

(2) If A is short, then ||A || ≤ 2B(2C0 + 2C1 + 5B+ 1 + 2BT0) + 2B2(1 +
2T0).

Proof. Item (1) is an immediate consequence of the Bounded Cancellation
Lemma 1.2.4. The (crude) bound in (2) is an immediate consequence of Lemma
1.8.15 and the inequalities in the definition of short; the first summand is an
estimate on the sum of the lengths of the named colours, and the second
summand accounts for the unnamed colours. �

The following lemma is the key step in the proof of Proposition 1.8.7.

Lemma 1.8.17. If A(S0) = [ν0(S0), . . . , νr(S
0)] is a p-implosive array, then

at least one of the following statements is true:

(1) p ≤ 2T0;
(2) A(S0) is short;
(3) p > 2T0 and the array A(ST0) contains a very short implosive sub-

array [νk(S
T0), . . . , νl(S

T0)].

Proof. Assume p > 2T0 and that [ν0(S0), . . . , νr(S
0)] is not short. We

claim that there is a block of at least B + 1 constant letters in the interval
determined by the array L(ν0, S

T0) . . .L(νr, S
T0). Indeed, by definition, if an

array is not short then either one of the Ej has length at least B+ 1, or one of
the blocks of unnamed colours has length at least B(2T0+1)+1, or else at least
one of the intervals of constant letters CL

j (S0) or CR
j (S0) has length at least

B(T0 + 1) + 1. In the first case, since Ej is in the excluded block, none of its
edges are cancelled before the moment of implosion, and hence it contributes
a block of at least B + 1 constant letters to A(ST0); in the second case, the
Bounded Cancellation Lemma assures us that the length of the appropriate
block of unnamed colours can decrease by at most 2B at each step before the
implosion of the array, and hence it still contributes a block of at least B + 1
constant edges to A(ST0); and similarly, in the third case, C∗j (S0) can decrease
by at most B at each step before the implosion of the array.

Let β be a block of at least B + 1 constant edges in A(ST0) with non-
constant edges el and eρ immediately to its left and right, respectively. The
Buffer Lemma 1.8.1 assures us that the non-constant edges in the future of el
will never interact with the non-constant edges in the future of eρ. Thus at
least one of el or eρ must be stabbed in the back, i.e. its entire non-constant
future must be consumed by edges on its own side of β. Suppose, for ease of
notation, that it is el and let νi be the colour of el. We claim that if νk is the
colour of the letter that ultimately consumes el, then k ≤ i− 2.

We shall derive a contradiction from the assumption that the edge which
ultimately consumes el is coloured νi−1. There are two cases to consider ac-
cording to whether eρ is also coloured νi. If it is, then we consider the word V
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labelling the arc of ⊥(S0) from the left end of νi(S
0) to the past of el; the con-

sumption of the non-constant future of el completes the φ-neutering of V by
the word labelling νi−1(S0), in particular this neutering will have taken more
than T0 steps in time, contradicting the Two Colour Lemma 1.8.4. If eρ is not
coloured νi, then the consumption of the non-constant future of el results in
a new essential adjacency of colours and hence can only be complete at the
moment of implosion, i.e. time(Sp). But this consumption constitutes the neu-
tering of νi(S

T0) by νi−1(ST0), and according to the Two Colour Lemma this
neutering must be accomplished in at most T0 units of time. Thus p ≤ 2T0,
contrary to our hypothesis.

Thus we have proved that the edge which ultimately consumes el is coloured
νk where k ≤ i − 2. Under these circumstances (or the symmetric situation
with eρ in place of el) we say that νk neuters νi from behind and write νk↘νi.

Figure 16. The nesting associated to↘

There is a natural nesting among the↘-related pairs of colours from the
array: (νk1 , νj1) < (νk2 , νj2) if νk1 and νj1 both lie between νk2 and νj2 in S0.
See Figure 16.

We focus our attention on an innermost (i.e. minimal) pair with νk↘ νi.
By definition |k − i| ≥ 2. If there were a block of at least B + 1 constant
letters between the closest non-constant letters of νk(S

T0) and νi(S
T0), then

the preceding argument would yield a neutering from behind that contradicted
the innermost nature of νk↘ νi. Thus [νj(S

T0), . . . , νk(S
T0)] is a very short

array, and we are done. �

1.8.18. Proof of Regular Implosions (Prop.1.8.11): Given the bound in
Lemma 1.8.16(2), an obvious finiteness argument provides a constant τ such
that every short implosive array is p-implosive with p ≤ τ . And the same
bound applies to implosive arrays that contain a short sub-array (Remark
1.8.9(1)). So in the light of Lemmas 1.8.17 and 1.8.16(1), it suffices to let

T̂1 = max{2T0, τ}. �

1.8.4. Super-Buffers. In this subsection we prove an important cancel-
lation lemma based on Proposition 1.8.7, this lemma involves the following
constant.
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Definition 1.8.19. We fix an integer T ′1 such that one gets repetitions in
all T ′1-long subsequences of 5-tuples of reduced words

Uk :=
(
uk,1, uk,2, uk,3, uk,4, uk,5

)
k = 1, 2, . . .

with |uk,1| and |uk,1| at most C0 +C1 + 2B+ 1, while |uk2| and |uk4| are at most
C0 + C1, and |uk3| ≤ 4B + 1. That is, for some t1 ≤ t2 ≤ T ′1 and(

ut1,1, ut1,2, ut1,3, ut1,4, ut1,5

)
=
(
ut2,1, ut2,2, ut2,3, ut2,4, ut2,5

)
.

Stipulation 1.8.20. Assume T ′1 ≥ T̂1.

The cancellation lemma we need is most easily phrased in terms of colours
of subwords, which we define as follows, keeping firmly in mind the example of
a stack of partial corridors excised from the interior of a van Kampen diagram,
retaining their memory of the colours to which the edges belong.

We have a word W with a decomposition into preferred subwords V =
V1V2 · · ·Vk, where each Vi is either positive or negative; we think of these
subwords as having colours µ1, . . . µk. Take the freely reduced words φ(Vi),
concatenate them, then cancel to form a freely reduced word. There is some
freedom in the choice of cancellation scheme, as in the folding of corridors, but
we fix a choice, thus assigning to each letter of the freely reduced form of φ(V )
the colour µi of its ancestor. We repeat this process, thus assigning colours to
the letters in the reduced form of φk(V ) for each integer k > 0.

The process that we have just described is an algebraic description of a
choice of minimal area van Kampen diagram for t−kV tkφk(V )−1. Thus the
following lemma is a comment on the form of such diagrams.

Proposition 1.8.21. Let V = V1V2V3 be a concatenation of words (coloured
ν1, ν2, ν3) each of which is either positive or negative. If W is a subword of
the reduced form of φT

′
1(V ) and W has a non-constant letter coloured νi for

each i ∈ {1, 2, 3}, then for all k ≥ 0 there are non-constant letters in φk(W )
coloured ν2.

Proof. Let νi(W ) denote the subword of W coloured νi, and let νji denote
the maximal subword coloured νi in (the reduced word representing) φi(V1V2V3)

. Note that ν2(W ) = ν
T ′1
2 , and more generally ν

T ′1+j
2 is the maximal word in

φj(W ) coloured ν2.
Fix k > T ′1 and consider the diagram formed by the stack of corridors

described prior to the proposition. The bottom of the first corridor is labelled
V , and we regard it as being divided into three coloured intervals according
to the decomposition V1V2V3. Since ν2(W ) contains non-constant letters and

T ′1 > T̂1, the array formed by these colours is not implosive (Proposition 1.8.7),
and hence ν1(W ) and ν3(W ) will never essentially consume ν2(W ). However,
the proposition is not yet proved because there remains the possibility that ν2
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may essentially vanish because it neuters ν1(W ), say, and is then neutered by
ν3(W ). We proceed under this assumption, seeking a contradiction. (The case
where the roles of ν1 and ν3 are reversed is entirely similar.)

For each 1 ≤ i ≤ T ′1, we have φi(V1V2V3) = νi1, ν
i
2 and νi3. Write νi2 ≡

V i(1)V i(2)V i(3), where V i(1) ends with last non-constant letter in νi2 whose
entire non-constant future is eventually consumed by letters coloured ν1, and
V i(3) begins with the leftmost non-constant letter whose entire non-constant
future is eventually consumed by letters coloured ν3. Lemmas 1.5.3 and 1.6.7
tell us that V i(1) and V i(3) have length at most C0 + C1.
Claim: V i(2) contains exactly one non-constant edge and has length no more
than 4B + 1.

We are assuming that ν2(W ) neuters ν1(W ). Consider the (non-constant)
edge εi in νi2 that will eventually consume the final non-constant edge in ν1(W ).
Note that εi is the leftmost non-constant edge in V i(2). Moreover, we are
assuming that ν3(W ) ultimately neuters ν2(W ), so in particular it consumes
the entire future of any edge to the right of εi, which forces εi to be the
rightmost non-constant edge in V i(2). The Buffer Lemma tells us that εi must
lie within 2B of both ends of V i(2), and hence the claim is proved.

Looking to the left of V i(1), we now consider the subword Li of νi1 that
begins with the leftmost non-constant edge in the future of which there is a
non-constant letter that cancels with a letter coloured ν2. And looking to
the right of V i(3), we consider the subword that ends with the rightmost non-
constant letter in the future of which there is a non-constant letter that cancels
with a letter coloured ν2. any of whose non-constant future cancels with an
edge painted ν2. As in previous arguments, The Buffer Lemma and Lemmas
1.5.3, 1.6.7 tell is that |Ri|, |Li| ≤ C0 + C1 + 2B + 1, for all i.

We have already bounded the lengths of V i(1), V i(2) and V i(3) by C0 +
C1, 4B+1 and C0+C1, respectively. Thus we are now in a position to invoke the
repetitive behaviour described in Definition 1.8.19: for some positive integers
i and t with i+ t ≤ T ′1, we get a repetition(

Ri, V i(1), V i(2), V i(3), Li
)

=
(
Ri+t, V i+t(1), V i+t(2), V i+t(3), Li+t

)
.

For as long as we are assured of the continuing presence of νi+s1 and νi+s3 ,
the fate of νi2 = V i(1)V i(2)V i(3) under s iterations of φ depends only on
(Ri, V i(1), V i(2), V i(3), Li). Thus(

V j(1), V j(2), V j(3)
)

=
(
V j+t(1), V j+t(2), V j+t(3)

)
for all j ≥ i within the time scale of this assurance. However this leads us to
an absurd conclusion, because once ν1 has become constant, at all subsequent
time, the surviving word coloured ν2 contains as a proper subword, the ν2 word
that existed at the corresponding times in the cycles (of period t) before T ′1,
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and in particular they can never essentially vanish, contrary to our assumption
that ν3 eventually neuters ν2. �

1.8.5. Nesting and the Pincer Lemma. In subsequent sections we
would like to bound the life of pincers by arguing that during the lifetime of a
pincer, colours must be consumed at a predictable rate (appealing to Propo-
sition 1.8.7), noting that there are only a limited number of colours. How-
ever, the bounds we need will require us to ascribe each consumed colour to a
unique pincer. Thus we encounter problems whenever one pincer is contained
in another. For reasons that will become apparent in subsequent sections, in
situations where we must confront this problem, the inner of the two pincers
will have a long block of constant edges along the corridor immediately above
its peak. More precisely, we will find ourselves in the situation described in
the following definition. The appearance of the constant λ0 := 2B(T0 + 1) + 1
in the following definition is explained by the role that this constant played in
the course of Lemma 1.8.17.

Definition 1.8.22. Consider one pincer Π1 contained in another Π0. Sup-
pose that in the corridor S ⊆ Π0 at the top of Π1 (where its boundary paths
p1(Π1) and p2(Π1) come together) the future in >(S) of at least one of the
edges containing p1(Π1) ∩ ⊥(S) or p2(Π1) ∩ ⊥(S) contains no non-constant
edges, and this future10 lies in an interval of at least λ0 constant edges con-
tained in Π0. Then we say that Π1 is nested in Π0. (in Figure 17, the λ0-long
block of constant edges are shown in black.) We say that Π1 is left-loaded or
right-loaded according to the direction in which the λ0-long block of constant
edges extends from the peak of Π1.

Remark 1.8.23. A nested pincer cannot be both left-loaded and right-
loaded (cf. Remark 1.8.9(3)).

If Π1 is left-loaded, then the future of p1(Π1) ∩ ⊥(S) contains no non-
constant edges. It may happen that the future of p2(Π1) also contains no
non-constant edges; in this case the colour µ of p2(Π1) essentially vanishes in
S due to cancellation between non-constant edges of µ and some colour to its
right. Symmetric considerations apply to right-loaded pincers.

Definition 1.8.24. For a pincer Π0, let {Πi}i∈I be the set of all pincers
nested in Π0. Then define

χ(Π0) = χ̃(Π0) r
⋃
i∈I

χ̃(Πi).

Lemma 1.8.25. If the pincer Π1 is nested in Π0 then time(St(Π1)) <
time(SΠ0).

10We allow this future to be empty, in which case “contained in” means that the im-
mediate past of the long block of constant edges is not separated from Π1 by any edge that
has a future in >(S).
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Figure 17. A depiction of nesting

Proof. The presence of the hypothesised block of constant letters in
>(St(Π1)) makes this an immediate consequence of the Buffer Lemma 1.8.1.

�

Define T1 := T ′1 + 2T0. The following theorem is the main result of this
section.

Theorem 1.8.26 (Pincer Lemma). For any pincer Π

Life(Π) ≤ T1(1 + |χ(Π)|).

Proof. The heart of our proof of Proposition 1.8.7 was that in each block
of T̂1 steps in time between time(Sb) and time(SΠ) at least one colour essen-
tially disappears. Our proof of the present theorem is an elaboration of that
argument: we must argue for the essential disappearance of a colour that is not
contained in any of pincers nested in Π. Thus we concentrate on that region
of the pincer Π that is exterior to the set of co-level11 1 pincers nested in it;
let {Πj}, j = 1, . . . , J be the set of such, indexed in order of appearance from
left to right.

For j = 1, . . . , J − 1, let Σj denote the set of colours along the bottom of
Π that have a non-constant edge strictly between Πj and Πj+1; if Πj is left-
loaded, then we include the colour of p2(Πj) in Σj, and if Πj is right-loaded,
then we include the colour of p1(Πj) in Σj−1. Likewise, we define Σ0 to be the
set of non-constant colours that lie to the left of Π1 together with the colour
of p1(Π), and we define ΣJ to be the set of non-constant colours that lie to the
right of ΠJ together with the colour of p2(Π).

11i.e. those that are maximal with respect to inclusion among the pincers nested in Π
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In order to prove the theorem, we derive a contradiction from the assump-
tion that in the first T1 units of time in the life of Π no colours in the union
of the Σj essentially vanish. (There is no loss of generality in starting at the
bottom of the pincer, since given any other starting time, one can discard the
pincer below that level.) We label the corridors, beginning at the bottom of
Π and proceeding in time as S0, S1, . . .

We focus on a single Σj, and write its colours in order as ν1, . . . , νr. We
analyse how the colours in Σj come to vanish. The first important observation
is that 2 ≤ i ≤ r − 1, it is not possible for the colour νi to essentially vanish
(at any time) due to cancellation merely between the colours in Σj. For if this
happened, there would be an implosive array in S0 containing νi(S

0) and so,
by Proposition 1.8.7, νi would vanish before ST1 , contrary to our assumption.

There remains the possibility that ν2 may neuter ν1 (after ST1). This
can happen in two ways. The first is that Πj−1 is left-loaded: in this case
the neutering happens within time T0 of the top of Πj−1 (by Two Colour
Lemma), and we are then in a stable situation in the sense that ν3 cannot
subsequently neuter ν2, by Proposition 1.8.21. Now suppose that Πj−1 is right-
loaded. Consider the earliest time t0 at which there is a block of at least B+ 1
constant edges in the past of the λ0-long block associated to Πj−1. If ν2 is to
neuter ν1, then it must do so within T0 steps of this time. Indeed, within T0

steps, if the non-constant edges of ν1 to the right of the block have not been
consumed by ν2, then they will never be consumed by a colour from Σj.

There is a further event that we must account for, which is closely related
to neutering: it may happen that ν1 is the colour of p2(Πj−1) and that ν2

consumes all of the non-constant edges to the right of the block of constant
edges discussed above; this is not a neutering but nevertheless the Two Colour
Lemma applies. We would like to apply Proposition 1.8.21 in this situation to
conclude that ν3 cannot subsequently neuter ν2. This is legitimate provided
t0 ≥ time(ST

′
1). If t0 < time(ST

′
1), then we still know that ν3 cannot neuter ν2

before ST1 , because by hypothesis no colour from Σj essentially vanishes before
this time. On the other hand, the Two Colour Lemma tells us that if ν3 is to
neuter ν2, then it must do so within T0 steps from t0, and t0 +T0 ≤ time(ST1).
Thus, once again, we conclude that ν3 can never neuter ν2.

Entirely similar arguments show that it cannot happen that νr is neutered
by νr−1 and that subsequently νr−2 neuters νr−1.

We have established the existence of a stable situation: proceeding past
the point where the restricted amount of possible neutering within Σj has
occurred, we may assume that the next essential disappearance of a colour
from Σj can only occur as a result of cancellation with a colour from some Σi
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with i 6= j. Such further cancellation must occur, of course, because all but
two12 of the colours in

⋃
j Σj must be consumed within Π.

Passing to innermost pair of interacting Σk we may assume i = j − 1 (cf.
proof of Lemma 1.8.17). Thus our proof will be complete if we can argue that
cancellation between non-constant edges from Σj−1 and Σj is impossible. We
have argued that the colours which are to cancel will be essentially adjacent
within time T0 of the top of Πj−1. On the other hand, there is a block of λ0

constant edges separating Σj−1-nonconstant edges and Σj-nonconstant edges
at the top of Πj−1. Since λ0 > 2B(T0 + 1) at least B + 1 of these constant
edges remain T0 steps later. The Buffer Lemma now obstructs the supposed
cancellation between non-constant edges in Σj−1 and Σj. �

1.9. Teams and their Associates

We begin the process of grouping pairs of colours (µ, µ′) into teams.

1.9.1. Pre-teams. The whole of C(µ,µ′)(2) will ultimately be consumed
by a single edge ε0 ∈ µ′(S0). We consider the time t0 at which the future
of ε0 starts consuming the future of C(µ,µ′)(2). If |C(µ,µ′)(2)| > 2B, then this
consumption will not be completed in three steps of time (Lemma 1.2.4). We
claim that in this circumstance, the leftmost µ′-coloured edge after the first
two steps of the cancellation must be left para-linear. Indeed it is not left-
constant since it must consume edges in the future of C(µ,µ′)(2), and since no
non-constant µ′-edges are cancelled by µ in passing from the first to the second
stage of cancellation, the leftmost non-constant µ′-label must remain the same
(Proposition 1.4.5). We denote this left para-linear edge at time t0 + 2 by εµ.

Let εµ be the rightmost edge in the future of C(µ,µ′)(2) at time t0. We trace
the ancestry of εµ and εµ in the trees of F ⊂ ∆ corresponding to the colours
µ and µ′ (as defined in 1.3.2). We go back to the last point in time t̂1(µ, µ′) at
which both ancestors lay in a common corridor and the interval on the bottom
of this corridor between the pasts of εµ and εµ is comprised entirely of constant
edges whose future is eventually consumed by the ancestor of εµ at this time.
We denote this corridor S↑.

Definition 1.9.1. The ancestor of εµ at time t̂1(µ, µ′) is called the reaper
and is denoted ρ̂(µ, µ′). The set of edges in ⊥(S↑) which are eventually con-

sumed by ρ̂(µ, µ′) is denoted T̂(µ, µ′). This is a contiguous set of edges. The

pre-team T̂ (µ, µ′) is defined to be the set of pairs (µ1, µ
′) such that T̂(µ, µ′)

contains edges coloured µ1. The number of edges in T̂(µ, µ′) is denoted || T̂ || .

In a little while we shall define teams to be pre-teams satisfying a certain
maximality condition (see Definition 1.9.6).

12Degenerate cases with few colours are covered by the Two Colour Lemma and the
Buffer Lemma.
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Remark 1.9.2. If t̂1(µ, µ′) < time(S0) then near the right-hand end of

T̂(µ, µ′) one may have an interval of colours ν such that ν(S0) is empty.

In the proof of Proposition 1.7.1 we saw that it would be desirable if (what-
ever our final definition of team and bonus may be) the following inequality
(1.7.1) should hold for all teams:

(1.9.1)
∑

(µ,µ′)∈T or (µ,µ′)∈vT

|C(µ,µ′)(2)| ≤ || T || + |bonus(T )|+B.

The following lemma shows that, even without introducing a bonus scheme
or virtual members, the desired inequality is straightforward for pre-teams with
t̂1(µ, µ′) ≥ time(S0).

Lemma 1.9.3. If t̂1(µ, µ′) ≥ time(S0) then T̂ (µ, µ′) satisfies∑
(µ,µ′)∈T̂ (µ,µ′)

|C(µ,µ′)(2)| ≤ || T̂ (µ, µ′) || +B.

Proof. By definition µ′(S0) does not start consuming any of the C(µ1,µ′)(2)

with (µ1, µ
′) ∈ T̂ before t̂1(µ, µ′) (apart from a possible nibbling of length < B

from the rightmost team member at time t̂1(µ, µ′)− 1). Since each C(µ1,µ′)(2)
consists only of edges consumed by µ′(S0), the future of each C(µ1,µ′)(2) at time

t̂1(µ, µ′) will have the same length as C(µ,µ′)(2) (except that the rightmost may

have lost these < B edges). And these futures are contained in T̂(µ, µ′). �

The case where t̂1(µ, µ′) < time(S0) is more troublesome. As T̂(µ, µ′) flows

forwards in time, the number of constant letters in the future of T̂(µ, µ′) that
are consumed by ρ̂(µ, µ′) between t̂1(µ, µ′) and time(S0) may be outweighed

by the number of constant letters generated to the left of the future of T̂(µ, µ′)
that will ultimately be consumed by ρ̂(µ, µ′).

It is to circumvent the failure of inequality (1.9.1) in this setting that we
are obliged to instigate the bonus scheme described in Section 1.10.

1.9.2. The Genesis of pre-teams. We fix T̂ (µ, µ′) with t̂1(µ, µ′) <
time(S0) and consider the various events that occur at t̂1(µ, µ′) to prevent
us pushing the pre-team back one step in time. We write Sω to denote the
corridor at time t̂1(µ, µ′) containing T̂(µ, µ′).

There are four types of events:

(G1) The immediate past of C(µ,µ′)(Sω) is separated from the past of ρ̂(µ, µ′)
by an intrusion of ∂∆ (Figure 18).

(G2) We are not in case (G1), but the immediate past of C(µ,µ′)(Sω) is
separated from the past of ρ̂(µ, µ′) because of a singularity (Figure
19).
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t̂1(µ, µ′)
µ′

µ

∂∆

µ

µ1

µ1

Figure 18. A team of genesis (G1)

t̂1(µ, µ′)

µ

µ
µ′

µ1

µ1

µ′

ν

Figure 19. A team of genesis (G2)

t̂1(µ, µ′)

µ

µ µ′

µ′

x y

p̂l
p̂r

Figure 20. A team of genesis (G3)

t̂1(µ, µ′)
µ µ′

µ1

µ1

Figure 21. A team of genesis (G4)

(G3) The immediate past of C(µ,µ′)(Sω) is still in the same corridor as the
past of ρ̂(µ, µ′), but it is separated from it by a non-constant letter
(Figure 20).
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(G4) We are not in any of the above cases, but the immediate past of the
rightmost letter in C(µ,µ′)(Sω) is not constant (Figure 21).

The following lemma explains why Figures 20 and 21 are an accurate por-
trayal of cases (G3) and (G4).

Let Linv be the maximum length of φ−1(x) over generators x of F , and
C4 = Linv.L.

Lemma 1.9.4. If I is an interval on >(S) labelled by a word w in constant
letters then the reduced word labelling the past of I in ⊥(S) is of the form
uαv, where α is a word in constant letters and |u| and |v| are less than C4.
Moreover, if the past of the leftmost (resp. rightmost) letter in w is constant,
then u (resp. v) is empty.

In particular, |I| ≤ |α|+ 2LC4.

φ−1(a)wφ−1(b)

t

b
a

w

t

Figure 22. The proof of Lemma 1.9.4

Proof. See Figure 22. Follow the path from the left end of I to ⊥(S).
This passes through a (possibly empty) path a−1, followed by an edge labelled
t−1, where the length of a is less than L (since it can be chosen to be on the
top of a 2-cell which has an edge in I). Similarly, at the right end of I we
have a path labelled bt−1, where the length of b is less than L. The path along
⊥(S) joining the two endpoints of these paths is labelled by the reduced word
freely equal in F to φ−1(awb) = φ−1(a)wφ−1(b). The only non-constant edges
in this word come from φ−1(a) and φ−1(b), which have lengths at most L.Linv.
This proves the assertion in the first sentence.

The assertion in the second sentence follows from the observation that if
x, y and φ(xβy) consist only of constant letters, then so does the reduced
form of β, and the assertion in the final sentence follows immediately from the
first. �

Remark 1.9.5. It is convenient to assume that LC4 < λ0. (In the unlikely
event that this is not the case, we simply increase λ0.)

We are finally in a position to make an appropriate definition of a team.
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Definition 1.9.6. All pre-teams T̂ (µ, µ′) with t̂1(µ1, µ
′) ≥ time(S0) are de-

fined to be teams, but the qualification criteria for pre-teams with t̂1(µ1, µ
′) <

time(S0) are more selective.

If the genesis of T̂ (µ, µ′) is of type (G1) or (G2), then the rightmost com-
ponent of the pre-team may form a pre-team at times before t̂1(µ, µ′). In

particular, it may happen that (µ1, µ
′) ∈ T̂ (µ, µ′) but t̂1(µ, µ′) > t̂1(µ1, µ

′) and

hence (µ, µ′) 6∈ T̂ (µ1, µ
′). To avoid double counting in our estimates on || T ||

we disqualify the (intuitively smaller) pre-team T̂ (µ1, µ
′) in these settings.

If the genesis of T̂ (µ, µ′) is of type (G4), then again it may happen that

what remains to the right of T̂ (µ, µ′) at some time before t̂1(µ, µ′) is a pre-team.

In this case, we disqualify the (intuitively larger) pre-team T̂ (µ, µ′).
The pre-teams that remain after these disqualifications are now defined to

be teams.
A typical team will be denoted T and all hats will be dropped from the

notation for their associated objects (e.g. we write T(µ, µ′) instead of T̂(µ, µ′)).
A team is said to be short if || T || ≤ λ0 or

∑
(µ,µ′)∈T

|C(µ,µ′)(2)| ≤ λ0. Let Σ

denote the set of short teams.

Lemma 1.9.7. Teams of genesis (G4) are short.

Proof. Lemma 1.9.4 implies that T is in the immediate future of an
interval of length at most C4. And we have decreed (Remark 1.9.5) that
LC4 < λ0. �

We wish our ultimate definition of a team to be such that every pair (µ, µ′)
with C(µ,µ′)(2) non-empty is assigned to a team. The above definition fails to

achieve this because of two phenomena: first, a pre-team T̂ (µ, µ′) with genesis
of type (G4) may have been disqualified, leaving (µ, µ′) teamless; second, in
our initial discussion of pre-teams (the first paragraph of Section 1.9.1) we
excluded pairs (µ, µ′) with |C(µ,µ′)(2)| ≤ 2B. The following definitions remove
these difficulties.

Definition 1.9.8 (Virtual team members). If a pre-team T̂ (µ, µ′) of type
(G4) is disqualified under the terms of Definition 1.9.6 and the smaller team

necessitating disqualification is T̂ (µ1, µ
′), then we define (µ, µ′) ∈v T̂ (µ1, µ

′)

and T̂ (µ, µ′) ⊂v T̂ (µ1, µ
′). We extend the relation ⊂v to be transitive and

extend ∈v correspondingly. If (µ, µ′) ∈v T then (µ2, µ
′) is said to be a virtual

member of the team T .

Definition 1.9.9. If (µ, µ′) is such that 1 ≤ |C(µ,µ′)(2)| ≤ 2B and (µ, µ′) is
neither a member nor a virtual member of any previously defined team, then
we define T(µ,µ′) := {(µ, µ′)} to be a (short) team with || T(µ,µ′) || = |C(µ,µ′)(2)|.
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Lemma 1.9.10. Every (µ, µ′) ∈ Z with C(µ,µ′)(2) non-empty is a member
or a virtual member of exactly one team, and there are less than 2 |∂∆| teams.

Proof. The first assertion is an immediate consequence of the preceding
three definitions, and the second follows from the fact that |Z| < 2 |∂∆|. �

1.9.3. Pincers associated to teams of Genesis (G3). In this subsec-
tion we describe the pincer ΠT canonically associated to each team of genesis
(G3). The definition of ΠT involves the following concept which will prove
important also for teams of other genesis.

Definition 1.9.11. We define the narrow past of a team T to be the set
of constant edges that have a future in T. The narrow past may have several
components at each time, the set of which are ordered left to right according
to the ordering in T of their futures. We call these components sections.

For the remainder of this subsection we consider only long teams of genesis
(G3).

Definition 1.9.12 (The Pincer Π̃T ). The paths labelled p̂l and p̂r in Figure
20 determine a pincer and are defined as follows. Let x(T ) be the leftmost
non-constant edge to the right of µ in the immediate past of T , and let x1(T )
be the edge that consumes it. Define p̃l(T ) to be the path in F that traces
the history of x(T ) to the boundary, and let p̃r(T ) be the path that traces the
history of x1(T ). (Note that x1(T ) is left-fast.)

Define t̃2(T ) to be the earliest time at which the paths p̃l(T ) and p̃r(T ) lie
in the same corridor. The segments of the paths p̃l(T ) and p̃r(T ) after this
time, together with the path joining them along the bottom of the corridor at
time t̃2(T ) form a pincer. We denote this pincer Π̃T .

The Pincer Lemma argues for the regular disappearance of colours within
a pincer during those times when more than two colours continue to survive
along the corridors of Π̃T . However, when there are only two colours the
situation is more complicated.

We claim that the following situation cannot arise: time(SΠ̂T
) ≤ t1(T )−T0,

the path p̃l(T ) and the entire narrow past of T are in the same corridor at
time t1(T ) − T0, and at this time they are separated only by constant edges.
For if this were the case, then the colour of p̃r(T ) would φ-neuter the colour
of p̃l(T ) but would take more than T0 steps to do so, contradicting the Two
Colour Lemma. Thus at least one of the three hypotheses in the first sentence
of this paragraph is false; we consider the three possibilities. The troublesome
case (3) leads to a cascade of pincers as depicted in Figure 23.

Definition 1.9.13 (The Pincer ΠT and times t2(T ) and t3(T )).
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(1) Some section of the narrow past of T is not in the same corridor as
p̃l(T ) at time t1(T )−T0: In this case13 we define t2(T ) = t3(T ) to be
the earliest time at which the entire narrow past of T lies in the same
corridor as p̃l(T ) and has length at least λ0.

(2) Not case (1), there are no non-constant edges between p̃l(T ) and the
narrow past of T at time t1(T )−T0: In this case time(SΠ̃T

) > t1(T )−
T0. We define ΠT = Π̃T and t3(T ) = time(SΠT ). If the narrow past of
T at time t1(T )−T0 has length less than λ0, we define t2(T ) = t3(T ),
and otherwise t2(T ) = t̃2(T ).

(3) Not in case (1) or case (2): In this case there is at least one non-
constant edge between the narrow past of T and p̃l(T ) at t1(T )− T0.
We pass to the latest time at which there is such an intervening non-
constant edge and consider the path p̃′l(T ) that traces the history of
the leftmost intervening non-constant edge x′(T ) and the path p̃′r(T )
that traces the history of the edge x′1(T ) that cancels with x′(T ).
We define t̃′2(T ) to be the earliest time at which the paths p̃′l(T ) and
p̃′r(T ) lie in the same corridor and consider the pincer formed by the
segments of the paths p̃′l(T ) and p̃′r(T ) after time t̃′2(T ) together with
the path joining them along the bottom of the corridor at time t̃′2(T ).

We now repeat our previous analysis with the primed objects
p̃′l(T ), t̃′2(T ) etc. in place of p̃l(T ), t̃2(T ) etc., checking whether we
now fall into case (1) or (2); if we do not then we pass to p̃′′l (T ), t̃′′2(T )
etc., and iterate the analysis until we do indeed fall into case (1) or (2),
at which point we acquire the desired definitions of ΠT , t2(T ), t3(T ).

Define pl(T ) (resp. pr(T )) to be the left (resp. right) boundary path of
the pincer ΠT extended backwards in time through F to ∂∆. Define p+

l (T ) to
be the sequence of non-constant edges (one at each time) lying immediately
to the right of the narrow past of T from the top of ΠT to time t1(T ). (These
are edges of the leftmost of the primed p̃l(T ) considered in case (3).)

Definition 1.9.14. Let T be a long team of genesis (G3). Let χP (T )
be the set of colours containing the paths p̃l(T ), p̃′l(T ), p̃′′l (T ), . . . that arise
in (iterated applications of) case (3) of Definition 1.9.13 but do not become
pl(T ).

The preceding definitions are framed so as to make the following important
facts self-evident.

Lemma 1.9.15.

(1) If T is a long team of genesis (G3),

t1(T )− t3(T ) ≤ T0(|χP (T )|+ 1).

13this includes the possibility that p̃l(T ) does not exist at time t1(T )− T0
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Π(T )

Π̃(T )

t3(T )

t1(T )

Figure 23. The cascade of pincers.

(2) If T1 and T2 are disjoint then χP (T1) ∩ χP (T2) = ∅.

1.9.4. The length of teams.

Definition 1.9.16. Define down1(T ) ⊂ ∂∆ to consist of those edges e
that are labelled t and satisfy one of the following conditions:

1. e is at the left end of a corridor containing a section of the narrow
past of T that is not leftmost at that time;

2. e is at the right end of a corridor containing a section of the narrow
past of T that is not rightmost at that time;

3. e is at the right end of a corridor which contains the rightmost section
of the narrow past of T at that time but which does not intersect
pl(T ).

All of the edges shown on the boundary in Figure 24 are contained in
down1(T ).

Definition 1.9.17. Define ∂T ⊂ ∂∆ to be the set of (necessarily constant)
edges that have a preferred future in T.

We record an obvious disjointness property of the sets defined above.

Lemma 1.9.18.

(1) For distinct teams T1 and T2, ∂T1 and ∂T2 are disjoint.
(2) For distinct teams T1 and T2, down1(T1) and down1(T2) are disjoint.

Definition 1.9.19. Suppose that T is a team of genesis (G3). We define
Q(T ) be the set of edges ε with the following properties: pl(T ) passes through
ε before time t3(T ), and the corridor S with ε ∈ ⊥(S) contains the entire
narrow past of T and this narrow past has length at least λ0.

The following lemma gives us a bound on |T|, which will reduce our task
to that of bounding |Q(T )| for teams of genesis (G3).
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Lemma 1.9.20.

1. If the genesis of T is of type (G1) or (G2), then

|| T || ≤ 2LC4 |down1(T )|+ |∂T |.
2. If the genesis of T is of type (G3), then

|| T || ≤ 2LC4 |down1(T )|+ |∂T |+ 2LC4 |Q(T )|+ 2LC4T0

(
|χP (T )|+ 1

)
+ λ0.

ˆT(µ, µ′)

∂∆

t̂1(µ, µ′)

pl(T )

∂∆

Figure 24. Bounding the size of a team in terms of |down1| and |pl|

Proof. The first thing to observe is that at any stage in the past of T the
set of letters lying in a single corridor form a connected region. As in Lemma
1.9.4, this is simply a matter of noting that if φ(aub) = w where w, a and b
consist only of constant letters, then u must equal a word in constant letters.

Consider the past of T at a time t. Write kt for the number of corridors that
contain a non-trivial component of this past. The total increase in length of
these components when one goes forward to time t+ 1 is bounded by 2LC4kt,
since the connectedness of the past implies that the only growth that can
happen for existing components occurs at their extremities, where a block of
at most LC4 constant letters may be added. This follows from Lemma 1.9.4.
Also at time t + 1, constant letters from ∂∆ may join the past of T, and
there may be new components of constant letters (each of length less than
2LC4) whose ancestors at time t were non-constant letters. Thus we have
three possible causes of increase. The first and third account for growth of
at most 2LC4kt+1 and the second (boundary) contribution is the number of
elements of ∂T that occur at time t+ 1. If the genesis of T is of type (G1) or
(G2), then at least kt+1 edges of down1(T ) occur at time t, compensating us
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for the growth summand 2LC4kt+1. If the genesis of T is of type (G3) then
we still have the above compensation except at those times where no edges of
down1(T ) occur. At these latter times the whole of the narrow past of T lies
in a single corridor through which pl(T ) passes. Since the narrow past lies in a
single corridor, it is connected and grows at most 2LC4 when moving forward
one unit of time (unless added to by ∂T ).

The summands 2LC4 |Q(T )| and 2LC4T0

(
|χP (T )| + 1

)
in item (2) of the

lemma account for the growth of the narrow past in the intervals of time
below t3(T ), and from t3(T ) to t1(T ), respectively. The additional summand
λ0 allows us to desist from our estimating if the narrow past of T ever shrinks
to have length less than λ0. �

1.9.5. Bounding the size of Q(T ). For the remainder of this section we
concentrate exclusively on long teams of genesis (G3) with Q(T ) non-empty.
We denote the set of such teams by G3. Our goal is to bound |Q(T )|. (In
the light of our previous results, this will complete the required analysis of the
length of teams.)

Recall from Definition 1.9.13 that for teams of genesis (G3), the paths pl(T )
and pr(T ) and the chain of 2-cells joining them in the corridor at time t2(T )
form a pincer denoted ΠT . The set χ(ΠT ) was defined in Definition 1.8.24.

An important feature of teams in G3 is:

Lemma 1.9.21. If T ∈ G3 then there exists a block of at least λ0 constant
edges immediately adjacent to ΠT at each time from t3(T ) to the top of ΠT ,
and adjacent to p+

l (T ) from then until t1(T ). (At time t1(T ) this block contains
T.)

Proof. The hypothesis that Q(T ) is non-empty means that the narrow
past of T at some time before t3(T ) has length at least λ0 and is contained
in the same corridor as pl(T ) (see Definition 1.9.19). The definition of t3(T )
implies that the narrow past of T is contained in a block of constant letters
immediately adjacent to pl(T ) or p+

l (T ) from time t3(T ) until t1(T ). Since
the length of the narrow past of T does not decrease before t1(T ), these blocks
of constant letters must have length at least λ0. �

The following is an immediate consequence of the Pincer Lemma.

Lemma 1.9.22. For all T ∈ G3,

t3(T )− t2(T ) = Life(ΠT ) ≤ T1(|χ(ΠT )|+ 1).

Lemma 1.9.23. If T1, T2 ∈ G3 are distinct teams then χ(ΠT1)∩χ(ΠT2) = ∅.
Proof. The pincers ΠTi are either disjoint or else one is contained in the

other. In the latter case, say ΠT1 ⊂ ΠT2 , the existence of the block of λ0

constant edges established in Lemma 1.9.21 means that ΠT1 is actually nested
in T2 in the sense of Definition 1.8.24. Thus χ(ΠT1)∩χ(ΠT2) = ∅ (by Definition
1.8.24). �
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Corollary 1.9.24.
∑
T ∈G3

t3(T )− t2(T ) ≤ 3T1 |∂∆|.

It remains to bound the number of edges in Q(T ) which occur before t2(T );
this is cardinality of the following set.

Definition 1.9.25. For T ∈ G3 we define down2(T ) to be the set of edges
in ∂∆ that lie at the righthand end of a corridor containing an edge in Q(T )
before time t2(T ).

The remainder of this section is dedicated to obtaining a bound on∑
T ∈G3

|down2(T )|,

(see Corollary 1.9.31).
At this stage our task of bounding || T || would be complete if the the sets

down2(T ) associated to distinct teams were disjoint — unfortunately they need
not be, because of the possible nesting of teams as shown in Figures 17 and
25. Thus we shall be obliged to seek further pay-off for our troubles. To this
end we shall identify two sets of consumed colours χc(T ) and χδ(T ) that arise
from the nesting of teams.

In order to analyse the effect of nesting we need the following vocabulary.
There is an obvious left-to-right ordering of those paths in the forest F

which begin on the arc of ∂∆ r ∂S0 that commences at the initial vertex of
the left end of S0. (First one orders the trees, then the relative order between
paths in a tree is determined by the manner in which they diverge; the only
paths which are not ordered relative to each other are those where one is an
initial segment of the other, and this ambiguity will not concern us.)

Notation: We write G ′3 for the set of teams T ∈ G3 such that down2(T ) 6= ∅.
We shall need the following obvious separation property.

Lemma 1.9.26. Consider T ∈ G ′3. If a path p in F is to the left of pl(T )
and a path q is the right of pr(T ), then there is no corridor connecting p to q
at any time t < t2(T ).

Proof. The hypothesis down2(T ) 6= ∅ implies that before t2(T ) the paths
pl(T ) and pr(T ) are not in the same corridor. �

Definition 1.9.27. T1 ∈ G ′3 is said to be below T2 ∈ G ′3 if pl(T2) and pr(T2)
both lie between pl(T1) and pr(T1) in the left-right ordering described above.
T1 is said to be to the left of T2 if both pl(T2) and pr(T2) lie to the right of

pr(T1).
We say that T is at depth 0 if there are no teams above it. Then, inductively,

we say that a team is at depth d+ 1 if d is the maximum depth of those teams
above T .

A final depth team is one with no teams below it.
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Note that there is a complete left-to-right ordering of teams T ∈ G3 at any
given depth.

Lemma 1.9.28. If there is a team from G ′3 below T ∈ G ′3, then t1(T ) ≥
time(S0) ≥ t2(T ).

Proof. The first thing to note is that if time(S0) were less than t2(T ),
then the narrow past of T at time t2(T ) must contain at least λ0 edges. This
is because the length of the narrow past of T cannot decrease before t1(T ),
and at time(S0) the narrow past is the union of the intervals C(µ,µ′)(2) with
(µ, µ′) ∈ T , which has length at least λ0 since T is assumed not to be short.

Thus if time(S0) < t2(T ) then we are in the non-degenerate situation of
Definition 1.9.13 and the defining property of t2(T ) means that before time
t2(T ) no edge to the right of pr(T ) lies in the same corridor as all the colours
of T (cf. Lemma 1.9.26). In particular this is true of the past of the reaper
of T (assuming that it has a past at time t2(T )). On the other hand, the
reaper of T has a past in S0 (by the very definition of a team), as do all of
the colours of T . And since they lie in a common corridor at time(S0), they
must also do so at all times up to t1(T ). This contradiction implies that in
fact time(S0) ≥ t2(T ).

Consider Figure 17. Suppose that T ′ ∈ G ′3 is below T . The proof of
Lemma 1.9.21 tells us that there is a block of constant edges extending from
the top of ΠT ′ containing the narrow past of T ′, and there is a similarly long
block extending from the path p+

l (T ) at each subsequent time until t1(T ′).
Thereafter the future of the block is contained in the block of constant edges
that evolves into the union of the C(µ,µ′)(2) ⊆ ⊥(S0) with (µ, µ′) ∈ T ′, which
is long by hypothesis.

At no time can this evolving block extend across pl(T ) because by definition
the edges along pl(T ) are labelled by non-constant letters. Thus the evolving
block is trapped to the right of pl(T ) and to the left of pr(T ). In particular,
it must vanish entirely before the time at the top of the pincer ΠT , which is
no later than t1(T ) and therefore t1(T ) ≥ time(S0). �

The following is the main result of this section.

Lemma 1.9.29. There exist sets of colours χc(T ) and χδ(T ) associated to
each team T ∈ G ′3 such that the sets associated to distinct teams are disjoint
and the following inequalities hold.

For each fixed team T0 ∈ G ′3 (of depth d say), the teams of depth d+ 1 that
lie below T0 may be described as follows:

• There is at most one distinguished team T1, and

|| T1 || ≤ 2B
(
T1(1 + |χ(ΠT0)|) + T0(|χP (T0)|+ 1)

)
.

• There are some number of final-depth teams.
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• For each of the remaining teams T we have

|down2(T0) ∩ down2(T )| ≤ T1

(
1 + |χc(T )|

)
+ T0

(
|χδ(T )|+ 2

)
.

Proof. The first thing to note is that if two teams T , T ′ ∈ G ′3 are at the
same depth, then down2(T ) and down2(T ′) are disjoint. Indeed if T is to
the left of T ′, then at times before t2(T ) the paths pl(T ) and pl(T ′) never lie
in the same corridor. Let T ∈ G ′3 be a team of level d + 1 that is below T0

and consider the edge e at the right end of a corridor earlier than t2(T ) that
contains an edge in Q(T ). We are concerned with the fact that this edge may
be in down2(T0). In this situation we say that T0 and T double count e.

t2(T ) = t2(T2)

t2(T1)

pl(T )

pl(T2)

pl(T1)

Figure 25. A depiction of double-counting

Let T1, . . . , Tr be the teams in G ′3 of depth d + 1 which double-count with
T0, ordered from left to right, with the final-depth teams deleted. We define
χc(T ) to be empty for teams not on this list. T1 will be the distinguished team.

Since there is no double-counting between teams of the same level, the sets
of times at which T1, . . . , Tr double-count with T0 must be disjoint. Indeed if
i < j then the set of times at which Ti double-counts with T0 is earlier than
the set of times at which Tj double-counts with T0 (Lemma 1.9.26). Moreover,
the times for each Ti form an interval, which we denote Ii.

We assume r ≥ 2 and describe the construction of the sets χc(Ti) and
χδ(Ti) that account for double-counting.

The first thing to note is that each Ii must be later than t2(T1), by Lemma
1.9.26. The second thing to note is that the entire interval of time Ii must also
be earlier than t1(T1). Indeed if some double-counting by Ti and T0 were to
occur after t1(T1), then we would have t2(Tk) > t1(T1). But then time(S0) >
t1(T1), so Lemma 1.9.28 would imply that there was no team below T1, contrary
to hypothesis.
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We separately consider the intervals Ii∩[t2(T1), t3(T1)] and Ii∩[t3(T1), t1(T1)],
whose union is all of Ii.

For that part of Ii before t3(T1), the proofs of the Pincer Lemma (Theorem
1.8.26) and Proposition 1.8.7 tell us that colours in χ(ΠT1) will be consumed
at the rate of at least one per T1 units of time. Define χc(Ti) to be this set of
consumed colours. We have∣∣∣ Ii ∩ [t2(T1), t3(T1)]

∣∣∣ ≤ T1(1 + |χc(Ti)|).

Now consider Ii ∩ [t3(T1), t1(T1)]. Define χδ(Ti) as follows. The discussion
in Definition 1.9.13 shows that in any period of time of length T0 in the interval
[t3(T1), t1(T1)] at least one colour in χP (T1) disappears. Let χδ(Ti) be the set of
colours in χP (T1) which disappear during Ii ∩ [t3(T1), t1(T1)] (these disappear-
ances correspond to the discontinuities in the ‘path’ p+

l (T1)). By construction,
we then have14 ∣∣∣ Ii ∩ [t3(T1), t1(T1)]

∣∣∣ ≤ T0(|χδ(Ti)|+ 2),

and combining these estimates we have

|Ii| ≤ T1

(
1 + |χc(Ti)|

)
+ T0

(
|χδ(Ti)|+ 2

)
,

as required. Since the intervals Ii are disjoint, the sets χc(Ti), i = 2, . . . , r are
mutually disjoint. And by construction, these sets are also disjoint from the
sets associated to teams other than the Ti under consideration (i.e. those under
other depth d teams, or those of different depths). The same considerations
hold for the sets χδ(Ti), i = 2, . . . , r.

In Figure 26, the shaded region is where we recorded the regular disap-
pearance of the colours forming χc(Ti), whilst in Figure 27, the shaded region
is where we recorded the regular disappearance of the colours forming χδ(Ti).

It remains to establish the inequality

|| T1 || ≤ 2B
(
T1(|χ(ΠT0)|+ 1) + (|χP (T0)|+ 1)

)
.

We first note (as in the proof of Lemma 1.9.28) that T1 is trapped between
pl(T ) and pr(T ), so it must be consumed entirely between the times t1(T1)
and t1(T0). But by the Bounded Cancellation Lemma, the length of the future
of T1 can decrease by at most 2B at each step in time. Therefore || T1 || ≤
2B(t1(T0)− t1(T1)).
T1 is assumed not be final-depth, so from Lemma 1.9.28 we have t2(T0) ≤

time(S0) ≤ t1(T1). By combining these inequalities with Lemmas 1.9.22 and

14There is a 2 rather than the familiar 1 on the right to account for the colour containing
pl(T1), which is not included in χP (T1); there might be up to T0 corridors between t3(T1)
and the top of ΠT1 .
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t3(T1)

t2(T1)

t2(T ) = t2(T2)
pl(T1) pl(T2)

pl(T )

t1(T )

t3(T2)

t3(T )

Figure 26. Finding the colours χc(Ti)

1.9.15 we obtain:

|| T1 || ≤ 2B
(
t1(T0)− t1(T1)

)
≤ 2B

(
t1(T0)− time(S0)

)
≤ 2B

(
t1(T0)− t2(T0)

)
≤ 2B

[
T1

(
1 + |χ(ΠT0)|

)
+ T0

(
|χP (T0)|+ 1

)]
.

�

Corollary 1.9.30. Summing over the set of teams T ∈ G ′3 that are not
distinguished, we get∑
T

∣∣∣down2(T )
∣∣∣ ≤ 2

∣∣∣⋃
T

down2(T )
∣∣∣+∑

T

T1

(
1+|χc(T )|

)
+
∑
T

T0

(
|χδ(T )|+2

)
.

Proof. Suppose T ∈ G ′3 of depth d + 1 is not final-depth and not distin-
guished, and that T double-counts with some T0 of depth d above it. Then,
by Lemma 1.9.29, we have

|down2(T )| = |down2(T ) r down2(T0)|+ |down2(T ) ∩ down2(T0)|
≤ |down2(T ) r down2(T0)|+ T1(1 + |χc(T )|) + T0(2 + |χδ(T )|).
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t2(T1)

t2(T ) = t2(T2)
pl(T2)

pl(T )

t1(T )

t3(T2)

t3(T1)

pl(T1)

t1(T1)

t3(T )

Figure 27. Finding the colours χδ(Ti)

Suppose that T ′ ∈ G ′3 is a team of depth k < d and that T ′ is above T . If
T double-counts with T ′ at time t, then T double-counts with T0 at time t,
by Lemma 1.9.26. Therefore, the set of edges that T double-counts with any
team of lesser depth is exactly down2(T ) ∩ down2(T0).

Thus we have accounted for all double-counting other than than involving
final depth teams. The factor 2 in the statement of the corollary accounts for
this. �

And summing over the same set of teams again, we obtain:

Corollary 1.9.31.∑
T

|down2(T )| ≤ |∂∆|(2 + 3T1 + 5T0).

Proof. The sets of colours χc(T ) and χδ(T ) are disjoint. And the union
of the sets down2(T ) is a subset of ∂∆. The set of all colours and the set of
edges in ∂∆ each have cardinality at most |∂∆|. And the number of teams is
less than 2 |∂∆| (Lemma 1.9.10). �
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1.10. The Bonus Scheme

We have defined teams and obtained a global bound on
∑
|| T || . If C(µ,µ′)(2)

is non-empty then (µ, µ′) is a member or virtual member of a unique team.
If this team is such that t1(T ) ≥ time(S0), then no member of the team is
virtual and we have the inequality

|| T || >
∑

(µ,µ′)∈T

|C(µ,µ′)(2)| −B

established in Lemma 1.9.3. We indicated following this lemma how this in-
equality might fail in the case where t1(T ) < time(S0). In this section we take
up this matter in detail and introduce a bonus scheme that assigns additional
edges to teams in order to compensate for the possible failure of the above
inequality when t1(T ) < time(S0).

By definition, at time t1(T ) the reaper ρ = ρT lies immediately to the
right of T. The edges of T not consumed from the right by ρ by time(S0) have
a preferred future in S0 that lies in C(µ,µ′)(2) for some member (µ, µ′) ∈ T .
However, not all of the edges of C(µ,µ′)(2) need arise in this way: some may not
have a constant ancestor at time t1(T ). And if (µ, µ′) is only a virtual member
of T , then no edge of C(µ,µ′)(2) lies in the future of T. The bonus edges in
C(µ,µ′)(2) are a certain subset of those that do not have a constant ancestor at
time t1(T ). They are defined as follows.

Definition 1.10.1. Let T be a team with t1(T ) < time(S0) and consider
a time t with t1(T ) < t < time(S0).

The swollen future of T at time t is the interval of constant edges beginning
immediately to the left of the pp-future of ρT .

Let e be a non-constant edge that lies immediately to the left of the swollen
future of T but whose ancestor is not a right para-linear edge in this position.
If e is a right para-linear and the (constant) rate at which e adds letters to the
swollen future of T is greater than the (constant) rate at which the future of
the reaper cancels letters in the future of T, then we define e to be a rascal; if e
is right-fast then we define it to be a terror. In both cases, we define the bonus
provided by e to be the set of edges in the swollen future of T in S0 that have
e as their most recent non-constant ancestor, and are eventually consumed by
ρT .

The set bonus(T ) is the union of the bonuses provided to T by all rascals
and terrors.

Lemma 1.10.2. For any team T ,∑
(µ,µ′)∈T or (µ,µ′)∈vT

|C(µ,µ′)(2)| ≤ || T || + |bonus(T )|+B.

Proof. If t1(T ) ≥ time(S0), this follows immediately from Lemma 1.9.3.
If t1(T ) < time(S0) then at each step in time between t1(T ) and time(S0) the



60 MARTIN R. BRIDSON AND DANIEL GROVES

only possible cause of growth in the length of the swollen future of the team is
the possible action of a rascal or terror if such is present at that time. (There is
no interaction of the swollen future with the boundary or singularities, because
of the exclusions in the second paragraph of Definition 1.9.6.)

The swollen future has length || T || at time t1(T ) and length at least∑
|C(µ,µ′)(2)| at time(S0). By definition, |bonus(T )| is a bound on the growth

in length between these times. (The summand B is thus unnecessary in the
case t1(T ) < time(S0).) �

The following lemma shows that our main task in this section will be to
analyse the behaviour of rascals.

Lemma 1.10.3. The sum of the lengths of the bonuses provided to all teams
by terrors is less than 2L |∂∆|.

Proof. Since it is right-fast, a terror will be separated from the team
to which it is associated after one unit of time, and hence the bonus that it
provides is less than L. There is at most one terror for each possible adjacency
of colours and hence the total contributions of all terrors is less than 2L |∂∆|.

�

The typical pattern of influence of rascals on a team is shown in Figure
28; there may be several times at which rascals appear at the left of T and
provide a bonus for the team before being consumed from the left (or otherwise
detached from the team).

bonus(T )

t1(T )

time(S0)

Figure 28. The generic situation below time(S0).

Definition 1.10.4 (Rascals’ Pincers). We fix a team T with t1(T ) <
time(S0) and consider the interval of time [τ0(e), τ1(e)], where τ0(e) is the time
at which a rascal e appears at the left end of the swollen future of T , and τ1(e)
is the time at which its future is no longer to the immediate left of the future
of the swollen future of T .

In the case where the pp-future ê of e at time τ1(e) is cancelled from the
left by an edge e′, we define τ2(e) to be the earliest time when the pasts of ê
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and e′ are in the same corridor. The path in F that traces the pp-future of
e up to τ1(e) is denoted pe and the path following through the ancestors of e′

from τ2(e) to τ1(e) is denoted p′e. The pincer15 formed by pe and p′e with base
at time τ2(e) is denoted Πe.

Lemma 1.10.5. The total of all bonuses provided to all teams by rascals e
with τ1(e) ≤ time(S0) is less than (3T1 + 2T0 + 1)L |∂∆|.

Proof. Consider a rascal e. We defer the case where e hits a singularity
or the boundary. If this does not happen, the pp-future ê of e at time τ1(e) is
cancelled from the left by an edge e′ (which is right-fast since e is not constant).
We consider the pincer Πe defined above. The presence of the swollen future
of T at the top of the pincer allows us to apply the Two Colour Lemma to
conclude that τ1(e)− T0 ≥ time(SΠe) (in the degenerate case discussed in the
footnote, time(SΠe) is replaced by τ2(e)). And the Pincer Lemma tells us that

τ1(e)− τ2(e) ≤ T1

(
1 + |χ(Πe)|

)
+ T0.

In fact, we could use χ̃(Πe) instead of χ(Πe) in this estimate because there
cannot be any nesting amongst the pincers Πe with τ1(e) ≤ time(S0), because
nesting would imply that the swollen future of T , which is immediately to
the right of the lower rascal, would be trapped beneath the upper pincer,
contradicting the fact that the team has a non-empty future in S0.

In the case where e hits the boundary or is separated from the team by a
singularity (at time τ1(e)) we define τ2(e) = τ1(e). No matter what the fate
of e, we define ∂e to be the set of edges in ∂∆ at the left ends of corridors
containing the future of e between τ0(e) and τ2(e). The sets ∂e assigned to
different rascals are disjoint, so summing over all rascals with τ1(e) ≤ time(S0)
we have ∑

e

(
τ1(e)− τ0(e)

)
=

∑
e

(τ1(e)− τ2(e)) + (τ2(e)− τ0(e))

≤
∑
e

T1

(
1 + |χ(Πe)|

)
+ T0 + |∂e|.

Since the sets χ(Πe) and ∂e are disjoint, the terms T1|χ(Πe)| and |∂e| con-
tribute less than (T1 + 1) |∂∆| to this sum. And since the number of rascals is
bounded by the number of possible adjacencies of colours, the remaining terms
contribute at most (T1 + T0)2 |∂∆|. Thus∑

e

(
τ1(e)− τ0(e)

)
≤ (3T1 + 2T0 + 1) |∂∆|.

The bonus produced by each rascal in each unit of time is less than L, so the
lemma is proved. �

15to lighten the terminology, here we allow the degenerate case where the “pincer” has
no colours other than those of e and e′
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It remains to consider the size of the bonuses provided by rascals e with
τ1(e) > time(S0).

The bonuses that are not accounted for in Lemma 1.10.5 reside in blocks of
constant edges along ⊥(S0) each of which is the swollen future of some team,
with a right para-linear letter at its left-hand end (the pp-future of a rascal)
and a left para-linear letter at its left-hand end (the pp-future of the team’s
reaper).

Definition 1.10.6. A left-biased rascal e is one with τ1(e) > time(S0) that
satisfies the following properties:

1. the pp-future of the rascal is (ultimately) consumed from the left by
an edge of S0,

2. the swollen future of T at time τ1(e) has length at least λ0 and the
pp-future of the reaper ρT is still immediately to its right.

Definition 1.10.7. Let B ⊂ ⊥(S0) be an interval of constant edges with
a right para-linear letter at its left-hand end and a left-linear letter ρ at its
right-hand end. We say that B is right biased if ρ is ultimately consumed by
an edge (to its right) in S0. We define life(B) to be the difference between
time(S0) and the time at which the left para-linear letter ρ is consumed. And
we define the effective volume of B to be the number of edges in B that are
ultimately consumed by ρ.

We have the following tautologous tetrad of possibilities covering the swollen
teams whose bonuses are not entirely accounted for by Lemma 1.10.5.

Lemma 1.10.8. Let B ⊂ ⊥(S0) be an interval of constant edges that is the
swollen future of a team with a rascal at its left-hand end and a left para-linear
letter ρ at its right-hand end. Then at least one of the following holds:

(i) the length of B is at most λ0;
(ii) B is the swollen future of a team with a left-biased rascal;

(iii) B is right-biased;
(iv) neither of the non-constant letters at the ends of B is ultimately con-

sumed by an edge of S0.

We note here that when the length of B is at most λ0 then we have a short
team, and we have already accounted for short teams. The following three
lemmas correspond to eventualities (ii) to (iv).

Lemma 1.10.9. The sum of the bonuses provided to all teams by left-biased
rascals is less than (2L+ 6LT1 + 4LT0 + 2λ0 + 6BT1 + 4BT0) |∂∆|.

Proof. The proof of this result is similar to the work done in the previous
section. We have a pincer Πe associated to the rascal e. Since we are only
concerned with the times when the rascal is immediately adjacent to a block
of constant letters, it must be that at time τ1(e)−T0 either we are below τ0(e)
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or time(SΠe) (cf. Definition 1.9.13). Therefore the following is an immediate
consequence of the Pincer Lemma.

τ1(e)− τ2(e) ≤ T1(1 + |χ(Πe)|) + T0.

It now suffices to bound the amount of time for which e is adjacent to the
narrow past of B before τ2(e). We define τ ′0(e) to be the latest time when
the rascal e has contributed less than λ0 edges to bonus(T ). Then the bonus
provided by e is at most L(τ1(e) − τ ′0(e)) + λ0. As in the previous section,
we define down2(e) to be those edges on the left end of corridors containing
e at times before τ2(e) but after τ ′0(e). Just as in Lemma 1.9.29 and the
corollaries immediately following it, we then have a notion of depth of rascals
describing the nesting of the pincers Πe

16. We also have distinguished rascals
(corresponding to the distinguished teams in Lemma 1.9.29), and proceeding
as in the proof of Lemma 1.9.29 we get the following estimates:

if e1 is a distinguished rascal of depth d+ 1 and e0 is the rascal of depth d

above it, then the bonus provided by e1 is at most 2B
(
T1(1+ |χ(Πe0))|)+T0

)
,

since all of the bonus provided by e1 must disappear before τ1(e0);
for other rascals e of depth d+1 which are below e0 we have a set of colours

χc(e), disjoint for distinct teams such that

|down2(e) ∩ down2(e0)| ≤ T1(1 + |χc(e)|) + T0.

Therefore, summing over the set of rascals which are not distinguished we get
(cf Corollary 1.9.30)∑

e

|down2(e)| ≤ 2
∣∣∣⋃
e

down2(e)
∣∣∣+
∑
e

(
T1(1 + |χc(e)|) + T0

)
.

And summing over the same set of rascals, we get∑
e

|down2(e)| ≤ (2 + 3T1 + 2T0) |∂∆|.

Therefore, for undistinguished rascals, we have∑
e

τ1(e)− τ ′0(e) =
∑

(τ1(e)− τ2(e)) +
∑

(τ2(e)− τ ′0(e))

≤ (3T1 + 2T0) |∂∆|+ (2 + 3T1 + 2T0) |∂∆|,

and so the contribution of all left-biased rascals is at most(
(2 + 6T1 + 4T0)L+ 2λ0 + 6BT1 + 4BT0

)
|∂∆|,

as required. �

16One extends the paths pe and p′e of Definition 1.10.4 back in time to ∂∆ so as to define
the order defining depth.
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Lemma 1.10.10. The sum
∑

life(B) over those B that are right-biased
but do not satisfy conditions (i) or (ii) of Lemma 1.10.8 is at most (3T1B +
2T0B) |∂∆|.

e

e(ρ)

ρ

t1(T )

Figure 29. A depiction of a right-biased team.

Proof. Once again, as in Lemmas 1.10.5 and 1.10.9, we obtain compen-
sation for the continuing existence of a non-constant letter by using the Pincer
Lemma to see that colours must be consumed at a constant rate in order to
facilitate the life of ρ. Thus we consider the left-fast edge that consumes the
pp (i.e. left-most non-constant) future of ρ; this edge is denoted e(ρ) in Figure
29. The Pincer Lemma and the 2 Colour Lemma tell us that if Πe(ρ) is the
pincer associated to these paths (with S0 at the bottom) then

life(B) ≤ T1(1 + |χ(Πe(ρ))|) + T0.

Suppose that B and B′ are two right-biased blocks with associated edges
e(ρ) and e(ρ′) consuming their reapers. We claim that the sets χ(Πe(ρ)) and
χ(Πe(ρ′)) are disjoint. The key point to observe is that since we are not in
case (ii) of Lemma 1.10.8 the length of the swollen future of B increases from
time(S0) to the top of Πe(ρ); since B had length at least λ0, we therefore have
a block of more than λ0 of more than λ0 constant edges at the top of Πe(ρ).
Thus the pincers associated to B and B′ are either disjoint or nested. Hence
χ(Πe(ρ)) and χ(Πe(ρ′)) are disjoint. Thus summing over all right-biased blocks
B we obtain ∑

B right-biased

life(B) ≤ (3T1B + 2T0B) |∂∆|,

as required. �

Since any letter consumes less than L constant letters in any unit of time,
we conclude:
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Corollary 1.10.11. The sum of the effective volumes of all blocks that
are right-biased but do not satisfy conditions (i) and (ii) of Lemma 1.10.8 is
at most (3LT1B + 2LT0B) |∂∆|.

Lemma 1.10.12. The sum of all blocks that satisfy condition (iv) of Lemma
1.10.8 is at most (2B + 1) |∂∆|.

Proof. Possibility (iv) involves several subcases: the key event which halts
the growth of the swollen future of B may be a collision with ∂∆ or a sin-
gularity; it may also be that the key event is that the future of the rascal or
reaper adjacent to B is cancelled by an edge that is not in the future of S0.

But no matter what these key events may be, since we are in not in cases
(ii) or (iii), associated to the blocks in case (iv) we have the following set of
paths partitioning that part of the diagram ∆ bounded by S0 and the arc of
∂∆ connecting the termini of the edges at the ends of S0:

The path πl begins at time(S0) and follows the pp-future of the rascal at
the right-end of the future of B until it hits the boundary, a singularity, or
else is cancelled by an edge εl not in the future of S0; if it hits the boundary,
it ends; if it hits a singularity, πl crosses to the bottom of the corridor S on
the other side of the singularity, and turns left to follow ⊥(S) to the boundary
(see Figure 30); if εl cancels with the pp-future of the rascal, then πl follows
the past of εl backwards in time to the boundary (see Figure 31).

B

πl

S0

∂∆

Figure 30. The path πl hits a singularity.

The path πr describing the fate of ρ is defined similarly (except that it
turns right if it hits a singularity).

It is clear from the construction that no two of these paths can cross, thus
we have the partition represented schematically in Figure 32.

Given a swollen team B of type (iv), we follow the swollen future of B
until its flow is interrupted (at time ι(B), say) by meeting a singularity, the
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B

∂∆

πl

S0

Figure 31. The path πl in cancelled from outside of the future
of S0.

�������� �� ����∂∆

Figure 32. The schematic partition of ∆ by the paths πl and πr.

boundary of ∆, or else its rascal or reaper is cancelled. Consider the set of
corridors that contain some component of the swollen future of B after ι(B).
Consider also the set of edges bdy(B) ⊆ ∂∆ that lie in the swollen future of
B. We keep account of the set of corridors by recording the set of their ends
on ∂∆, except that we ignore an end if we have to cross a path πl or πr to reach
it. Note that at least one end of each corridor is recorded. Let up(B) ⊂ ∂∆
denote the set of ends recorded.

Since the sets bdy(B) and up(B) are contained in the portion of ∂∆ ac-
corded to B by the partition formed by the paths πl and πr, the sets associated
to different B are disjoint. In each unit of time beyond ι(B) each component
of the swollen future of B can shrink by at most 2B (by Lemma 1.2.4). The
set up(B) measures the sum of the number of components over all such times,
and |bdy(B)| is the number of uncancelled edges. Thus we see that the length
of the swollen future of B at time ι(B) is at most 2B|up(B)| + |bdy(B)|.
Finally, the continued presence of the rascal ensures that the swollen future of
B grows in each interval of time from time(S0) to ι(B). Thus it follows that
the length of B is also bounded by this number. So summing over all B of
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type (iv) we have:∑
|B| ≤

∑(
2B|up(B)|+ |bdy(B)|

)
≤ (2B + 1) |∂∆|,

as required. �

Summarising the results of this section we have

Lemma 1.10.13. Summing over all teams that are not short, we have∑
T

|bonus(T )| ≤
(

(B+3)(3T1+2T0)L+6BT1+4BT0+2λ0+2B+5L+1
)
|∂∆|.

1.11. The Proof of Theorem C

Pulling all of the previous results together, define

K1 = 2C1+6λ0+2B(5T0+6T1+2)+2LC4(6T1+8T0+3)+(B+3)(3T1+2T0)L+5L+2,

and

K = 2C0 + 2K1 + 2B + 1.

Theorem 1.11.1. |S0| ≤ K |∂∆|.
Proof. The corridor S0 can be subdivided into distinct colours which form

connected regions. Each colour µ can be partitioned into connected (possi-
bly empty) regions A1(S0, µ), A2(S0, µ), A3(S0, µ), A4(S0, µ) and A5(S0, µ). By
Lemma 1.6.4, Proposition 1.7.1, Lemma 1.6.3, Proposition 1.7.3 and Lemma
1.6.4, respectively, ∑

µ∈S0

|A1(S0, µ)| ≤ C0 |∂∆|,

∑
µ∈S0

|A2(S0, µ)| ≤ K1 |∂∆|,

∑
µ∈S0

|A3(S0, µ)| ≤ (2B + 1) |∂∆|,

∑
µ∈S0

|A4(S0, µ)| ≤ K1 |∂∆|, and

∑
µ∈S0

|A5(S0, µ)| ≤ C0 |∂∆|.

Summing completes the proof of Theorem 1.11.1. �

Since there are at most |∂∆|
2

corridors in ∆,

Area(∆) ≤ K

2
|∂∆|2,

which proves the Main Theorem for positive automorphisms, i.e. Theorem C.
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1.12. Glossary of Constants

B – the Bounded Cancellation constant (Lemmas 1.2.4 and 1.2.3).
C0 – maximum distance a left-fast (right-fast) letter can be from the left

(right) edge of its colour if it is to be cancelled from the left (right) within the
future of the corridor. See Lemma 1.6.4.

C1 – an upper bound on the lengths of the subintervals C(µ,µ′)(1) ofA4(S0, µ).
By definition, C(µ,µ′)(1) is consumed by µ′(S0); it begins at the right end of
A4(S0, µ) and ends at the last non-constant letter. See Lemma 1.6.7. Note
that one can take C1 = 2mB2.

L – the maximum of the lengths of the images φ(ai) of the basis elements
ai, i.e. the maximum length of u1, . . . , um in the presentation P (see equation
1.1.1).

Linv – the maximum of the lengths of φ−1(ai).
T0 – the constant from the 2-Colour Lemma (Lemma 1.8.4). For all positive

words U and V , if U neuters V −1 then it does so in at most T0 steps.
T̂1 – the constant from the Unnested Pincer Lemma, Theorem 1.8.7.
T ′1 – the constant from Definition 1.8.19. Recall that we stipulate that

T ′1 ≥ T̂1.
T1 := T ′1 + 2T0 – T1 is the constant from the Pincer Lemma, Theorem

1.8.26.
C4 := LLinv
λ0 := max{2B(T0 + 1) + 1, LC4}
Finally, K1 is defined to be

2C1+6λ0+2B(5T0+6T1+2)+2LC4(6T1+8T0+3)+(B+3)(3T1+2T0)L+5L+2,

and K = 2C0 + 2K1 + 2B + 1.
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Decomposition
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Part 2 of this work is dedicated to the construction and analysis of a refined
topological representative for a suitable iterate of an arbitrary automorphism
of a finitely generated free group. In Part 3 we shall use these representatives
to extend the results obtained in Part 1 to the general setting. Our results rely
in a fundamental way on the theory of improved relative train tracks developed
by Bestvina, Feighn and Handel in [4].

The properties of the topological representative f : G→ G constructed in
[4] allow one to control the manner in which a path σ evolves as one looks at
its iterated images under f , and one might naively suppose that this is the key
issue that one must overcome in translating the proof of our Main Theorem
from the positive case (Part 1) to the general case (Part 3). However, upon
closer inspection one discovers this is actually only a fraction of the story
because when a corridor evolves in the time flow on a van Kampen diagram,
the interaction of the forward iterates of the individual edges is such that the
basic splitting of paths established in [4] may get broken. It is to overcome
this difficulty that we need the notion of hard splitting.

Definition (See Definition 2.2.1). We say that a decomposition of an
edge-path into sub edge-paths ρ = ρ1ρ2 is a hard k-splitting if for any choice of
tightening of fk(ρ) = fk(ρ1)fk(ρ2) there is no cancellation between the image
of ρ1 and the image of ρ2.

A decomposition that is a hard k-splitting for all k ≥ 1 is called a hard
splitting. If ρ1 · ρ2 is a hard splitting, we write ρ1 � ρ2.

In the analysis of van Kampen diagrams that forms the core of the proof of
the Main Theorem, the class of “broken” paths that one must understand are
the residues of the images of a single edge that survive repeated cancellation
during the corridor flow. In the language of the topological representative
f : G → G, this amounts to understanding monochromatic paths, as defined
below. Every edge-path ρ in G admits a unique maximal splitting into edge-
paths (Lemma 2.2.6); our main task here in Part 2 is to understand the nature
of the factors in this splitting and the behaviour of certain larger units into
which they naturally accrete when ρ is monochromatic.

To this end, we identify a small number of basic units into which the
iterated images of monochromatic paths split; the key feature of this splitting
is that it is robust enough to withstand the difficulties caused by cancellation
in van Kampen diagrams. The basic units are defined so as to ensure that they
enjoy those features of individual edges that proved important in the positive
case (see Part 1). We call the units beads. The vocabulary of beads is as
follows.

Let f : G → G be a topological representative and let f#(σ) denote the
tightening rel endpoints of the image of an edge-path σ. Following [7], if
f#(τ) = τ we call τ a Nielsen path. A path ρ in G is called a growing
exceptional path (GEP) if either ρ or ρ̄ is of the form Eiτ̄

kĒj where τ is a
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Nielsen path, k ≥ 1, Ei and Ej are parabolic edges, f(Ei) = Ei� τm, f(Ej) =
Ej � τn, and n > m > 0. If it is ρ (resp. ρ) that is of this form, then proper
initial (resp. terminal) sub edge-paths of ρ are called ΨEPs (pseudo-exceptional
paths). .

GEPs and ΨEPs are key objects of study for us in Parts 2 and 2. They
admit no nontrivial hard splitting, but there is no global bound on their length.
Therefore, they must be included as basic units in the Beaded Decomposition
Theorem below. Also, there is no uniform bound on the number of iterates
required to cancel a GEP or ΨEP when it occurs as a sub-path of the label on
a corridor. This leads to considerable technical difficulties in Part 3.

Let f : G → G be an improved relative train track map and d, J ≥ 1
integers. Then d-monochromatic paths in G are defined by a simple recursion:
edges in G are d-monochromatic and if ρ is a d-monochromatic path then
every sub edge-path of fd#(ρ) is d-monochromatic.17 A (J, f)-atom is a d-
monochromatic edge-path of length at most J that admits no non-vacuous
hard splitting into edge-paths.

An edge-path ρ is (J, f)-beaded if it admits a hard splitting ρ = ρ1�· · ·�ρk
where each ρi is a GEP, a ΨEP, a (J, f)-atom, or an indivisible Nielsen path
of length at most J (where GEPs, ΨEPs and Nielsen paths are defined with
respect to the map f).

The following is the most important output of Part 2.

Beaded Decomposition Theorem. For every φ ∈ Out(Fn), there exist
positive integers k, d and J such that φk has an improved relative train-track
representative f : G→ G with the property that every d-monochromatic path
in G is (J, f)-beaded.

In fact, we do not prove the Beaded Decomposition Theorem per se. In-
stead, we prove a more general statement about futures of arbitrary paths
under repeated iteration and cancellation (Theorem 2.3.5). We also need the
following:

Addendum 2.0.1. If f is replaced by an iterate f1 = f l#, then the Beaded
Decomposition Theorem is true for f1 with the same constant as for f .

This sharpening of the Beaded Decomposition Theorem will prove vital in
Part 3: often, we will need to replace f by an iterate, but the iterate we choose
will depend on J , so Addendum 2.0.1 is needed to avoid circularity. Related
to this point, there are a number of complications concerning how one should
interpret beads; these are addressed in Section 2.5.

As is clear from the preceding discussion, our main motivation for devel-
oping the Beaded Decomposition is its application in Part 3. The import of
Part 2 in Part 3 has been deliberately distilled into this single statement and

17See Subsection 2.1.2 for a precise definition of the map fd#.
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Addendum 2.0.1 so that a reader who is willing to accept these as articles of
faith can proceed directly from Part 1 to Part 3.

We expect that our particular refinement of the train-track technology may
prove useful in other contexts. This expectation stems from the general point
that the development of refined topological representatives leads to insights
into purely algebraic questions about free-group automorphisms. See [14] for
a concrete illustration of this.18

2.1. Improved Relative Train Track Maps

In this section we collect and refine those elements of the train-track tech-
nology that we shall need. Most of the material here is drawn directly from
[7] and [4].

The philosophy behind train tracks is to find an efficient topological rep-
resentative for an outer automorphism of F . Precisely what it means for a
graph map to be efficient is spelled out in this section.

2.1.1. Edge-paths and tightening. Let G be a graph. Following [4],
we try to reserve the term path for a map σ : [0, 1]→ G that is either constant
or an immersion (i.e. tight). The reverse path t 7→ σ(1 − t) will be denoted
σ. We conflate the map σ with its monotone reparameterisations (and even
its image, when this does not cause confusion). Given an arbitrary continuous
map ρ : [0, 1] → G, we denote by [ρ] the unique (tight) path homotopic rel
endpoints to ρ. In keeping with the notation of the previous section, given
f : G → G and a path σ in G, we write f#(σ) to denote [f(σ)]. We are
primarily concerned with edge-paths, i.e. those paths σ for which σ(0) and
σ(1) are vertices.

We consider only maps f : G→ G that send vertices to vertices and edges
to edge-paths (not necessarily to single edges). If there is an isomorphism
F ∼= π1G such that f induces O ∈ Out(F ), then one says that f represents O.

2.1.2. Replacing f by an Iterate. In order to obtain good topological
representatives of outer automorphisms, one has to replace the given map
by a large iterate. It is important to be clear what one means by iterate in
this context, since we wish to consider only topological representatives whose
restriction to each edge is an immersion and this property is not inherited by
(naive) powers of the map.

Thus we deem the phrase19 replacing f by an iterate, to mean that for fixed
k ∈ N, we pass from consideration of f : G → G to consideration of the map

18[14] contains results about the growth of words under iterated automorphisms. A
previous version of Part 2 of this book contained an incorrect version of these results. We
thank Gilbert Levitt for bringing this error to our attention.

19and obvious variations on it
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fk# : G→ G that sends each edge E in G to the tight edge-path fk#(E) that is

homotopic rel endpoints to fk(E).

2.1.3. (Improved) Relative train tracks. We now describe the prop-
erties of Improved Relative Train Track maps, as constructed in [7] and [4].

Splittings, Turns and Strata. Suppose that σ = σ1σ2 is a decomposition
of a path into nontrivial subpaths (we do not assume that σ1 and σ2 are edge-
paths, even if σ is). We say that σ = σ1σ2 is a k-splitting if

fk#(σ) = fk#(σ1)fk#(σ2)

is a decomposition into sub-paths (i.e. for some choice of tightening, there is
no folding between the fk-images of σ1 and σ2 when fk(σ1σ2) is tightened).
If σ = σ1σ2 is a k-splitting for all k > 0 then it is called a splitting20 and we
write σ = σ1 · σ2. If one of σ1 or σ2 is the empty path, the splitting is said to
be vacuous.

A turn in G is an unordered pair of half-edges originating at a common
vertex. A turn is non-degenerate if it is defined by distinct half-edges, and is
degenerate otherwise. The map f : G → G induces a self-map Df on the set
of oriented edges of G by sending an oriented edge to the first oriented edge
in its f -image. Df induces a map Tf on the set of turns in G.

A turn is illegal with respect to f : G→ G if its image under some iterate
of Tf is degenerate; a turn is legal if it is not illegal.

Associated to f is a filtration of G,

∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gω = G,

consisting of f -invariant subgraphs of G. We call the sets Hr := Gr rGr−1

strata. To each stratum Hr is associated Mr, the transition matrix for Hr; the
(i, j)th entry of Mr is the number of times the f -image of the jth edge crosses
the ith edge in either direction. By choosing a filtration carefully one may
ensure that for each r the matrix Mr is either the zero matrix or is irreducible.
If Mr is the zero matrix, then we say that Hr is a zero stratum. Otherwise,
Mr has an associated Perron-Frobenius eigenvalue λr ≥ 1, see [36]. If λr > 1
then we say that Hr is an exponential stratum; if λr = 1 then we say that
Hr is a parabolic stratum21. The edges in strata inherit these adjectives, e.g.
“exponential edge”.

A turn is defined to be in Hr if both half-edges lie in the stratum Hr. A
turn is a mixed turn in (Gr, Gr−1) if one edge is in Hr and the other is in Gr−1.
A path with no illegal turns in Hr is said to be r-legal. We may emphasize
that certain turns are in Hr by calling them r-(il)legal turns.

20In the next section, we introduce a stronger notion of hard splittings.
21Bestvina et al. use the terminology exponentially-growing and non-exponentially-

growing for our exponential and parabolic. This difference in terminology explains the
names of the items in Theorem 2.1.8 below.
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Definition 2.1.1. [7, Section 5, p.38] We say that f : G→ G is a relative
train track map if the following conditions hold for every exponential stratum
Hr:

(RTT-i) Df maps the set of oriented edges in Hr to itself; in particular all
mixed turns in (Gr, Gr−1) are legal.

(RTT-ii) If α is a nontrivial path in Gr−1 with endpoints in Hr ∩ Gr−1, then
f#(α) is a nontrivial path with endpoints in Hr ∩Gr−1.

(RTT-iii) For each legal path β in Hr, f(β) is a path that does not contain any
illegal turns in Hr.

The following lemma is “the most important consequence of being a relative
train track map” [4, p.530]; it follows immediately from Definition 2.1.1.

Lemma 2.1.2. [7, Lemma 5.8, p.39] Suppose that f : G → G is a relative
train track map, that Hr is an exponential stratum and that σ = a1b1a2 . . . bl is
the decomposition of an r-legal path σ into subpaths aj in Hr and bj in Gr−1.
(Allow for the possibility that a1 or bl is trivial, but assume the other subpaths
are nontrivial.) Then f#(σ) = f(a1)f#(b1)f(a2) . . . f#(bl) and is r-legal.

Definition 2.1.3. Suppose that f : G→ G is a topological representative,
that the parabolic stratumHi consists of a single edge Ei and that f(Ei) = Eiui
for some path ui in Gi−1. We say that the paths of the form EiγĒi, Eiγ and
γĒi, where γ is in Gi−1, are basic paths of height i.

Lemma 2.1.4. [4, Lemma 4.1.4, p.555] Suppose that f : G→ G and Ei are
as in Definition 2.1.3. Suppose further that σ is a path or circuit in Gi that
intersects Hi nontrivially and that the endpoints of σ are not contained in the
interior of Ei. Then σ has a splitting each of whose pieces is either a basic
path of height i or is contained in Gi−1.

Definition 2.1.5. A Nielsen path is a nontrivial path σ such that fk#(σ) =
σ for some k ≥ 1.

Nielsen paths are called periodic Nielsen paths in [4], but Theorem 2.1.8
below allows us to choose an f so that any periodic Nielsen path has period
1 (which is to say that f#(σ) = σ), and we shall assume that f satisfies the
properties outlined in Theorem 2.1.8. Thus we can assume that k = 1 in the
above definition. A Nielsen path is called indivisible if it cannot be split as a
concatenation of two non-trivial Nielsen paths.

Definition 2.1.6 (cf. 5.1.3, p. 561 [4]). Suppose that Hi is a single edge
Ei and that f(Ei) = Eiτ

l for some closed Nielsen path τ in Gi−1 and some
l > 0. The exceptional paths of height i are those paths of the form Eiτ

kĒj or
Eiτ̄

kĒj where k ≥ 0, j ≤ i, Hj is a single edge Ej and f(Ej) = Ejτ
m for some

m > 0.
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Remark 2.1.7. In [4] the authors mistakenly say that τ is an indivisible
Nielsen path, rather than a primitive Nielsen path (not a proper power). We
omit the modifier entirely.

In Definition 2.1.6, the paths do not have a preferred orientation. Thus it
is important to note that the paths of the form Ejτ

kĒi and Ej τ̄
kĒi with Ei, Ej

and τ as above are also exceptional paths of height i.

2.1.4. The Theorem of Bestvina, Feighn and Handel. A matrix is
aperiodic if it has a power in which every entry is positive. The map f is
eg-aperiodic if every exponential stratum has an aperiodic transition matrix.

Theorem 5.1.5 in [4] is the main structural theorem for improved relative
train track maps. We shall use it continually in what follows, often without
explicit mention. We therefore record those parts of it which we need. A map
f which satisfies the statements of Theorem 2.1.8 is called an improved relative
train track map.

Theorem 2.1.8. (cf. Theorem 5.1.5, p.562, [4]) For every outer automor-
phism O ∈ Out(F ) there is an eg-aperiodic relative train track map f : G→ G
with filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gω = G such that f represents an iterate
of O, and f has the following properties.

• Every periodic Nielsen path has period one.
• For every vertex v ∈ G, f(v) is a fixed point. If v is an endpoint of an

edge in a parabolic stratum then v is a fixed point. If v is the endpoint
of an edge in an exponential stratum Hi and if v is also contained in
a noncontractible component of Gi−1, then v is a fixed point.
• Hi is a zero stratum if and only if it is the union of the contractible

components of Gi.
• If Hi is a zero stratum, then

z-(i) Hi+1 is an exponential stratum.
z-(ii) f |Hi is an immersion.
• If Hi is a parabolic stratum, then
ne-(i) Hi is a single edge Ei.
ne-(ii) f(Ei) splits as Ei ·ui for some closed path ui in Gi−1 whose base-

point is fixed by f .
ne-(iii) If σ is a basic path of height i that does not split as a concatena-

tion of two basic paths of height i or as a concatenation of a basic
path of height i with a path contained in Gi−1, then either: (i) for
some k, the path fk#(σ) splits into pieces, one of which equals Ei
or Ēi; or (ii) ui is a Nielsen path and, for some k, the path fk#(σ)
is an exceptional path of height i.

• If Hi is an exponential stratum then
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eg-(i) There is at most one indivisible Nielsen path ρi in Gi that inter-
sects Hi nontrivially. The initial edges of ρi and ρ̄i are distinct
(possibly partial) edges in Hi.

Suppose that f : G→ G is an improved relative train track map represent-
ing some iterate φk of φ ∈ Out(Fn), and that ρ is a Nielsen path in Gr that
intersects Hr nontrivially, and suppose that ρ is not an edge-path. Then sub-
dividing the edges containing the endpoints of ρ at the endpoints, gives a new
graph G′, and the map f ′ : G′ → G′ induced by f is an improved relative train
track map representing φk. To ease notation, it is convenient to assume that
this subdivision has been performed. Under this assumption, all Nielsen paths
will be edge-paths, and all of the paths which we consider in the remainder of
Part 2 will also be edge-paths.

Convention 2.1.9. Since all Nielsen paths in the remainder of Part 2
will be edge-paths, we will use the phrase ‘indivisible Nielsen path’ to mean a
Nielsen edge-path which cannot be decomposed nontrivially as a concatena-
tion of two non-trivial Nielsen edge-paths. In particular, a single edge fixed
pointwise by f will be considered to be an indivisible Nielsen path.

For the remainder of this article, we will concentrate on an improved rela-
tive train track map f : G → G and repeatedly pass to iterates fk# in order to
better control its cancellation properties.

Recall the following from [4, Section 4.2, pp.558-559].

Definition 2.1.10. If f : G → G is a relative train track map and Hr is
an exponential stratum, then define Pr to be the set of paths ρ in Gr that are
such that:

(i) For each k ≥ 1 the path fk#(ρ) contains exactly one illegal turn in Hr.
(ii) For each k ≥ 1 the initial and terminal (possibly partial) edges of

fk#(ρ) are contained in Hr.

(iii) The number of Hr-edges in fk#(ρ) is bounded independently of k.

Lemma 2.1.11. [4, Lemma 4.2.5, p.558] Pr is a finite f#-invariant set.

Lemma 2.1.12. [4, Lemma 4.2.6, p.559] Suppose that f : G → G is a
relative train track map, that Hr is an exponential stratum, that σ is a path
or circuit in Gr and that, for each k ≥ 0, the path fk#(σ) has the same finite
number of illegal turns in Hr. Then σ can be split into subpaths that are either
r-legal or elements of Pr.

Definition 2.1.13. If ρ is a path and r is the least integer such that ρ is
in Gr then we say that ρ has weight r.

If ρ has weight r and Hr is exponential, we will say that ρ is an exponential
path. We define parabolic paths similarly.
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Lemma 2.1.14. Suppose that σ is an edge-path and that, for some k ≥ 1,
fk#(σ) is a Nielsen path. Then f#(σ) is a Nielsen path.

Proof. Suppose that the endpoints of σ are u1 and v1 and that the end-
points of fk#(σ) are u2 and v2. For each vertex v ∈ G, f(v) is fixed by f , so

f(u1) = u2 and f(v1) = v2. If f#(σ) 6= fk#(σ) then we have two edge-paths
with the same endpoints which eventually get mapped to the same path. Thus
there is some nontrivial circuit which is killed by f , contradicting the fact that
f is a homotopy equivalence. Therefore f#(σ) = fk#(σ) and so is a Nielsen
path. �

Always, L will denote the maximum of the lengths of the paths f(E), for
E an edge in G.

Later, we will pass to further iterates of f in order to find a particularly
nice form.

An analysis of the results in this section allows us to see that there are three
kinds of indivisible Nielsen paths. The first are those which are single edges;
the second are certain exceptional paths; and the third lie in the set Pr. We
will use this trichotomy frequently without mention. The first two cases are
where the path is parabolic-weight, the third where it is exponential-weight.
It is not possible for Nielsen path to have weight r where Hr is a zero stratum.

Observation 1. Let ρ be an indivisible Nielsen path of exponential weight
r. Then the first and last edges in ρ are contained in Hr.

Because periodic Nielsen paths have period 1, the set of Nielsen paths does
not change when f is replaced by a further iterate of itself. We will use this
fact often.

Lemma 2.1.15. Suppose E is an edge such that |f j#(E)| grows linearly with

j. Then f(E) = E · τ k, where τ is a Nielsen path that is not a proper power.
The edge-path τ decomposes into indivisible Nielsen paths (each of which is
itself an edge-path, by Convention 2.1.9).

Proof. The fact that f(E) = E · τ k, where τ is a Nielsen path follows
from conditions ne-(ii) and ne-(iii) of Theorem 2.1.8. 22 �

Lemma 2.1.16. Let τ be a Nielsen path and τ0 a proper initial (or terminal)
sub edge-path of τ . No image fk#(τ0) contains τ as a sub edge-path.

Proof. It is sufficient to prove the lemma for indivisible Nielsen paths, as
the result for arbitrary Nielsen paths then follows immediately.

If τ is an indivisible Nielsen path and τ0 is a proper non-trivial subpath of
τ then τ cannot be a single edge. Therefore, either τ is either an indivisible
Nielsen path of exponential weight, or an exceptional path.

22If Theorem 2.1.8, ne-(iii) held with the Nielsen path τ in the definition of exceptional
paths being indivisible, we could also insist that τ be indivisible here.
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In case τ is an indivisible Nielsen path of exponential weight, suppose the
weight is r. By Lemma 2.1.12 τ contains a single illegal turn in Hr. Suppose
that τ0 does not contain this illegal turn. Then τ0 is r-legal, and so no iterate
of τ0 contains an illegal turn in Hr. Therefore no iterate of τ0 can contain τ as
a subpath.

Suppose then that τ0 does contain the r-illegal turn in τ . Then, being a
proper subpath of τ , the path on one side of the illegal turn in τ0 and its
(tightened) iterates is strictly smaller than the corresponding path in τ . Once
again τ cannot be contained as a subpath of any iterate of τ0.

Finally, suppose τ is an exceptional path. Then τ = Eiρ
kĒj where ρ is

a Nielsen path and Ei and Ej are of weight greater than ρ. Any proper sub
edge-path τ0 of τ contains at most one edge of weight greater than ρ. T he
same is true for any iterate of τ0, and once again no iterate of τ0 contains τ as
a sub-path. �

2.2. Hard Splittings

In this section we introduce a new concept for improved relative train
tracks: hard splittings. This plays an important role in the subsequent sections
of Part 2, and also in Part 3.

Recall that a decomposition of a path σ = σ1σ2 is a k-splitting if fk#(σ) =

fk#(σ1)fk#(σ2); which means that, for some choice of tightening, the images of σ1

and σ2 do not interact with each other. This leads to the concept of splittings.
We need a more restrictive notion, where the decomposition is preserved for
every choice of tightening. For this purpose, we make the following

Definition 2.2.1. [Hard splittings] We say that a k-splitting ρ = ρ1ρ2 is
a hard k-splitting if for any choice of tightening of fk(ρ) = fk(ρ1)fk(ρ2) there
is no cancellation between the image of ρ1 and the image of ρ2.

A decomposition which is a hard k-splitting for all k ≥ 1 is called a hard
splitting. If ρ1 · ρ2 is a hard splitting, we write ρ1 � ρ2.

An edge-path is hard-indivisible (or h-indivisible) if it admits no non-vacuous
hard splitting into edge-paths.

Remark 2.2.2. If one works in the universal cover, then σ̃1σ̃2 is a k-hard
splitting if and only if, inside f̃k(σ̃1σ̃2)), the intersection f̃k(σ̃1) ∩ f̃k(σ̃2) is a
single point.

Remark 2.2.3. In the above definition, we allow the possibility that one
of the paths in the hard splitting is empty. This is to allow various later
statements to be made more concisely.

For example, the phrase ‘ρ admits a hard splitting immediately on either
side of σ of ρ’ (for a path ρ and a sub edge-path σ) allows the possibility that
σ is an initial or terminal sub-path of ρ.
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Example 2.2.4. Suppose that G is the graph with a single vertex and edges
E1, E2 and E3. Suppose that f(E1) = E1, f(E2) = E2E1 and f(E3) = E3Ē1Ē2.
Then f is an improved relative train track. And E3E2 ·Ē1 is a 1-splitting, since

f(E3E2Ē1) = E3Ē1Ē2E2E1Ē1,

which tightens to E3Ē1 = f#(E3E2)f#(Ē1). In fact this is a splitting. However,
there is a choice of tightening which first cancels the final E1Ē1 and then the
subpath Ē2E2. Therefore the splitting E3E2 · Ē1 is not a hard 1-splitting.

The following lemma describes the main utility of hard splittings, and the
example above shows that it is not true in general for splittings.

Lemma 2.2.5. Suppose that σ1�σ2 is a hard splitting, that ρ1 is a terminal
subsegment of σ1, and that ρ2 is an initial subpath of σ2. Then ρ1 � ρ2 is a
hard splitting.

Proof. If there were any cancellation between images of ρ1 and ρ2 then
there would be a possible tightening between the images of σ1 and σ2. �

The following two lemmas will also be crucial for our applications of hard
splittings in Part 3.

Lemma 2.2.6. Every edge-path admits a unique maximal hard splitting into
edge-paths.

Proof. This follows by an obvious induction on length from the observa-
tion that if ρ = ρ1ρ2ρ3, where the ρi are edge-paths, and if ρ = ρ1 � ρ2ρ3 and
ρ = ρ1ρ2 � ρ3 then ρ = ρ1 � ρ2 � ρ3. �

Lemma 2.2.7. If ρ = ρ1� ρ2 and σ1 and σ2 are, respectively, terminal and
initial subpaths of fk#(ρ1) and fk#(ρ2) for some k ≥ 0 then σ1σ2 = σ1 � σ2.

Proof. For all i ≥ 1, the untightened path f i(σ1) is a terminal sub-
path of the untightened path f i(fk#(ρ1)), while f i(σ2) is an initial subpath of

f i(fk#(ρ2)).
The hardness of the splitting ρ = ρ1 � ρ2 ensures that no matter how one

tightens fk+i(ρ1)fk+i(ρ2) there will be no cancellation between fk+i(ρ1) and
fk+i(ρ2). In particular, one is free to tighten to obtain f i(fk#(ρ1))f i(fk#(ρ2))

first, and then tighten f i(σ1)f i(σ2), and there can be no cancellation between
them. (It may happen that when one goes to tighten fk+i(ρ1) completely,
the whole of f i(σ1) is cancelled, but this does not affect the assertion of the
lemma.) �

The purpose of the remainder of this section is to sharpen results from the
previous section to cover hard splittings 23.

The following lemma is clear.

23Bestvina et al. make no explicit mention of the distinction between splittings and
hard splittings, however condition (3) of Proposition 5.4.3 on p.581 (see Lemma 2.2.10
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Lemma 2.2.8 (cf. Lemma 4.1.1, p.554 [4]). If σ = σ1�σ2 is a hard splitting,
and σ1 = σ′1 � σ′2 is a hard splitting then σ = σ′1 � σ′2 � σ2 is a hard splitting.
The analogous result with the roles of σ1 and σ2 reversed also holds.

Remark 2.2.9. The possible existence of an edge-path σ2 so that f#(σ2) is
a single vertex means that σ1σ2 = σ1 � σ2 and σ2σ3 = σ2 � σ3 need not imply
that σ1σ2σ3 = σ1 � σ2 � σ3.

Indeed if σ2 is an edge-path so that f#(σ2) is a vertex then f#(σ1) and
f#(σ3) come together in a tightening of f(σ1σ2σ3), possibly cancelling.

In contrast, if f#(σ2) (and hence each fk#(σ2)) contains an edge, then the
hardness of the two splittings ensures that in any tightening f#(σ1σ2σ3) =
f#(σ1)f#(σ2)f#(σ3), that is σ1σ2σ3 = σ1 � σ2 � σ3.

The following strengthening of Theorem 2.1.8 ne-(ii) is a restatement of (a
weak form of) [4, Proposition 5.4.3.(3), p.581].

Lemma 2.2.10. Suppose f is an improved relative train track map and E
is a parabolic edge with f(E) = Eu. For any initial subpath w of u, E ·w is a
splitting.

Corollary 2.2.11. Suppose f is an improved relative train track map, E
is a parabolic edge and f(E) = Eu. Then f(E) = E � u.

The following lemma is straightforward to prove.

Lemma 2.2.12. Suppose Hi is a parabolic stratum and σ is a path in Gi

that intersects Hi nontrivially, and that the endpoints of σ are not contained
in the interior of Ei. Then σ admits a hard splitting, each of whose pieces is
either a basic path of height i or is contained in Gi−1.

Lemma 2.2.13. If σ is a basic path of height i that does not admit a hard
splitting as a concatenation of two basic paths of height i or as a concatenation
of a basic path of height i with a path of weight less than i, then either; (i) for
some k, the path fk#(σ) admits a hard splitting into pieces, one of which is Ei
or Ēi; or (ii) f(Ei) = Ei� ui, where ui is a Nielsen path and, for some k, the
path fk#(σ) is an exceptional path of height i.

Proof. Follows from the proof of [4, Lemma 5.5.1, pp.585–590]. �

Lemma 2.2.14 (cf. Lemma 2.1.12 above). Suppose that f : G → G is a
relative train track map, that Hr is an exponentially-growing stratum, that σ
is a path or circuit in Gr, and that each fk#(σ) has the same finite number of
illegal turns in Hr. Then σ can be decomposed as σ = ρ1� . . .�ρk, where each
ρi is either (i) an element of Pr; (ii) an r-legal path which starts and ends with
edges in Hr; or (iii) of weight at most r − 1.

below) indicates that they are aware of the distinction and that the term ‘splitting’ has the
same meaning for them as it does here.
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Proof. Consider the splitting of σ given by Lemma 2.1.12. The pieces of
this splitting are either (i) elements of Pr, or (ii) r-legal paths. By Definition
2.1.1 RTT-(i), any r-legal path admits a hard splitting into r-legal paths which
start and end with edges in Hr, and paths of weight at most r − 1. The turn
at the end of a Nielsen path in the splitting of σ is either a mixed turn (with
the edge from Hr coming from the Nielsen path and the other edge being of
weight at most r − 1) or a legal turn in Hr. In either case, σ admits a hard
splitting at the vertex of this turn. �

The next result follows from a consideration of the form of indivisible
Nielsen paths, noting Definition 2.1.1 and Lemma 2.2.14.

Lemma 2.2.15. Any Nielsen path admits a hard splitting into indivisible
Nielsen paths.

Remark 2.2.16. If ρ = ρ1 � ρ2 is a hard splitting for the map f then it is
a hard splitting for fk# for any k ≥ 1.

We record a piece of terminology which will be important in Part 3.

Definition 2.2.17. A sub edge-path ρ of a path χ is displayed if there is
a hard splitting of χ immediately on either side of ρ.

2.3. A Small Reduction

In this section we clarify a couple of issues about monochromatic paths, and
state Theorem 2.3.2, which immediately implies the Beaded Decomposition
Theorem.

Our strategy for proving the Beaded Decomposition Theorem is as follows:
given an automorphism φ ∈Aut(Fn), we start with an improved relative train
track representative f : G → G for some iterate φk of φ, as obtained from
the conclusion of Theorem 2.1.8. We analyse the evolution of monochromatic
paths, and eventually pass to an iterate of f in which we can prove the Beaded
Decomposition Theorem. However, it is crucial to note that monochromatic
paths for f are not necessarily monochromatic paths for fk# when k > 1. See
Section 2.5 for further discussion about some of these issues.

These concerns lead to the following definition, where we are concentrating
on a fixed IRTT f : G→ G, and so omit mention of f from our notation.

Definition 2.3.1. For a positive integer d, we define d-monochromatic
paths by recursion: edges inG are d-monochromatic and if ρ is a d-monochromatic
path then every sub edge-path of fd#(ρ) is d-monochromatic.

Note that if d′ is a multiple of d then every d′-monochromatic path is d-
monochromatic but not vice versa. Thus if we replace f by an iterate then,
for fixed n, the set of n-monochromatic paths may get smaller. The content of
the Beaded Decomposition Theorem is that one need only pass to a bounded
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iterate in order to ensure that all monochromatic paths admit a beaded decom-
position. In particular, the Beaded Decomposition Theorem is an immediate
consequence of the following theorem.

Theorem 2.3.2 (Monochromatic paths are beaded). Let f : G→ G be an
improved relative train track map. There exist constants d and J , depending
only on f , so that every d-monochromatic path in G is (J, f)-beaded.

Definition 2.3.3 (Nibbled Futures). Let ρ be a (tight) edge-path. The
0-step nibbled future of ρ is ρ.

For k ≥ 1, a k-step nibbled future of ρ is a sub edge-path of f#(σ), where
σ is a (k− 1)-step nibbled future of ρ. A nibbled future of ρ is a k-step nibbled
future for some k ≥ 0.

For k ≥ 0, the k-step entire future of ρ is fk#(ρ).

Remark 2.3.4. Nibbled futures are not assumed to be non-empty. If a path
is empty, any statement we claim about the existence of hard splittings should
be interpreted to hold vacuously. The 1-monochromatic paths are precisely
the nibbled futures of single edges.

The notion of nibbled futures is central to Parts 2 and 3 of this book.
Usually, when proving things about monochromatic paths, we are actually
proving things about the nibbled futures of paths of bounded length. In this
spirit, rather than just proving Theorem 2.3.2, we prove the following more
general theorem about the iterated futures of arbitrary paths. We expect this
theorem to have applications beyond those presented in this work.

Theorem 2.3.5. If f : G → G is an improved relative train track map,
then there exists an integer d with the following property: for each positive
integer n, there exists J > 0 so that for every edge-path ρ with |ρ| ≤ n and
every positive integer k, every kd-step nibbled future of ρ is (J, f)-beaded.

Remark 2.3.6. It is clear that Theorem 2.3.2 follows immediately from
Theorem 2.3.5. Therefore, in order to prove the Beaded Decomposition The-
orem, it suffices to prove Theorem 2.3.5.

Remark 2.3.7. We posted a version of Part 2 of this book on the ArXiv in
July 2005. In December 2006, Feighn and Handel posted [24], in which they
develop a powerful refinement of the train track technology. If one employs
their completely split train track representatives, one can prove the Beaded
Decomposition Theorem with considerably greater ease than we do here. One
can also streamline significant parts of the proof of Theorem 2.3.5. However,
we feel that the effort that this would save the reader is offset by the extra
machinery that they would be required to accept or absorb. On this basis, we
decided to retain our original proof.
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2.4. Nibbled Futures

Notation 2.4.1. Throughout this section and the rest of Part 2, f : G→ G
is an improved relative train track map.

Let L be the maximum of the lengths of the paths f(E) where E ranges
over the edges of G.

Monochromatic paths arise as nibbled futures in the sense defined below.
Thus in order to prove Theorem 2.3.2 we must understand how nibbled fu-
tures evolve. The results in this section reduce this challenge to the task of
understanding the nibbled futures of GEPs.

Theorem 2.4.2 (First Decomposition Theorem). For any n ≥ 1 there
exists an integer V = V (n, f) such that if ρ is an edge-path of length at most
n then any nibbled future of ρ admits a hard splitting into edge-paths, each of
which is either the nibbled future of a GEP or else has length at most V .

The remainder of this section is dedicated to proving Theorem 2.4.2. We
begin by examining the entire future of a path of fixed length (Lemma 2.4.4)
and then refine the argument to deal with nibbling. In the proof of the first of
these lemmas we require the following observation.

Remark 2.4.3. Suppose that ρ is a tight path of weight r. Since f is an
improved relative train track map, the number of r-illegal turns in f l#(ρ) is a
non-increasing function of l, bounded below by 0.

Lemma 2.4.4. There is a function D : N→ N, depending only on f , such
that, for any r ∈ {1, . . . , ω}, if ρ is a path of weight r, and |ρ| ≤ n, then for
any i ≥ D(n) the edge-path f i#(ρ) admits a hard splitting into edge-paths, each
of which is either

(1) a single edge of weight r;
(2) an indivisible Nielsen path of weight r;
(3) a GEP of weight r; or
(4) a path of weight at most r − 1.

Proof. If Hr is a zero stratum, then f#(ρ) has weight at most r− 1, and
D(n) = 1 will suffice for any n.

If Hr is a parabolic stratum, then ρ admits a hard splitting into pieces
which are either basic of height r or of weight at most r − 1 (Lemma 2.2.12).
Thus it is sufficient to consider the case where ρ is a basic path of weight r and
|ρ| ≤ n. By at most 2 applications of Lemma 2.2.13, we see that there exists a
k such that fk#(ρ) admits a hard splitting into pieces which are either (i) single
edges of weight r, (ii) exceptional paths of height r, or (iii) of weight at most
r− 1. By taking the maximum of such k over all basic paths of height r which
are of length at most n, we find an integer k0 so that we have the desired hard
splitting of fk0# (ρ) for all basic paths of height r of length at most n. Any of
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the exceptional paths in these splittings which are not GEPs have bounded
length and are either indivisible Nielsen paths or are decreasing in length. A
crude bound on the length of the exceptional paths which are not GEPs is Lk0n
where L is the maximum length of f(E) over all edges E ∈ G. Thus, those
exceptional paths which are decreasing in length will become GEPs within less
than Lk0n iterations. Therefore, replacing k0 by k0 +Lk0n, we may assume all
exceptional paths in the hard splitting are GEPs.

Finally, suppose that Hr is an exponential stratum. As noted in Remark
2.4.3, the number of r-illegal turns in f l#(ρ) is a non-increasing function of l
bounded below by 0. Therefore, there is some j so that the number of r-illegal

turns in f j
′

#(ρ) is the same for all j′ ≥ j. By Lemma 2.2.14, f j#(ρ) admits a
hard splitting into pieces which are either (i) elements of Pr, (ii) single edges
in Hr, or (iii) paths of weight at most r−1. To finish the proof of the lemma it
remains to note that if σ ∈ Pr then f#(σ) is a Nielsen path by Lemma 2.1.14.

Therefore, the required constant for Hr may be taken to be the maximum
of j + 1 over all the paths of weight r of length at most n.

To find D(n) we need merely take the maximum of the constants found
above over all of the strata Hr of G. �

In the extension of the above proof to cover nibbled futures, we shall need
the following straightforward adaptation of Lemma 2.1.16.

Lemma 2.4.5. Let τ be a Nielsen path and τ0 a proper initial (or terminal)
sub-path of τ . No nibbled future of τ0 contains τ as a sub-path.

Proposition 2.4.6. There exists a function D′ : N → N, depending only
on f , so that for any r ∈ {1, . . . , ω}, if ρ is a path of weight r and |ρ| ≤ n,
then for any i ≥ D′(n) any i-step nibbled future of ρ admits a hard splitting
into edge-paths, each of which is either

(1) a single edge of weight r;
(2) a nibbled future of a weight r indivisible Nielsen path;
(3) a nibbled future of a weight r GEP; or
(4) a path of weight at most r − 1.

Moreover, in Case (3), the GEP lies in the j-step nibbled future of ρ for some
j ≤ i.

Remark 2.4.7. Each of the conditions (1) – (4) stated above is stable in
the following sense: once an edge in a k-step nibbled future is contained in
a path satisfying one of these conditions, then any future of this edge in any
further nibbled future will also lie in such a path (possibly the future will go
from case (1) to case (4), but otherwise which case it falls into is also stable).
Thus we can split the proof of Proposition 2.4.6 into a number of cases, deal
with the cases separately by finding some constant which suffices, and finally
take a maximum to find D′(n). An entirely similar remark applies to a number
of subsequent proofs, in particular Theorem 2.8.1.
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Remark 2.4.8. Since the statement of Proposition 2.4.6 involves all paths
ρ such that |ρ| ≤ n, if the function D′(n) is chosen to be the smallest function
satisfying the conclusion then it is nondecreasing. We will assume that the
function D′ we use is indeed monotonic.

Proof (Proposition 2.4.6). Let ρ0 = ρ and for j > 0 let ρj be a sub
edge-path of f#(ρj−1).

If Hr is a zero stratum, then f#(ρ) has weight at most r− 1 and it suffices
to take D′(n) = 1.

Suppose thatHr is an exponential stratum. By Lemma 2.4.4, theD(n)-step
entire future of ρ admits a hard splitting of the desired form. We consider how
nibbling can affect this splitting. As we move forwards through the nibbled
future of ρ, cancellation of Hr-edges can occur only at r-illegal turns and at
the ends, where the nibbling occurs.

Remark 2.4.3 implies that we can trace the r-illegal turns forwards through
the successive nibbled futures of ρ (whilst the r-illegal continues to exist). We
compare the r-illegal turns in ρk to those in fk#(ρ), the entire future of ρ. We
say that the nibbling first cancels an r-illegal turn at time k if the collection
of r-illegal turns in ρk−1 is the same as the collection in fk−1

# (ρ), but the

collection in ρk is not the same as that of fk#(ρ). The first observation we
make is that if, at time k, the nibbling has not yet cancelled any r-illegal turn
then the sequence of Hr-edges in ρk is a subsequence of the Hr-edges in fk#(ρ).

Therefore, any splitting of the desired type for fk#(ρ) is inherited by ρk.
Since there is a splitting of the D(n)-step entire future of ρ of the desired

form, either there is a splitting of ρD(n), or else ρD(n) has fewer r-illegal turns

than f
D(n)
# (ρ), and hence than ρ. However, |ρD(n)| ≤ n.LD(n). We apply the

above argument to ρD(n), going forwards a further D(nLD(n)) steps into the
future. Since the number of illegal turns in Hr in ρ was at most n − 1, we
will eventually find a splitting of the required form within an amount of time
bounded by a function of n (this function depends only on f , as required).
Denoting this function by D0, we have that any D0(n)-step nibbled future
of any path of exponential weight whose length is at most n admits a hard
splitting of the desired form.

Now suppose that Hr is a parabolic stratum. By Lemma 2.2.12, ρ admits
a hard splitting into basic edge-paths. Therefore we may assume (by reversing
the orientation of ρ if necessary) that ρ = Erσ or ρ = ErσEr where Er is the
unique edge in Hr and σ is in Gr−1. For the nibbled future of ρ to have weight
r, the nibbling must occur only on one side (since the only edges of weight r in
any future of ρ occur on the ends). We assume that all nibbling occurs from
the right. Once again, the D(n)-step entire future of ρ admits a hard splitting
of the desired form. If ρ = ErσEr then the D(n)-step nibbled future of ρ either
admits a hard splitting of the required form, or is of the form Erσ1, where σ1
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is in Gr−1. Hence we may assume that ρ = Erσ. Suppose that f(Er) = Erur,
and that ur has weight s < r.

Consider first the possibility that σ has weight q > s (but less than r by
hypothesis). We claim that after a bounded amount of time the nibbled future
of ρ admits a splitting into one piece of the form Erσ

′ where the weight of
σ′ is strictly less than q, and other pieces which are all of the form required
by the statement of the proposition. Then, by induction on weight, we may
suppose that we have a splitting into one piece of the form Erσ

′′ where the
weight of σ′′ is at most s and all of the other pieces have the form required by
the proposition.

So, suppose that σ has weight q > s. There are three cases to consider. If
the weight of σ is that of a zero stratum, then it immediately drops in weight
and the claim is proved.

Now suppose that Hq is an exponential stratum. The future of Er cannot
cancel any edges of weight q or higher in the future of σ, so the edges of weight
q in the nibbled future of ρ are exactly the same as the edges of weight q in
the corresponding nibbled future of σ (recall we are assuming that nibbling
only occurs from the right). This D0(|σ|)-step nibbled future of σ admits a
hard splitting into edge-paths which are either24 single edges of weight q, the
nibbled future of an indivisible Nielsen path of weight q, or of weight at most
q − 1. Let σ2 be the subpath of the D0(|σ|)-step nibbled future of ρ which
starts at the right endpoint of Er up to but not including the first edge of
weight q.25 Then, since mixed turns are legal, the D0(n)-step nibbled future
of ρ admits a hard splitting into edge-paths, the leftmost of which is Erσ2.

Suppose now that Hq is a parabolic stratum. It is easy to see that ρ
admits a hard splitting into edge-paths, the leftmost of which is either Erσ2

or Erσ2Eq, where σ2 has weight at most q − 1. Thus we may suppose that ρ
itself has this form. Again, either the D(n)-step nibbled future of ρ admits a
hard splitting of the required form, or the D(n)-step nibbled future of ρ has
the form Erσ3, where σ3 has weight at most q − 1. The arguments in the
previous two paragraphs include the possibility that a GEP of weight r occurs
as a factor of the hard splitting of the D(n)-step nibbled future of ρ. Thus we
may assume that in some nibbled future of ρ there will necessarily be a hard
splitting on each side of the edge of weight r. (Recall by Remark 2.2.3 that
this includes the case that this edge is an initial or terminal subsegment.)

As noted above, by induction we have now proved that going forwards into
the nibbled future an amount of time bounded by a function of n, we may
assume that ρ has the form Erσ4, where σ4 has weight at most s (thus σ4 is
the path σ′′ from the claim above). Suppose that σ4 has weight less than s.
Then f#(Erσ4) = Er � σ5, where σ5 has weight less than r. This is a splitting

24GEPs have parabolic weight
25In case the nibbled future of σ is empty, this is the entire path.
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of the required form which is inherited by an nibbled future. Therefore, we
are left with the case that the weight of σ4 is exactly s.

We now consider what kind of stratum Hs is. Suppose that Hs is parabolic.
There are only two ways in which cancellation between weight s edges in the
nibbled future of ρ can occur (see Lemma 1.5.5): they might be cancelled by
edges whose immediate past is the edge of weight r on the left end of the
previous nibbled future; alternatively, they can be nibbled from the right. The
D(n)-step entire future of ρ admits a hard splitting as Er � σ6, where σ6 has
weight at most r − 1. There is no way that nibbling can affect this splitting.

Finally, suppose that Hs is an exponential stratum. We follow a similar
argument to the case when Hr was an exponential stratum. Either the D(n)-
step nibbled future of ρ admits a hard splitting of the desired kind (which
means ρD(n) = Er � σ7 where σ7 has weight at most r − 1), or there are
fewer s-illegal turns in the future of σ4 in ρD(n) than there are s-illegal turns
in σ4. We then apply the same argument to the nibbled future of ρD(n) until
eventually we achieve a hard splitting of the required form.

The last sentence in the statement of Proposition 2.4.6 follows immediately,
since in the proof we have only consider paths which arise in the nibbled futures
of ρ. This completes the proof of Proposition 2.4.6. �

We are now in a position to prove Theorem 2.4.2. For this we require the
following definition.

Definition 2.4.9. Suppose that Hr is a stratum, and E ∈ Hr. An r-seed
is a non-empty subpath ρ of f(E) which is maximal subject to lying in Gr−1.

If the stratum Hr is not relevant, we just refer to seeds.

Note that seeds are edge-paths and that the set of all seeds is finite. Also,
if Hr is an exponential stratum and E ∈ Hr then the seeds in f(E) are the
sub-paths bi from Definition 2.1.2.

The following is an immediate consequence of Lemma 2.2.14 and RTT-(i)
of Definition 2.1.1.

Lemma 2.4.10. If E ∈ Hr is an exponential edge and ρ is an r-seed in
f(E) then f(E) = σ1 � ρ � σ2 where σ1 and σ2 are r-legal paths which start
and finish with edges in Hr.

Proof (Theorem 2.4.2). Suppose that ρ is a path of length n and that
ρk is a k-step nibbled future of ρ. Denote by ρ0 = ρ, ρ1, . . . , ρk−1 the interme-
diate nibbled futures of ρ used in order to define ρk.

We begin by constructing a van Kampen diagram26 ∆k which encodes the
ρi, proceeding by induction on k. For k = 1 the diagram ∆1 has a single

26in fact, just a stack of corridors. Of course, van Kampen diagrams are not required
for this proof, but we find them a convenient way of encoding choices of tightening and
nibbling.
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(folded) corridor with the bottom labelled by ρ and the path ρ1 a subpath
of the top of this corridor. Suppose that we have associated a van Kampen
diagram ∆k−1 to ρk−1, with a unique corridor at each time t = 0, . . . , k − 2,
such that ρk−1 is a subpath of the top of the latest (folded) corridor. Then we
attach a new folded corridor to ∆k−1 whose bottom is labelled by ρk−1. The
path ρk is, by definition, a subpath of the top of this new latest corridor. By
convention, we consider ρi to occur at time i.

Choose an arbitrary edge ε in ρk on the (folded) top of the latest corridor
in ∆k. We will prove that there is a path σ containing ε in ρk so that ρk
admits a hard splitting immediately on either side of σ and so that σ is either
suitably short or a nibbled future of a GEP. The purpose of this proof is to
find a suitable notion of short.

Consider the embedded ‘family forest’ F for ∆k, tracing the histories of
edges lying on the folded tops of corridors (see Remark 1.3.2). Let p be the
path in F which follows the history of ε. We denote by p(i) the edge which
intersects p and lies on the bottom of the corridor at time i. The edges p(i)
form the past of ε. We will sometimes denote the edge ε by p(k). It will be an
analysis of the times at which the weight of p(i) decreases that forms the core
of the proof of the theorem.

The weights of the edges p(0), p(1), . . . , p(k) form a non-increasing se-
quence. Suppose this sequence is W = {w0, . . . , wk}. A drop in W is a time t
such that wt−1 > wt. At such times, the edge p(t) is contained in a (folded)
seed in the bottom of a corridor of ∆k.

We will show that either successive drops occur rapidly, or else we reach a
situation wherein each time a drop occurs we lose no essential information by
restricting our attention to a small subpath of ρi.

To make this localisation argument precise, we define incidents, which fall
into two types.

An incident of Type A is a time t which (i) is a drop; and (ii) is such that
there is a hard splitting of ρt immediately on either side of the folded seed
containing p(t).

An incident of Type B is a time t such that p(t − 1) lies in an indivisible
Nielsen path with a hard splitting of ρt−1 immediately on either side, but p(t)
does not; except that we do not consider this to be an incident if some ρi, for
i ≤ t−1 admits a hard splitting ρi = σ1�σ2�σ3 with p(i) ⊆ σ2 and σ2 a GEP.
In case of an incident of Type B, necessarily p(t) lies in the nibbled future of
a Nielsen path on one end of ρt with a hard splitting of ρt immediately on the
other side.

Define the time t1 to be the last time at which there is an incident (of Type
A or Type B). If there are no incidents, let t1 = 0. If this incident is of Type
A, the edge p(t1) lies in a folded seed, call it π, and there is a hard splitting
of ρt1 immediately on either side of π. If the incident is of Type B, the edge
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p(t1) lies in the 1-step nibbled future of a Nielsen path, call this nibbled future
π also. In case t1 = 0, let π = ρ. We will see that there is a bound, α say, on
the length of π which depends only on f and n, and not on the choice of π,
or the choice of nibbled future. The bound α will be defined solely in terms
of Type B incidents. We postpone the proof of the existence of the bound α
while we examine the consequences of its existence.

The purpose of isolating the path π is that it is a path of controlled length
and the hard splitting 27 of ρt1 immediately on either side of π means that we
need only consider the nibbled future or π. Suppose that π has weight r.

Claim 1: There exists a constant β = β(n, α, f) so that one of the following
must occur:

(i) for some t1 ≤ i < k, the edge p(i) lies in a GEP in f#(ρi−1) with a
hard splitting immediately on either side;

(ii) case (i) does not occur; k − t1 > β; and at some time i ≤ t1 + β, the
edge p(i) lies in an indivisible Nielsen path τ in f#(ρi−1) with a hard
splitting immediately on either side;

(iii) k − t1 ≤ β; or
(iv) there is a hard splitting of ρk immediately on either side of ε.

This claim implies the theorem, modulo the bound on α, as we shall now
explain. In case (i), for all j ≥ i, the edge p(j) lies in the nibbled future
of a GEP, so in particular this is true for ε = p(k). If case (ii) arises then
the definition of t1 implies that for j ≥ i, the edge p(j) always lies in a path
labelled τ with a hard splitting immediately on either side, for otherwise there
would be a subsequent incident. Also, the length of this Nielsen path is at
most αLβ. If case (iii) arises, then the nibbled future of π at time k has length
at most αLβ.

To prove the claim, we define two sequences of numbers Vω, Vω−1, . . . , V1

and V ′ω, V
′
ω−1, . . . , V

′
1 , depending on n and f , as follows (where D′(n) is the

function from Proposition 2.4.6):

Vω := D′(α),

V ′ω := Vω + αLVω .

For ω > i ≥ 1, supposing V ′i+1 to be defined,

Vi := V ′i+1 +D′(αLV
′
i+1).

Also, supposing Vi to be defined, we define

V ′i := Vi + αLVi .

The constants V ′i and Vi are defined so that Proposition 2.4.6 may be applied
successively to paths which satisfy Case (4) of the statement of that result.

27this splitting is vacuous in case t1 = 0 and at various other points during this proof
which we do not explicitly mention
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The key point is that at time t1 we have control over the length of the path
π, and so may apply Proposition 2.4.6 to find a hard splitting of any i-step
nibbled future of ρ so long as i ≥ D′(|π|). If we consider the D′(|π|)-step
nibbled future, then we also have control of each of the h-indivisible paths
in this hard splitting, and thus we may apply Proposition 2.4.6 again. Note
that the paths which satisfy Cases (1)–(3) of Proposition 2.4.6 also satisfy
the requirements of Theorem 2.4.2 (given the as yet unproved bound α), so
we have to deal with the paths satisfying Case (4). We deal with these by
successive applications of Proposition 2.4.6, considering at each weight the
paths satisfying Case (4). The constants Vi and V ′i are tuned to allow this
induction on weight to occur. Note that since D′ is a nondecreasing function
(Remark 2.4.8), we have Vi+1 < V ′i+1 < Vi for each i.

Consider the situation at time t1 + Vr (recall that r is the weight of π).
Possibly k ≤ t1 + Vr, which is covered by case (iii) of our claim, so long as
β > Vr. Therefore, suppose that k > t1 + Vr.

According to Proposition 2.4.6, and the definition of t1, at time t1 +Vr the
Vr-step nibbled future of π which exists in ρt1+Vr admits a hard splitting into
edge-paths, each of which is either:

(1) a single edge of weight r;
(2) a nibbled future of a weight r indivisible Nielsen path;
(3) a nibbled future of a weight r GEP; or
(4) a path of weight at most r − 1.

We need to augment possibility (3) by recalling that Proposition 2.4.6 also
shows that the GEP referred to lies in the j-step nibbled future of π for some
j ≤ Vr.

We analyse what happens when the edge p(t1 + Vr) lies in each of these
four types of path.

Case (1): In the first case, by the definition of t1, there will be a hard
splitting of ρk immediately on either side of ε, since in this case if there is
a drop in W after t1 + Vr then there is an incident of Type A, contrary to
hypothesis.

Case (3): If p(t1 + Vr) lies in a path of the third type then we are in case
(i) of our claim, and hence content.

The fourth type of path will lead us to an inductive argument on the weight
of the path under consideration. But first we consider the nibbled futures of
Nielsen paths.

Case (2): Suppose that in ρt1+Vr the edge p(t1 + Vr) lies in the nibbled
future of a Nielsen path of weight r, with a hard splitting of ρt1+Vr immediately
on either side. Suppose that this nibbled future is πr. If πr is actually a Nielsen
path then we lie in case (ii) of our claim. Thus suppose that πr is not a Nielsen
path. It has length at most αLVr , and within time αLVr any nibbled future of
πr admits a hard splitting into edge-paths of types (1), (3) and (4) from the
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above list. The required bound on length is straightforward, since the length
of π is at most α and we are considering a sub-path of a Vr-step nibbled future
of π (recall that L is the maximum length of paths L(E) for edges E in G).

To see that any nibbled future of πr admits a splitting of the required form
within time αLVr , consider the three types of indivisible Nielsen paths. If τ is
a Nielsen path which is a single edge fixed pointwise by f , then any nibbled
future of τ is either a single edge or empty.

Suppose that τ is an indivisible Nielsen path of weight r and Hr is exponen-
tial, and suppose that τ ′ is a proper subpath of τ . Then there is some iterated
image f l#(τ ′) of τ ′ which is r-legal. By Proposition 2.4.6 any D′(α)-step nib-
bled future of τ ′ is r-legal. Since τ has length at most α, so does τ ′. Therefore,
if i ≥ D′(α) then any i-step nibbled future of τ ′ admits a hard splitting into
paths of the required form. Since Vr > Vω = D′(α), it is clear that within time
LVr > D′(α), the nibbled futures of τ ′ admit a hard splitting of the required
form.

Finally suppose that Eiτ
kEj is an indivisible Nielsen path of parabolic

weight, with k ≥ 0. Thus τ is a Nielsen path of weight less than r, and Ei,
Ej are edges such that f(Ei) = Ei � τm, f(Ej) = Ej � τm. A 1-step nibbled
future of Eiτ

kEj has one of three forms: (I) Eiτ
k1τ ′, where τ ′ is a proper sub

edge-path of τ ; (II) τ ′τ k2τ ′′ where τ ′ and τ ′′ are proper sub edge-paths of τ ; or
(III) τ ′τ k3Ej, where τ ′ is a proper sub edge-path of τ . Note that cases (I) and
(III) are not symmetric because we assume that k ≥ 0 (and hence k1, k2, k3 ≥ 0
also).

Case 2(I): In this case, Eiτ
k1τ ′ admits a hard splitting into Ei and τ k1τ ′,

which is of the required sort.

Case 2(II): In this case the path already had weight less than r.

Case 2(III): Suppose we are in case (III), and that µ, the αLVr -step nibbled
future of τ ′τ k3Ej has a copy of Ej. Lemma 2.4.5 assures us that no nibbled
future of τ ′ can contain τ as a subpath, and therefore there is a splitting of µ
immediately on the right of Ej, and we are done. If there is no copy of Ej in
µ, we are also done, since this nibbled future must have weight less than r.

Case (4): Having dealt with cases (1), (2) and (3), we may now suppose
that at time t1 + Vr + αLVr = t1 + V ′r the edge p(t1 + V ′r ) lies in an edge-path
of weight at most r − 1 with a hard splitting of ρt1+V ′r immediately on either
side.28 Denote this path by π′r, chosen to be in the future of π. Note that π′r
has length at most αLV

′
r .

By Proposition 2.4.6 again, either k < t1 + Vr−1 or at time t1 + Vr−1 the
nibbled future of π′r admits a hard splitting into edge-paths each of which is
either:

28Note that again it is possible that k < t1 +V ′r , in which case we are in case (iii) of our
claim. We suppose therefore that this is not the case.
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(1) a single edge of weight r − 1;
(2) a nibbled future of a weight r − 1 indivisible Nielsen path;
(3) a nibbled future of a weight r − 1 GEP; or
(4) a path of weight at most r − 2.

We continue in this manner. We may conceivably fall into case (4) each
time until t1 + V1 when it is not possible to fall into a path of weight at most
1− 1! Thus at some stage we must fall into one of the first three cases. This
completes the proof of Claim 1.

The existence of α. We must find a bound, in terms of n and f , on the
length of indivisible Nielsen paths that arise in the nibbled future of ρ with a
hard splitting immediately on either side.29 To this end, suppose that ε′ is an
edge which lies in an indivisible Nielsen path τ in a k′-step nibbled future of
ρ, and that there is a hard splitting immediately on either side of τ . We again
denote the i-step nibbled future of ρ by ρi for 0 ≤ i ≤ k′.

As above, we associate a diagram ∆k′ to ρk′ .
30 Denote by q the path in

the family forest of ∆k′ which follows the past of ε′. Let q(i) be the edge
in ρi which intersects q. Let the sequence of weights of the edges q(i) be
W ′ = {w′0, . . . , w′k′}.

Define incidents of Type A and B for W ′ in exactly the same way as for
W , and let t2 be the time of the last incident of Type A for W ′. If there is
no incident of Type A for W ′ let t2 = 0. Let κ be the folded seed containing
q(t2); in case t2 = 0 let κ = ρ. Define θ = max{n, L} and note that |κ| ≤ θ.
The path τ must lie in the nibbled future of κ, so it suffices to consider the
nibbled future of κ. Suppose that κ has weight r′.

We deal with the nibbled future of κ in the same way as we dealt with that
of π. Let κ0 = κ, κ1, . . . be the nibbled futures of κ.

Claim 2: There exists a constant β′ = β′(n, f) so that one of the following
must occur:

(i) for some t2 < i < k′, the edge q(i) lies in a GEP in f#(κi−1) that has
a hard splitting immediately on either side;

(ii) not in case (i), and at some time i ≤ k′ the edge q(i) lies in an indivis-
ible Nielsen path τ0 in f#(κi−1) so that |τ0| ≤ θLβ

′
and immediately

on either side of τ0 there is a hard splitting, and there are no incidents
of Type B after time i;

(iii) k′ − t2 ≤ β′; or
(iv) there is a hard splitting of κk′ immediately on either side of ε′.

29Recall that the definition of Type B incidents excluded the case of Nielsen paths which
lie in the nibbled future of a GEP with a hard splitting immediately on either side.

30If we are considering Nielsen paths arising in the past of ε above, then we can assume
k′ ≤ k and that ∆k′ is a subdiagram of ∆k in the obvious way.



2.5. PASSING TO AN ITERATE OF f 93

Let us prove that this claim implies the existence of α and hence completes
the proof of the theorem. By definition, α is required to be an upper bound
on the length of an arbitrary Nielsen path τ involved in a Type B incident.
We assume this incident occurs at time k′ and use Claim 2 to analyse what
happens.

Case (i) of Claim 2 is irrelevant in this regard. If case (ii) occurs, the
futures of τ0 are unchanging up to time k′, so τ = τ0 and we have our required
bound. In case (iii) the length of τ is at most θLβ

′
, and in case (iv) τ is a

single edge. It suffices to let α = θLβ
′
.

It remains to prove Claim 2. The proof of Claim 2 follows that of Claim
1 almost verbatim, with θ in place of α and κ in place of ρ, etc., except that
the third sentence in Case (2) of the proof becomes invalid because Type B
incidents after time t2 + Vr may occur.

In this setting, suppose πr (which occurs at time t2 +Vr) is a Nielsen path,
but that we are not in case (ii) of Claim 2, and there is a subsequent Type B
incident at time j, say. The length of πr is at most θLVr . The Nielsen path
at time j − 1 has the same length as the one at time t2 + Vr. We go forward
to time j, where the future of πr is no longer a Nielsen path, and continue the
proof of Case (2) from the fourth sentence of the proof.

Otherwise, the proof of Claim 2 is the same as that of Claim 1 (the above
modification is required at each weight, but at most once for each weight).
The only way in which the length bounds change is in the replacement of θ by
α (including in the definitions of Vi and V ′i ). This finally completes the proof
of Theorem 2.4.2. �

2.5. Passing to an Iterate of f

It is important to be able to replace f by an iterate f0 = fk#, for k ≥ 1.
However, when doing this, it is important to be able to retain control over
certain constants (since which iterate we choose will depend on some of these
constants). In this section we describe what happens to various definitions
when we replace f by an iterate. Suppose that k ≥ 1, and consider the
relationship between f and f0 = fk#.

First, for any integer j ≥ 1, the set of kj-monochromatic paths for f is the
same as the set of j-monochromatic paths for f0. Therefore, once Theorem
2.3.2 is proved, we will pass to an iterate so that r-monochromatic becomes
1-monochromatic. However, the story is not quite as simple as that.

It is not hard to see that if σ � ν is a hard splitting for f , then it is also a
hard splitting for f0.

When f is replaced by f0, the set of GEPs is unchanged, as are the sets of
ΨEPs and indivisible Nielsen paths. Also, the set of indivisible Nielsen paths
which occur as sub-paths of f(E) for some linear edge E remains unchanged.
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With the definition as given, the set of (J, f0)-atoms may be smaller than
the set of (J, f)-atoms. This is because an atom is required to be 1-monochromatic.
However, we continue to consider the set of (J, f)-atoms even when we pass to
f0, and we also consider paths to be beaded if they are (J, f)-beaded.

Since we are quantifying over a smaller set of paths the constant V (n, f0)
in Theorem 2.4.2 is assumed, without loss of generality, to be V (n, f). This is
an important point, because the constant V is used to find the appropriate J
when proving Theorem 2.3.2. When passing from f to f0, we need this J to
remain unchanged, for the appropriate iterate k which we eventually choose
depends crucially upon J (See Addendum 2.0.1).

It is also clear that if m ≤ n then without loss of generality we may assume
that V (m, f) ≤ V (n, f). Once again, this is because we are considering a
smaller set of paths when defining V (m, f).

We now want to replace f by a fixed iterate in order to control some of the
cancellation within monochromatic paths. The following lemma is particularly
useful in the proof of Proposition 2.6.9 below, and also for Theorem 2.8.1. In
particular, it will be used to find the value of d in the Beaded Decomposition
Theorem. Lemma 2.5.1 allows us to tune the improved relative train track
map in order to exclude some troublesome cancellation phenomena that can
otherwise occur in nibbled futures.

Lemma 2.5.1. There exists k1 ≥ 1 so that f1 = fk1# satisfies the following.
Suppose that E is an exponential edge of weight r and that σ is an indivisible
Nielsen path of weight r (if it exists, σ is unique up to a change of orientation).
Then

(1) |f1(E)| > |σ|.
(2) Moreover, if σ is an indivisible Nielsen path of exponential weight r

and σ0 is a proper subedge-path of σ, then (f1)#(σ0) is r-legal.
(3) If σ0 is a proper initial sub edge-path of σ then (f1)#(σ0) admits a

hard splitting, f(E)� ξ, where E is the edge on the left end of σ.
(4) Finally, if σ1 is a proper terminal sub edge-path of σ then (f1)#(σ1) =

ξ′ � f(E ′) where E ′ is the edge on the right end of σ.

Now suppose that σ is an indivisible Nielsen path of parabolic weight r and that
σ is a sub edge-path of f(E1) for some linear edge E1. The path σ is either
of the form EηmσE ′ or of the form EηmσE ′, for some linear edges E and E ′.
Then

(1) If σ0 is a proper initial sub edge-path of σ then

(f1)#(σ0) = E � η � · · · � η � ξ′′,

where there are more than mσ copies of η visible in this splitting.
(2) If σ1 is a proper terminal sub edge-path of σ then

(f1)#(σ1) = ξ′ � η � · · · � η � E ′,
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where there are more than mσ copies of η visible in this splitting;

Proof. First suppose that Hr is an exponential stratum, that σ is an
indivisible Nielsen path of weight r, and that E is an edge of weight r. Since
|f j#(E)| grows exponentially with j, and |f j#(σ)| is constant, there is certainly

some d0 so that |fd#(E)| > |σ| for all d ≥ d0.
There is a single r-illegal turn in σ, and if σ0 is a proper sub edge-path of

σ. By Lemma 2.1.16, no future of σ0 can contain σ as a subpath. The number
of r-illegal turns in iterates of σ0 must stabilise, so by Lemma 2.1.12 there is
an iterate of σ0 which is r-legal. Since there are only finitely many paths σ0,
we can choose an iterate of f which works for all such σ0.

Suppose now that σ0 is a proper initial sub edge-path of σ, and that E is
the edge on the left end of σ. It is not hard to see that every (entire) future
of σ0 has E on its left end. We have found an iterate of f so that fd

′

# (σ0) is
r-legal. It now follows immediately that

fd
′+1

# (σ0) = f(E)� ξ,
for some path ξ. The case when σ1 is a proper terminal sub edge-path of σ is
identical.

Now suppose that Hr is a parabolic stratum and that σ is an indivisible
Nielsen path of weight r of the form in the statement of the lemma. The
claims about sub-paths of σ follow from the hard splittings f(E) = E � uE
and f(E ′) = E ′ � uE′ , and from the fact that mσ is bounded because σ is a
subpath of some f(E1).

As in Remark 2.4.7, we can treat each of the cases separately, and finally
take a maximum. �

2.6. The Nibbled Futures of GEPs

In this section f is an improved relative train track map, although we do
not suppose yet that we have replaced f by an iterate so that Lemma 2.5.1
holds with k1 = 1.

The entire future of a GEP is a GEP but a nibbled future need not be and
Theorem 2.4.2 tells us that we need to analyse these nibbled futures. This
analysis will lead us to define proto-ΨEPs. In Proposition 2.6.9, we establish
a normal form for proto-ΨEPs which proves that proto-ΨEPs are in fact the
ΨEPs which appear in the Beaded Decomposition Theorem.

To this end, suppose that

ζ = Eiτ
nEj

is a GEP, where τ is a Nielsen path, f(Ei) = Ei � τmi and f(Ej) = Ej � τmj .
As in Definition 2.1.6, we consider Eiτ

nEj to be unoriented, but here we do
not suppose that j ≤ i. However, we suppose n > 0 and thus, since Eiτ

nEj is
a GEP, mj > mi > 0.
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The analysis of GEPs of the form Ejτ
nEi is entirely similar to that of GEPs

of the form Eiτ
nEj except that one must reverse all left-right orientations.

Therefore, we ignore this case until Definition 2.6.2 below (and often afterwards
also!).

We fix a sequence of nibbled futures ζ = ρ−l, . . . , ρ0, ρ1, . . . , ρk, . . . of ζ,
where ρ0 is the first nibbled future which is not the entire future. Since the
entire future of a GEP is a GEP, we restrict our attention to the nibbled
futures of ρ0.

There are three cases to consider, depending on the type of sub-path on
either end of ρ0.

(1) ρ0 = τ̄0τ̄
mEj;

(2) ρ0 = τ̄0τ̄
mτ̄1.

(3) ρ0 = Eiτ̄
mτ̄1;

where τ0 is a (possibly empty) initial sub edge-path of τ , and τ1 is a (possibly
empty) terminal sub edge-path of τ .

In case (1) ρ0 admits a hard splitting

ρ0 = τ 0 � τ � · · · � τ � Ej.

Since τ0 is a sub edge-path of f(Ei), it has length less than L and its nibbled
futures admit hard splittings as in Theorem 2.4.2 into nibbled futures of GEPs
and paths of length at most V (L, f). These GEPs will necessarily be of strictly
lower weight than ρ0, since τ 0 is. Thus, case (1) is easily dealt with by an
induction on weight, supposing that we have a nice splitting of the nibbled
futures of lower weight GEPs; this is made precise in Proposition 2.6.10. Case
(2) is entirely similar.

Case (3) is by far the most troublesome of the three, and it is this case which
leads to the definition of proto-ΨEPs in Definition 2.6.2 below. Henceforth
assume ρ0 = Eiτ̄

mτ̄1.
Each of the nibbled futures of ρ0 (up to the moment of death, Subsection

2.6.1) has a nibbled future of τ 1 on the right. If the latter becomes empty at
some point, the nibbled future of ρ0 at this time has the form Eiτ

n′τ 2, where
τ2 is a proper (but possibly empty) sub edge-path of τ . We restart our analysis
at this moment. Hence we make the following

Working Assumption 2.6.1. We make the following two assumptions
on the k-step nibbled futures considered:

(1) ρ0 = E1τ
mτ 1;

(2) all nibbling of ρk occurs on the right; and
(3) the k-step nibbled future τ 1,k of τ 1 inherited from ρk is non-empty.

We will deal with the case m− kmi < 0 later, in particular with the value
of k for which m − (k − 1)mi ≥ 0 but m − kmi < 0. For now suppose that
m− kmi ≥ 0.



2.6. THE NIBBLED FUTURES OF GEPS 97

In this case, the path ρk has the form

ρk = Eiτ
m−kmiτ 1,k.

There are (possibly empty) Nielsen edge-paths ι and ν, and an indivisible
Nielsen edge-path σ so that

(2.6.1) τ = ι� σ � ν and τ1 = σ1 � ν,

where σ1 is a proper terminal sub edge-path of σ. Now, as in Working As-
sumption 2.6.1, there is no loss of generality in supposing that

ρk = Eiτ
m−kmi ν̄σ̄1,k,

where σ1,k is the nibbled future of σ1 inherited from ρk, and that σ1,k is non-
empty.

Since |σ1| < L, by Theorem 2.4.2 the path σ1,k admits a hard splitting
into edge-paths each of which is either the nibbled future of a GEP, or of
length at most V (L, f); we take the (unique) maximal hard splitting of σ1,k

into edge-paths.
Let s = bm/mic+ 1. In ρs (but not before) there may be some interaction

between the future of Ei and σ1,s. We denote by γk,mσ1
the concatenation of

those factors in the hard splitting of σ1,k which contain edges any part of
whose future is eventually cancelled by some edge in the future of Ei under
any choice of nibbled futures of ρk (not just the ρk+t chosen earlier) and any
choice of tightening. Below we will analyse more carefully the structure of the
paths σ1,k and γk,mσ1

.
We now have σ1,k = γk,mσ1

� σ•1,k. From (2.6.1), we also have

(2.6.2) ρk = Eiτ
m−kmiνγk,mσ1

� σ•1,k.

Definition 2.6.2 (Proto-ΨEPs). Suppose that τ is a Nielsen edge-path,
Ei a linear edge such that f(Ei) = Ei � τmi and τ1 a proper terminal sub
edge-path of τ such that τ1 = σ1 � ν as in (2.6.1). Let k,m ≥ 0 be such that
m− kmi ≥ 0 and let γk,mσ1

be as in (2.6.2). A path π is called a proto-ΨEP if
either π of π is of the form

Eiτ
m−kmiνγk,mσ1

.

Remarks 2.6.3.

(1) The definition of proto-ΨEPs is intended to capture those paths which
remain when a GEP is partially cancelled, leaving a path which may
shrink in size of its own accord.

(2) By definition, a proto-ΨEP admits no non-vacuous hard splitting into
edge-paths.

We now introduce two distinguished kinds of proto-ΨEPs.
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Definition 2.6.4. Suppose that

π = Eiτ
m−kmiνγk,mσ1

,

is a proto-ΨEP as in Definition 2.6.2.
The path π is a transient proto-ΨEP if k = 0.
The path π is a stable proto ΨEP if γk,mσ1

is a single edge.

Lemma 2.6.5. A transient proto-ΨEP is a ΨEP.

Proof. With the notation of Definition 2.6.2, in this case γ0,m
σ1

is visibly
a sub-path of τ̄ , and the proto-ΨEP is visibly a sub-path of a GEP. �

Lemma 2.6.6. A stable proto-ΨEP is a ΨEP.

Proof. Since σ̄ is a Nielsen path, if α is a nibbled future of σ̄ where all
the nibbling has occurred on the right, then the first edge in α is the same as
the first edge in σ̄.

On the other hand, γk,mσ1
is a nibbled future of σ̄ where all the nibbling has

occurred on the right. Therefore, if γk,mσ1
is a single edge then it must be a

sub-path of σ̄. It follows immediately that any stable proto-ΨEP must be a
ΨEP. �

Remark 2.6.7. We will prove in Proposition 2.6.9 that after replacing f
by a suitable iterate all proto-ΨEPs are either transient or stable, and hence
are ΨEPs.

2.6.1. The Death of a proto-ΨEP. Suppose that π = Eiτ
m−kmiνγk,mσ1

is a proto-ΨEP with nibbled futures satisfying Assumption 2.6.1. Let q =
bm−kmi

mi
c+ 1, and consider, πq−1, a (q− 1)-step nibbled future of π. As before,

we assume that the (q − 1)-step nibbled future of γk,mσ0
inherited from a πq−1

is not empty and that the edge labelled Ei on the very left is not nibbled.
In πq, the edge Ei has consumed all of the copies of τ and begins to interact

with the future of νγk,mσ1
. Also, the future of π at time q need not contain a

ΨEP. Hence we refer to the time q as the death of the ΨEP. Recall that
τ = ι � σ � ν and that γk,mσ1

is a k-step nibbled future of σ1, where σ1 is a
proper subpath of σ. Let p = m− (k + q − 1)mi, so that 0 ≤ p < mi.

The path πq−1 has the form

πq−1 = Eiτ
pνγk+q−1,m

σ1
.

Suppose that πq is a 1-step nibbled future of πq−1. In other words, πq is a
subpath of f#(πq−1). Consider what happens when f(πq−1) is tightened to
form f#(πq−1) (with any choice of tightening). The p copies of τ (possibly in
various stages of tightening) will be consumed by Ei, leaving ν � f(γk+q−1,m

σ1
)

to interact with at least one remaining copy of τ = ι�σ� ν. The paths ν and
ν will cancel with each other31.

31The hard splittings imply that this cancellation must occur under any choice of
tightening.
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Lemma 2.4.5 states that γk,mσ1
cannot contain σ as a subpath. Therefore,

once ν and ν have cancelled, not all of σ will cancel with f(γk+q−1,m
σ1

). A
consequence of this discussion (and the fact that f(Ei) = Ei � τmi) is the
following

Lemma 2.6.8. Suppose that π = Eiτ
m−kmiνγk,mσ0

is a proto-ΨEP, and let

q = bm−kmi
mi
c + 1. Suppose that πq−1 is a (q − 1)-step nibbled future of π

satisfying Assumption 2.6.1. If πq is an immediate nibbled future of πq−1 and
πq contains Ei then πq admits a hard splitting

πq = Ei � λ.

We now analyse the interaction between f(γk+q−1,m
σ1

) and σ more closely. As
usual, there are two cases to consider, depending on whether σ has exponential
or parabolic weight32.

In the following proposition, f1 is the iterate of f from Lemma 2.5.1 and
we are using the definitions as explained in Section 2.5. Also, we assume that
proto-ΨEPs are defined using f1, not f .

Proposition 2.6.9. Every proto-ΨEP for f1 is either transient or stable.
In particular, every proto-ΨEP for f1 is a ΨEP.

Proof. Let π = Eiτ
m−kmiνγk,mσ1

be a proto-ΨEP for f1.
Lemma 2.6.5 implies that if k = 0 then π is a ΨEP. Consider Working

Assumption 2.6.1. If Assumption 2.6.1.(2) fails to hold at any point, then we
can restart our analysis, and in particular we have a transient proto-ΨEP at
this moment. Thus we may suppose that π is an initial sub-path of a k-step
nibbled future of a GEP, where k ≥ 1 and we may further suppose that π
satisfies Assumption 2.6.1.(2). We prove that in this case π is a stable proto-
ΨEP.

First suppose that σ has exponential weight, r say. If σ0 is a proper initial
sub edge-path of σ then Lemma 2.5.1 asserts that

(f1)#(σ0) = f(E)� ξ,

and |f(E)| > |σ|. Note also that f(E) = E � ξ′′ for some path ξ′′.
Now, at the death of the proto-ΨEP, the nibbled future of γk,mσ0

interacts
with a copy of Ei, and in particular with a copy of f(σ) (in some stage of
tightening). Now the above hard splitting, and the fact that σ is not r-legal
whilst f(E) is, shows that γk,mσ1

must be a single edge (namely E).
Suppose now that σ has parabolic weight. Since σ has proper sub edge-

paths, it is not a single edge and so σ or σ has the form EηmσE ′. The hard

32Recall that there are three kinds of indivisible Nielsen paths: constant edges, parabolic
weight and exponential weight. If σ has nontrivial proper sub edge-paths, then it is certainly
not a single edge, constant or not.
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splittings guaranteed by Lemma 2.5.1 now imply that γk,mσ1
is a single edge in

this case also.
Therefore, every proto-ΨEP for f1 is transient or stable, proving the first

assertion of the proposition. The second assertion follows from the first asser-
tion, and Lemmas 2.6.5 and 2.6.6. �

Finally, we can prove the main result of this section. In the following, L1

is the maximum length of f1(E) over all edges E of G.
The following statement assumes the conventions of Section 2.5.

Proposition 2.6.10. Under iteration of the map f1 constructed in Lemma
2.5.1, any nibbled future of a GEP admits a hard splitting into edge-paths, each
of which is either a GEP, a ΨEP, or of length at most V (2L1, f).

Proof. Suppose that Eiτ
nEj is a GEP of weight r. We may suppose by

induction that any nibbled future of any GEP of weight less than r admits a
hard splitting of the required form (the base case r = 1 is vacuous, since there
cannot be a GEP of weight 1).

Suppose that ρ is a nibbled future of Eiτ
nEj. If ρ is the entire future,

it is a GEP and there is nothing to prove. Otherwise, as in the analysis at
the beginning of this section, we consider the first time when a nibbled future
is not the entire future. Let the nibbled future be ρ0. In cases (1) and (2)
from that analysis, ρ0 admits a hard splitting into edge-paths, each of which is
either (i) Ei; (ii) τ ; or (iii) a proper sub edge-path of τ . In each of these cases,
Theorem 2.4.2 asserts that there is a hard splitting of ρ into edge-paths, each
of which is either of length at most V (L, f) or is the nibbled future of a GEP.
Any nibbled future of a GEP which occurs in this splitting is necessarily of
weight strictly less than r, and so admits a hard splitting of the required form
by induction.

Suppose then that ρ0 satisfies Case (3), the third of the cases articulated
at the beginning of this section. In this case, ρ0 is a transient proto-ΨEP.
Also, any time that Assumption 2.6.1.(2) is not satisfied, the nibbled future of
ρ0 is a transient proto-ΨEP. Thus, we may assume that Assumption 2.6.1 is
satisfied. If m− kmi ≥ 0 then we have

ρ = Eiτ
m−kmiνγk,mσ1

� σ•1,k.
The first path in this splitting is a stable ΨEP by Proposition 2.6.9. Once
again, Theorem 2.4.2 and the inductive hypothesis yield a hard splitting of
σ•1,k of the required form.

Finally, suppose that Case (3) pertains and m − kmi < 0. Let q =
bm−kmi

mi
c + 1 (the significance of this moment – “the death of the ΨEP” –

was explained at the beginning of this subsection). By the definition of a ΨEP
(Definition 2.6.2), the q-step nibbled future of ρ0 admits a hard splitting as

Eiτ
m−qmiνγq,mσ1

� σ•1,q.
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By Lemma 2.6.8, the immediate future of Eiτ
m−qmiνγq,mσ1

admits a hard split-
ting as Ei�ξ. Since γr,mσ1

is a single edge, we have a bound of 2L1 on the length
of ξ. Any nibbled future of Ei�ξ now admits a hard splitting into edge-paths,
each of which is either a GEP, a ΨEP or of length at most V (2L1, f), by
induction on weight and Theorem 2.4.2. �

We highlight one consequence of Proposition 2.6.10:

Corollary 2.6.11. Suppose that ρ = Eiτ
m−kmiνγ is a ΨEP. Any imme-

diate nibbled future of ρ (with all nibbling on the right) has one of the following
two forms:

(1) ρ′ � σ, where ρ′ is a ΨEP and σ admits a hard splitting into atoms;
or

(2) Ei � σ, where σ admits a hard splitting into atoms.

In particular, this is true of f#(ρ).
There are entirely analogous statements in case ρ is a ΨEP where ρ has

the above form and all nibbling occurs on the left.

2.7. Proof of the Beaded Decomposition Theorem

In this section, we finally prove Theorem 2.3.5. As noted in Remark 2.3.6,
this immediately implies the Beaded Decomposition Theorem.

Proof (Theorem 2.3.5). Take d = k1, the constant from Lemma 2.5.1.
Let L1 be the maximum length of fk1# (E) for any edge E ∈ G, let s =
max{2L1, n}, and let J = V (s, f), where V is the constant from Theorem
2.4.2.

Suppose that ρ is a path so that |ρ| ≤ n, and let ρ′ be a kd-step nibbled
future of ρ for some positive integer k. Then ρ′ is a k-step nibbled future of
ρ with respect to f1 = fk1# . By Proposition 2.6.9, every proto-ΨEP for f1 is a
ΨEP.

By Theorem 2.4.2, ρ′ admits a hard splitting into edge-paths, each of which
is either the nibbled future of a GEP or else has length at most V (n, f). By
Proposition 2.6.10, if we replace f by f1 then any nibbled future of a GEP
admits a hard splitting into edge-paths, each of which is either a GEP, a ΨEP
or else has length at most V (2L1, f). By Lemma 2.2.8, the splitting of the
nibbled future of a GEP is inherited by ρ.

We have shown that ρ is (J, f)-beaded, as required. �

Proof (Addendum 2.3.5). We have already remarked that, for a fixed
m, the constant V (m, f) from Theorem 2.4.2 remains unchanged when f is
replaced by an iterate.

As in Section 2.5, we retain the notion of (J, f)-beaded with the original f
when passing to an iterate of f
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Therefore, when f is replaced by an iterate, Theorem 2.3.5 remains true
with the same constant J . This immediately implies that the same is true of
the Beaded Decomposition, which is what we were required to prove. �

2.8. Refinements of the Beaded Decomposition Theorem

The Beaded Decomposition Theorem is the main result of Part 2. In this
section, we provide a few further refinements that will be required for future
applications.

Throughout this section we suppose that f has been replaced with f1 from
Lemma 2.5.1, whilst maintaining the conventions for definitions from Section
2.5. When we refer to f we mean this iterate f1. With this in mind, a
monochromatic path is a 1-monochromatic path for f . Similarly, armed with
Theorem 2.3.2, we refer to (J, f)-beads, simply as beads, and a path which is
(J, f)-beaded will be referred to simply as beaded. The constant L now refers
to the maximum length |f(E)| for edges E ∈ G with the new f .

In the following theorem, the past of an edge is defined with respect to an
arbitrary choice of tightening.

Theorem 2.8.1. There exists a constant D1, depending only on f , with
the following properties. Suppose i ≥ D1, that χ is a monochromatic path and
that ε is an edge in f i#(χ) of weight r whose past in χ is also of weight r. Then

ε is contained in an edge-path ρ so that f i#(χ) has a hard splitting immediately
on either side of ρ and ρ is one of the following:

(1) a Nielsen path;
(2) a GEP;
(3) a ΨEP; or
(4) a single edge.

Proof. Let χ be a monochromatic path. For any k ≥ 0, denote fk#(χ)
by χk. In a sense, we prove the theorem ‘backwards’, by fixing an edge ε0 of
weight r in χ0 = χ and considering its futures in the paths χk, k ≥ 1. The
purpose of this proof is to find a constant D1 so that if ε is any edge of weight r
in χi with past ε0, and if i ≥ D1 then we can find a path ρ around ε satisfying
one of the conditions of the statement of the theorem.

Fix ε0 ∈ χ0. By Theorem 2.3.2, there is an edge-path π containing ε0 so
that χ admits a hard splitting immediately on either side of π and π either (I)
is a GEP; (II) has length at most J ; or (III) is a ΨEP. In the light of Remark
2.4.7, it suffices to establish the existence of a suitable D1 in each case. To
consider the futures of ε0 in the futures fk#(χ) of χ, it suffices to consider
the futures of ε0 within the (entire) futures of π. Therefore, for k ≥ 0, let
πk = fk#(π). Suppose that we have chosen, for each k, an edge εk in πk such
that: (i) εk lies in the future of ε0; (ii) εk has the same weight as ε0; and (iii)
εk is in the future of εk−1 for all k ≥ 1.
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Case (I): π is a GEP. In this case, the path πk is a GEP for all k, any
future of ε0 lies in πk, and there is a hard splitting of χk immediately on either
side of πk. Therefore, the conclusion of the theorem holds in this case with
D1 = 1.

Case (II): |π| ≤ J . Denote the weight of π by s. Necessarily s ≥ r. By
Lemma 2.4.4 the path πD(J) admits a hard splitting into edge-paths, each of
which is either

(1) a single edge of weight s;
(2) an indivisible Nielsen path of weight s;
(3) a GEP of weight s; or
(4) a path of weight at most s− 1.

We consider which of these types of edge-paths our chosen edge εD(J) lies in. In
case (1) there is a hard splitting of πD(J) immediately on either side of the edge
εD(J), so for all i ≥ D(J) there is a hard splitting of πi immediately on either
side of εi, since εi and εD(J) both have the same weight as ε0. For cases (2)
and (3), εD(J) lies in an indivisible Nielsen path or GEP with a hard splitting
of πD(J) immediately on either side, so for all i ≥ D(J) any future of ε0 in πi,
and in particular εi, lies in an indivisible Nielsen path of GEP immediately on
either side of which there is a hard splitting of πi.

Finally, suppose we are in case (4) and not in any of cases (1)–(3). Then
εD(J) lies in an edge-path ρ̃ with a hard splitting of πD(J) immediately on either
side, and that ρ̃ is not a single edge, an indivisible Nielsen path, or a GEP33.
We need only consider the future of ρ̃. For k ≥ 0, let ρD(J)+k = fk#(ρ̃) be the

future of ρ̃ in πD(J)+k. Now, |ρ̃| ≤ JLD(J) so by Lemma 2.4.4 the edge-path
ρD(J)+D(JLD(J)) admits a hard splitting into edges paths, each of which is either

(1) a single edge of weight s− 1;
(2) an indivisible Nielsen path of weight s− 1;
(3) a GEP of weight s− 1; or
(4) a path of weight at most s− 2.

We proceed in this manner. If we ever fall into one of the first three cases,
we are done. Otherwise, after s− r+ 1 iterations of this argument, the fourth
case describes a path of weight strictly less than r. Since the weight of each
εi is r, it cannot lie in such a path, and one of the first three cases must hold.
Thus we have found the required bound D1 in the case that |π| ≤ J .

Case (III): π is a ΨEP.
Let π = Eiτ

m−kmiνγk,mσ1
as in Definition 2.6.2. We consider where in the

path π the edge ε0 lies. First of all, suppose that ε0 is the unique copy of Ei.
Since ε0 is parabolic, it has a unique weight s future at each moment in time.
Let q = bm−kmi

mi
c + 1, the moment of death. For 1 ≤ p ≤ q − 1, the edge εp

33In this case necessarily s ≤ r − 1
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is the leftmost edge in a ΨEP and there is a hard splitting of πp immediately
on either side of this ΨEP. For p ≥ q, Lemma 2.6.8 ensures that there is a
hard splitting of πp immediately on either side of εp. Therefore in this case the
conclusion of the theorem holds with D1 = 1.

Now suppose that the edge ε0 lies in one of the copies of τ in π, or in the
visible copy of ν. Then any future of ε0 lies in a copy of τ or ν respectively,
which lies in a ΨEP with a hard splitting immediately on either side, until this
copy of τ or ν is consumed by Ei. Again, the conclusion of the theorem holds
with D1 = 1.

Finally, suppose that ε0 lies in γk,mσ1
. For ease of notation, for the remainder

of the proof γ will denote γk,mσ1
. By Proposition 2.6.9 γ is a single edge. Until

the q-step nibbled future of π, any future of γ of the same weight is either γ
or will have a splitting of π immediately on either side.

Since σ is an indivisible Nielsen path, and γ is a single edge, γ is the
leftmost edge of σ. Therefore [σγ] is a proper sub edge-path of σ.

Suppose that σ has exponential weight (this weight is r). By Lemma 2.5.1
and the above remark, f#(σγ) is r-legal. Therefore, any future of γ which
has weight r will have, at time q and every time afterwards, a hard splitting
immediately on either side.

Suppose now that σ has parabolic weight r. Since [σE] is a proper sub
edge-path of σ, and since there is a single edge of weight r in f(E) and this is
cancelled, it is impossible for γ to have a future of weight r after time q. �

Recall that the number of strata for the map f : G → G is ω. Recall also
the definition of displayed from Definition 2.2.17

Lemma 2.8.2. Let χ be a monochromatic path. Then the number of dis-
played ΨEPs in χ of length more than J is less than 2ω.

Proof. Suppose that χ is a monochromatic path, and that ρ is a subpath
of χ, with a hard splitting immediately on either side, such that ρ is a ΨEP,
and |ρ| > J . Then, tracing through the past of χ, the past of ρ must have
come into existence because of nibbling on one end of the past of χ. Suppose
this nibbling was from the left. Then all edges to the left of ρ in χ have weight
strictly less than that of ρ, since it must have come from a proper subpath of
an indivisible Nielsen path in the nibbled future of the GEP which became ρ.
Also, any ΨEP to the left of ρ must have arisen due to nibbling from the left.
Therefore, there are at most ω ΨEPs of length more than J which came about
due to nibbling from the left. The same is true for ΨEPs which arose through
nibbling from the right. �

Lemma 2.8.3. Let D1 be the constant from Theorem 2.8.1, and let f2 =
(f1)D1

# . If ρ is an atom, then either (f2)ω#(ρ) is a beaded path all of whose beads
are Nielsen paths and GEPs, or else there is some displayed edge ε ⊆ (f2)ω#(ρ)
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so that all edges in (f2)ω#(ρ) whose weight is greater than that of ε lie in Nielsen
paths and GEPs.

Proof. Suppose that ρ is an atom of weight r. If Hr is a zero stratum and
(f2)#(ρ) has weight s then Hs is not a zero stratum. Thus, by going forwards
one step in time if necessary, we suppose that Hr is not a zero stratum, so
(f2)#(ρ) has weight r.

By Theorem 2.8.1, all edge of weight r in (f2)#(ρ) are either displayed or
lie in Nielsen paths or GEPs (since we are considering the entire future of an
atom, ΨEPs do not arise here). If all edge of weight r in (f2)#(ρ) lie in Nielsen
paths or GEPs then we consider the atoms in (f2)#(ρ) of weight less than
r (this hard splitting exists since ρ and hence (f2)#(ρ) are monochromatic
paths). We now consider the immediate future of these atoms in (f2)2

#(ρ), etc.
It is now clear that the statement of the lemma is true. �

Finally, we record an immediate consequence of the Beaded Decomposition
Theorem and Proposition 2.6.10:

Theorem 2.8.4. Suppose that σ is a beaded path. Any nibbled future of σ
is also beaded.





Part 3

The General Case
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In Part 3, we bring together the techniques developed in Parts 1 and 2 to
prove the main result of this book.

Main Theorem. If F is a finitely generated free group and φ is an auto-
morphism of F then F oφ Z satisfies a quadratic isoperimetric inequality.

In Part 1 we proved the Main Theorem in the case of positive automor-
phisms. That proof proceeded via an analysis of van Kampen diagrams in the
universal cover of the mapping torus R × [0, 1]/〈(x, 0) ∼ (f(x), 1)〉, where R
is a 1-vertex graph with fundamental group F and f is the obvious homotopy
equivalence with f∗ = φ.

Such f are the prototypes for the improved relative train track maps of
Bestvina, Feighn and Handel [4]. In Part 2 we refined the train track technol-
ogy in pursuit of topological representatives of arbitrary automorphisms that
share with the prototypes f features that proved crucial in Part 1. We identi-
fied beads as the basic units of an edge-path that play the role in the general
setting that single edges (letters) played in the case of positive automorphisms.
The claim of beads to this role was underscored by the Beaded Decomposition
Theorem.

With these technical innovations in hand, we now set about the task of
adapting the arguments of Part 1 to the general case, following the proof from
Part 1 as closely as possible and providing the (often fierce) technical details
needed to translate each step into the more general context provided by the
topological representatives constructed in Part 2. We shall not repeat the
proofs of technical lemmas from Part 1 when the adaptation is obvious. Nor
shall we repeat our account of the intuition underlying our overall strategy of
proof and intermediate strategies at key stages.

Unfortunately, the adaptation to the general case is not entirely smooth.
Thus at times we are obliged to break from the narrative that parallels Part
1 in order to deal with phenomena that do not arise in the case of positive
automorphisms — Section 3.7, for example. But we as far as possible we have
organised matters so that, having taken account of the new phenomena, we can
return to the main narrative with the new phenomena controlled and packaged
into concise terminology. Thus, with considerable technical exertions in our
wake, we are able to arrange matters so that the final stages of the proof of
our Main Theorem consist only of references to the corresponding sections of
Part 1 with a brief explanation of what changes, if any, must be made in the
general setting.

We have already noted that, from the analysis of improved relative train
tracks in Part 2, it emerged that beads are the correct analogue for the role
played by ‘letters’ in the positive case. An important manifestation of this is
that the Main Theorem can be reduced to a statement concerning the existence
of a linear bound (in terms of |∂∆|) on the number of beads along the bottom
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of any corridor in a van Kampen diagram ∆ in the universal cover of the
mapping tori that we consider. In contrast to the positive case, however, the
existence of such a bound does not immediately imply the Main Theorem,
because there is no global bound on the length of a bead.

Nevertheless, proving a bound on the number of beads is by far the bulk
of our work, occupying Sections 3.6–3.11, which closely follow Sections 1.6–
1.10 (with different numbering and modified structure). In Section 3.12 we
explain how the bound on the number of beads, together with the ideas from
the Bonus Scheme in Section 3.11, finally gives the Main Theorem.

In Section 3.13 we explain how to deduce estimates on the geometry of
van Kampen diagrams for all mapping tori of free group automorphisms from
the specially-crafted ones that we work with during our main proof. The key
estimate – the linear bound on the length of t-corridors – when reformulated
algebraically, yields the Bracketing Theorem stated in the introduction.

In Section 3.14 we explain how our proof of the Main Theorem allows one
to reprove the main result of [19].

We suggest that readers approach Part 3 as follows. First, they must be
familiar with the structure of the argument in Part 1 and the vocabulary of
beads in Part 2. This will enable them to skim smoothly through Sections
3.1–3.4 of the current paper. Next, they can gain an accurate overview of
the proof of the Man Theorem reading the introduction to each of Sections
3.1–3.12 together with the titles of their subsections (and the introductions to
subsections when they exist). There is then no alternative but to delve into
the details of the proof.

Section 3.13 can be read independently. The argument in Section 3.14 is
easy to understand in outline, but the proof appeals to detailed results from
Sections 3.6, 3.10 and 3.11.

3.1. The Structure of Diagrams

Associated to any finite group-presentation Γ = 〈A | R〉 one has the stan-
dard combinatorial 2-complex K(A : R) with fundamental group Γ and di-
rected edges labelled by the a ∈ A. There is a 1-1 correspondence between
words in the lettersA±1 and combinatorial loops in the 1-skeleton of K(A : R).
Words such that w = 1 in Γ correspond to loops that are null-homotopic. Van
Kampen’s Lemma explains the connection34 between free equalities demon-
strating the membership w ∈ 〈〈R〉〉 and combinatorial null-homotopies for the
corresponding loops.

Such a null-homotopy is given by a van Kampen diagram over 〈A | R〉,
which is a 1-connected, combinatorial planar 2-complex ∆ in R2 with a base-
point; each oriented edge is labelled by a generator a±1

i with ai ∈ A and the
boundary label on each face is some r±1

j with rj ∈ R (read from a suitable

34For a complete account of the equivalences in this subsection, see [12].
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basepoint). There is a unique label-preserving map from the 1-skeleton of ∆
to the 1-skeleton of the standard 2-complex K(A : R), and this extends to a
combinatorial map ∆→ K(A : R).

Van Kampen’s Lemma implies that the number of faces in a least-area
van Kampen diagram with boundary label w is the least number N of factors
among free equalities w =

∏N
j=1 ujrju

−1
j . Thus the Dehn function of 〈A | R〉

can be defined to be the minimal function δ(n) such that every null-homotopic
edge-loop of length at most n in K(A : R) is the restriction to ∂∆ of a combi-
natorial map ∆ → K(A : R) where ∆ is a 1-connected, planar combinatorial
2-complex. When described in this manner, it is natural to call the Dehn
function the combinatorial isoperimetric function of K(A : R); the combina-
torial isoperimetric function of an arbitrary compact combinatorial 2-complex
is defined in the same way.

There is a standard diagrammatic argument for showing that the Dehn
functions of quasi-isometric groups are ' equivalent — see [1]. In that argu-
ment, it is unimportant that the complexes considered have only one vertex.
Thus if K is any compact combinatorial 2-complex with fundamental group Γ,
then the combinatorial isoperimetric function of K is ' equivalent to the Dehn
function of Γ. We shall exploit the freedom stemming from this equivalence.
Specifically, we shall prove the Main Theorem by establishing a quadratic up-
per bound on the combinatorial isoperimetric function of a carefully-crafted
2-complex M with fundamental group F oφr Z, where r > 0. In other words,
we identify a constant C > 0 such that every null-homotopic combinatorial
loop of length at most n in M (1) is the boundary of a combinatorial map to
M from a 1-connected planar 2-complex with at most Cn2 2-cells. In fact, we
prove something more refined than this (see Section 3.3 below).

Remark 3.1.1. Note that we are free to pass from F oφ Z to the finite-
index subgroup F oφr Z because the ' class of the Dehn function of a group
is an invariant of commensurability.

Henceforth we shall use the term van Kampen diagram to refer to the
domain of a combinatorial map to M from a 1-connected planar 2-complex,
with oriented edges labelled by letters representing the oriented edges of the
target. (Note that this agrees with the standard terminology in the special
case M = K(A : R).) Such a diagram is said to be least-area if it has the least
number of 2-cells among all diagrams with the same boundary label.

3.1.1. The Mapping Torus. Let G be a compact graph and let f : G→
G be a continuous map that sends each edge ei of G to an immersed edge-path
ui = ε1 . . . εm in G. We attach to each vertex v ∈ G a new edge tv joining v
to f(v). We then attach one 2-cell to this augmented graph for each edge ei;
the 2-cell is attached along the edge path t−1

v eitv′u
−1
i , where v and v′ are the

initial and terminal vertices of ei and where the inverse is taken in the path
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groupoid (i.e. u−1
i is ui traversed backwards). The resulting 2-complex is the

mapping torus of f , which we shall denote M(f).
In this part of the book we are primarily concerned with van Kampen

diagrams over M(f), where f is a homotopy equivalence representing a given
free-group automorphism φ. In this case π1(M(f)) ∼= π1(G) oφ Z. The 1-cells
in such a diagram ∆0 are either labelled by some tu or by an edge e ∈ G.
We will refer to all of the edges tu as t-edges and, when it does not cause
confusion, denote them simply by t. For the other edges in ∆0, it is necessary
to distinguish between the edge and its label in G.

Notation 3.1.2 (Labels ρ̌). If an edge ε in a van Kampen diagram over
M(f) is labelled by an edge in G, then we write ε̌ to denote that label. More
generally, if an edge-path ρ in such a diagram contains no t-edges, we write ρ̌
to denote the path in G that labels ρ.

3.1.2. Time, folded t-corridors, singularities and bounded cancel-
lation. Assume we are in the setting of the previous paragraph. A t-corridor
(more simply, corridor) is then defined exactly as in Section 1.1.4, and we have
the corresponding notion of time (which may be thought of as a map to R that
is constant on non-t edges, integer-valued on vertices, and sends the endpoints
of each t-edge to integers that differ by 1). As in Subsections 1.1.5 and 1.1.6,
we see that each least-area diagram is the union of its corridors, and we may
assume that the tops of all corridors are folded. (In Subsection 3.2.1 we shall
specify how this folding is to be done, but for the results in this subsection it
is not necessary to prescribe it.)

We write⊥(S) and>(S) to denote the top and bottom of a (folded) corridor,
respectively. Singularities are defined exactly as in Part 1.

We restrict our attention to least-area disc diagrams. The argument used
to prove Lemma 1.2.1 applies verbatim in the present setting to prove:

Lemma 3.1.3. If S and S ′ are distinct corridors in a least-area diagram,
then ⊥(S) ∩ ⊥(S ′) consists of at most one point.

Let L be the maximum length of f(E) for E an edge inG. As in Proposition
1.2.3 we have

Proposition 3.1.4 (Bounded singularities).

1. If the tops of two corridors in a least-area diagram meet, then their
intersection is a singularity.

2. There exists a constant B depending only on φ such that less than B
2-cells hit each singularity in any least-area diagram over M(f).

3. If ∆ is a least-area diagram over M(f), then there are less than 2|∂∆|
non-degenerate singularities in ∆, and each has length at most LB.

Proof. Except for one minor difficulty, the proof from Part 1 translates
directly to the current setting. The minor difficulty is that in the current
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context the map f is a homotopy equivalence rather than a group automor-
phism, and f−1 is not defined as a topological map. Thus, given a path ρ, we
need a canonical path σ in G such that f#(σ) = ρ, where f# is tightening rel
endpoints.

Consider M̃(f), the universal cover of M(f). Its 1-skeleton consists of
a collection of trees (copies of the universal cover of G) joined by t-edges.

Consider a lift to M̃(f) of the unique edge-path τ0ρτ
−1
1 such that the τi are

t-edges. Both endpoints of this lift lie in one of the trees T ∼= G̃; define σ̃ to be
the unique injective path which joins them in T , and define σ to be the image
of σ̃ in M(f). �

As in Lemma 1.2.4, the above result yields as a special case (cf. [21] and
[4, Lemma 2.3.1, pp.527–528]):

Lemma 3.1.5 (Bounded Cancellation Lemma). There is a constant B, de-
pending only on f , so that if I is an interval consisting of |I| edges on the
bottom of a (folded) corridor S in a least-area diagram over M(f), and every
edge of I dies in S, then |I| < B.

3.1.3. Past, Future and Colour in Diagrams. These concepts, for
edges and 2-cells in van Kampen diagrams ∆, are defined exactly as in Section
1.3. The immediate past (or ancestor) of an edge at the top of a corridor in any
diagram is the unique edge at the bottom of the corridor that lies in the same
2-cell; the entire past of an edge is defined by taking the transitive closure of
the relation “is the immediate past of”. The past of a 2-cell is defined similarly.
The future of an edge e0 is the set of edges that have e0 in their past. The future
of 2-cells is defined similarly. The evolution of edges is described by a graph
F whose vertices are the 1-cells e of ∆, which has an edge connecting each e
to its immediate ancestor. Note that F is a forest. Its connected components
define colours in ∆; each edge not labelled t is assigned a unique colour, as is
each 2-cell. Note that colours are in bijection with a subset of the edges of the
boundary of the diagram. The union of the 2-cells in a corridor S that have
colour µ will be denoted µ(S).

As in Part 1, simple separation arguments yield the following observations.

Lemma 3.1.6. Each µ(S) is connected and intersects each of >(S) and
⊥(S) in an interval.

Lemma 3.1.7 (cf. Lemma 1.5.9). Let ε1, ε2 and ε3 be three (not necessarily
adjacent) edges that appear in order of increasing subscript as one reads from
left to right along the bottom of a corridor. If the future of ε2 contains an edge
of ∂∆ or of a singularity, then no edge in the future of ε1 can cancel with any
edge in the future of ε3.
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Again following Part 1, given a diagram ∆ we define Z to be the set of
pairs (µ, µ′) such that the coloured regions µ(S) and µ′(S) are adjacent in some
corridor S. The proof of Lemma 1.6.6 establishes:

Lemma 3.1.8.

|Z| ≤ 2 |∂∆| − 3.

3.2. Adapting Diagrams to the Beaded Decomposition

We refer the reader to Part 2 for the definitions and results which we require
here about improved relative train track maps, nibbled futures, monochromatic
paths, hard splittings and the language of beads — including (J, f)-atoms,
GEPs and ΨEPs and what it means for a path to be (J, f)-beaded. We shall
proceed under the assumption that the reader is familiar with each of these
terms, and work axiomatically with the following outputs from Part 2.

Theorem 3.2.1 (Beaded Decomposition Theorem, Part 2). For every φ ∈
Out(Fr), there exist positive integers k, r and J such that φk has an improved
relative train-track representative f0 : G → G with the property that every
(f0)r#-monochromatic path in G is (J, f0)-beaded.

We remind the reader that beads are either monochromatic paths (in case
they are atoms) or else GEPs or ΨEPs (which may be monochromatic, but
do not have to be). Thus, by the above theorem and Proposition 2.6.10, any
nibbled future of a (J, f0)-bead is (J, f0)-beaded. Any hard splitting of an edge-
path is inherited by its (nibbled) futures, by definition. And if one refines a
hard splitting by decomposing the factors in a hard splitting, the result is again
a hard splitting (Lemma 2.2.8). Thus we have:

Corollary 3.2.2 (Theorem 2.8.4). Let f = (f0)r# be as in the Beaded
Decomposition Theorem above. If an edge-path σ in G is (J, f0)-beaded, then
any f -nibbled future of σ is (J, f0)-beaded. In particular, f#(σ) is also (J, f0)-
beaded.

Remark 3.2.3. An important point to recall from Part 2 is that the de-
composition of an edge-path into (J, f0)-beads is canonical.

The value of the constant J in the Beaded Decomposition Theorem will be
of no importance in what follows, so we drop it from the terminology. Similarly,
we will fix the map f0. Once we have passed to the power f = (f0)r#, the above
results remain true when f is replaced by an iterate. Therefore, we refer simply
to “beads” and “beaded paths”.
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3.2.1. Refolding corridors according to the Beaded Decomposi-
tion.

Henceforth35, we consider only diagrams over the mapping torus of M(f),
where f is an iterate of (f0)r# as in the Beaded Decomposition Theorem. In
Section 3.4, we will fix the map f once and for all.

We return to the matter of how best to fold the tops of corridors in least
area diagrams over M(f). Given an arbitrary least-area diagram, we refold
the tops of corridors in order of increasing time. The process begins with edges
at the minimal time on the boundary of the diagram, where there is no folding
to be done provided the boundary label is reduced.

Focussing on a particular corridor S, our folding up to time(S) defines the
histories of all edges up to this time and hence assigns colours to the edges on
⊥(S), decomposing it as a concatenation of monochromatic paths, one for each
of the colours µ(S). Theorem 3.2.1 decomposes each of these labels as a hard
splitting of beads σi. The hardness of the splitting means that after tightening
the f(σi), their concatenation will be a tightening of f#(µ̌(S)). We insist
that the first step in the tightening of the naive top of S, is that determined
by the tightening of labels just described: i.e. we first tighten beads within
colours, each according to a left-to-right convention (which labels inherit from
the orientation of the corridors within the diagram). Then, as a second step,
we tighten (again with a left-to-right convention) the concatenation of the
tightened images of the colours. A diagram which is folded according to these
conventions will be called well-folded.

The key point of this convention is that the hard splitting of the label on
each colour is carried into the future — of course the futures of the original
beads may split into a concatenation of several beads, and some beads at the
ends of each colour may be cancelled by interaction with neighbouring colours,
but each bead (more precisely36, bead-labelled arc) in the beaded decomposition
of each coloured interval on >(S) is contained into the future of a unique bead-
labelled arc of the same colour on ⊥(S). Thus >(S) is a concatenation of
beads, each with a definite colour, where neighbouring beads are separated by
a hard splitting if they are of the same colour but perhaps not if they are of a
different colour. (It also becomes sensible to discuss the future of a bead in a
[well-folded] diagram.)

We henceforth suppose (usually without comment) that our diagram has
been refolded according to this convention.

Definition 3.2.4. [cf. Definition 3.6.2] The bead length of [S]β, of a corridor
S in a well-folded diagram is the number of beads along ⊥(S).

35There are exceptions to this in Theorem 3.3.1, Section 3.13 and Section 3.14
36we shall generally drop this cumbersome distinction in the sequel



3.3. LINEAR BOUNDS ON THE LENGTH OF CORRIDORS 115

Remark 3.2.5. It is important to note that the decomposition of ⊥(S)
and >(S) into coloured intervals is not a hard splitting in general. Indeed it is
the analysis of the cancellation between these intervals as one flows S forwards
in time that forms the meat of this part of the book.

3.2.2. Abstract Futures of Beads. Given an edge-path ρ in G, ex-
pressed as a concatenation of monochromatic edge-paths ρ = ρ1 . . . ρm, con-

sider the van Kampen diagram ∆(l, ρ) with boundary label equal to t−lρtlf l#(ρ);
this is a simple stack of corridors. The above convention dictates how we should
fold the corridors of ∆ and determines the future at each time up to l for each
bead in the beaded decompositions of the ρi.

We define the (full) abstract future of a bead in ρ to be (the label on) its
future in ∆(l, ρ).

3.3. Linear Bounds on the Length of Corridors

In any least-area diagram, each corridor has at least two edges on the
boundary, namely its t-edges. The length of a corridor S is defined to be the
number of 2-cells that it contains. The area of a least-area diagram is the sum
of the lengths of its corridors, and therefore our Main Theorem is an immediate
consequence of:

Theorem 3.3.1. Let φ be an automorphism of a finitely generated free
group and let f be a topological representative for a positive power of φ. There
is a constant K, depending only on f , so that each corridor in a least-area
diagram ∆ over M(f) has length at most K |∂∆|.

Note that the Main Theorem actually depends only on establishing Theo-
rem 3.3.1 for a single topological representative fk of a suitable power of our
given free group automorphism φ; in the next section we shall articulate what
that suitable power is. The bulk of this part of the book will then be devoted
to proving the existence of the constant K for this particular fk. (In Section
3.13 we shall deduce Theorem 3.3.1 from this special case.)

Having restricted attention to a particular fk, we may further restrict our
attention to diagrams that are well-folded in the sense of Subsection 3.2.1,
since refolding the corridors of an arbitrary a diagram does not change the
configuration of corridors or their length. In a well-folded diagram, the top of
each corridor S is a concatenation of beads, and the vast majority of our work
(up to and including Section 3.11) goes into proving the following result.

Theorem 3.3.2. If f and k are as above, then there is a constant K1 such
that all corridors S in well-folded, least-area diagrams ∆ over M(fk#), have
bead length [S]β ≤ K1 |∂∆|.

The linear bound on the length of S that we require for Theorem 3.3.1
does not follow directly from this estimate because there is no uniform bound
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on the length of certain beads, namely GEPs and ΨEPs. However, we shall
see in Section 3.12 that the ideas developed in Part 1 to implement the Bonus
Scheme adapt to the current setting to provide the following estimate:

Proposition 3.3.3. There are constants J and K2, depending only on f ,
such that the beads β on ⊥(S) of length greater than J satisfy∑

β

|β| ≤ K2 |∂∆|.

The constant J in the above statement is the one from Theorem 3.2.1.

3.4. Replacing f by a Suitable Iterate

In order to establish the bound on the length of corridors required to prove
Theorem 3.3.1, we must analyse how corridors grow as they flow into the future
and assess what cancellation can take place to inhibit this growth. This is much
more difficult than in Part 1 because now we must cope with the cancellation
that takes place within colours. But in common with our approach in Part 1,
we can appeal to Remark 3.1.1 repeatedly in order to replace our topological
representative f by some iterate of f that affords a more stable situation in
which cancellation phenomena are more amenable to analysis.

In the present setting, we have to be a little careful about specifying what
we mean by “an iterate”, because we wish to consider only topological repre-
sentatives whose restriction to each edge is an immersion, and this property
is not inherited by powers of the map. To avoid this problem, we deem the
phrase37 replacing f by an iterate, to mean that for fixed k ∈ N, we pass from
consideration of f : G → G to consideration of the map fk# : G → G that

sends each edge E in G to the tight edge-path fk#(E) that is homotopic rel

endpoints to fk(E).
When we replace f by fk#, we leave behind the mapping torus M(f) and

consider instead M(fk#), which although homotopic to a k-sheeted covering of
M(f) is distinct from it.

A corridor in a van Kampen diagram over M(fk#) can be divided into a
stack of k corridors in order to yield a van Kampen diagram over M(f). This
observation will play little role in our arguments, but it highlights one reason
for hoping to simplify diagrams by passing to an iterate of f : the van Kampen
diagrams over M(fk#) are a proper subset (after subdivision38 of ∆) of the
diagrams over M(f); in the diagrams of this subset, corridors flow unhindered
for at least k steps in time.

37and obvious variations on it
38the obvious subdivision of a diagram ∆ is called the k-refinement
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3.4.1. Finding the desired iterate. We have already passed to a large
iterate in order to obtain the Beaded Decomposition Theorem. In the present
subsection we pass to further iterates in order to control the behaviour of the
images of beads.

Before settling on a specific f for the remainder of the paper, we must re-
move an irritating ambiguity concerning the ordering of strata in the filtration
associated to the train track structure. This is required in order to render the
choices in Section 3.5 coherent.

Definition 3.4.1. Suppose that f : G → G is an improved relative train
track map, and that Hi, Hj are strata for f . We say that Hi and Hj are
interchangeable if one can reorder the strata, so that one still has an improved
relative train track structure, but the order of Hi and Hj is reversed.

If Hi and Hj are interchangeable, and i > j, then no iterate of any edge in
Hi crosses an edge in Hj (and neither do the iterates of any edges occurring
in the iterated images of edges in Hi).

Convention 3.4.2. We suppose that for any improved relative train track
map that we consider, if Hi and Hj are interchangeable strata so that Hi is an
exponential stratum and Hj is a parabolic stratum then i > j.

We further assume that if Hi = {Ei} and Hj = {Ej} are interchangeable
parabolic strata and n 7→ |fn(Ei)| grows exponentially while n 7→ |fn(Ej)|
grows polynomially, then i > j. And if both these functions grow polynomially,
then the degree of polynomial growth of the former is at least as great as the
latter.

In the following lemma, ω is the number of strata in the train track struc-
ture for f . Also recall that an edge ε in a path σ is said to be displayed if there
is a hard splitting σ = σ1� ε� σ2. The definition of a displayed sub edge-path
is entirely analogous, and will be used later.

Lemma 3.4.3. One can replace f by an iterate to ensure that if ρ is any
atom then either the beads of fω#(ρ) are Nielsen paths and GEPs only, or else
there is a displayed edge ε in fω#(ρ) so that

(1) ε is of highest weight amongst all displayed edges in all fk#(ρ), for
k ≥ 1, and

(2) the growth of n 7→ |fn#(ε)| is at least as large as that of any displayed

edge in any fk#(ρ).

Proof. Lemma 2.8.3 contains all but statement (2), whose validity is as-
sured by Convention 3.4.2. �

Our next two results capture the end stability that Proposition 1.4.5 pro-
vided in the case of positive automorphisms. This is the first stage in our
analysis at which we encounter an awkward point that does not arise in Part
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1, namely there may exist beads (more specifically atoms) ρ such that f#(ρ)
is a single vertex.

Definition 3.4.4. A vanishing bead (atom) ρ is one with f#(ρ) a single
vertex.

Lemma 3.4.5. There exists a constant k0, depending only on f so that the
map f0 = fk0# satisfies the following properties. Let ρ be a non-vanishing bead,
let i ∈ {1, . . . , ω}, and let σi be the leftmost bead in (f0)#(ρ) of weight at least
i.

(1) If σi is not a GEP or a ΨEP then the leftmost bead of weight at least
i in (f0)j#(ρ) is the same for all j ≥ 1. Furthermore, in this case σi
is a single (displayed) edge or a Nielsen bead.

(2) If σi is a GEP or a ΨEP then the leftmost bead of weight at least i in
(f0)j#(ρ) is contained in the (abstract) future of σi for all j ≥ 1.

Proof. If σ is a bead then all iterated images of σ are beaded paths, and
a simple finiteness argument shows that there is a bound on the number of
beads which are not GEPs or ΨEPs. �

An entirely similar argument applies to rightmost beads, of course. In order
to deal with the different types of beads, we also need the following variant.

Lemma 3.4.6. There exists a constant k1, depending only on f , so that the
map f1 = fk1# satisfies the following properties. Let ρ be a non-vanishing bead

and let σ be the leftmost bead in (f1)j#(ρ) which is not a Nielsen bead.

(1) If σ is not a GEP or a ΨEP then for all j ≥ 1 the leftmost bead in
(f1)j#(ρ) which is not a Nielsen bead is σ. Furthermore, in this case
σ is a (displayed) edge.

(2) If σ is a GEP or a ΨEP then for all j ≥ 1 the leftmost bead in (f1)#(ρ)
which is not a Nielsen bead is in the future of σ.

We are finally in a position to articulate all of the properties that we want
to arrange for f by replacing it with an iterate.

Proposition 3.4.7. There is a constant D2 that depends only on f , so
that if we replace f by fD2

# then,

(1) the conclusion of Lemma 2.5.1 holds with k1 = 1: in particular, if ε
is an exponential edge of weight i, then f(ε) is longer than the unique
indivisible Nielsen path of weight i (if it exists);

(2) the conclusion of Theorem 2.8.1 holds with D1 = 1;
(3) the conclusion of Lemma 3.4.3 holds;
(4) the conclusions of Lemmas 3.4.5 and 3.4.6 hold; and
(5) if ρ is a bead then f#(ρ) contains at least three displayed copies of

any exponential edge that is displayed in any f j#(ρ), j ≥ 1. Moreover,
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the leftmost (and rightmost) such displayed edge ε is contained in a
displayed path of the form f(ε).

Power Decree: For the remainder of the paper, we will assume that f :
G→ G is an improved relative train track map that satisfies the properties in
Proposition 3.4.7. We shall also operate under Convention 3.4.2.

Let L be the maximal length of f(E), for edges E ∈ G.

3.5. Preferred Futures of Beads

The reader who is comparing our progress to Part 1 will find that we are
now in the position that we were at the start of Section 1.5. Thus we now
want to define the preferred future of a bead ρ (in three senses39) and then
begin a study of fast beads.

Unfortunately, the definition of the preferred future of a bead in a diagram
is much more cumbersome than the analogue in Part 1.

3.5.1. Abstract Preferred Futures and Growth. First we note that
if beads (or more generally edge paths in G) are ever going to vanish in the
sense of Definition 3.4.4, then they do so immediately.

Lemma 3.5.1. If σ is an edge path in G and fk#(σ) is a vertex for some
k ≥ 1, then f#(σ) is already a vertex.

Proof. For all vertices v ∈ G, f(v) is a fixed point of f . Therefore, the
endpoints of f j#(σ) are the same for all j ≥ 1. If fk#(σ) is a point, then the

endpoints of fk#(σ) are equal, hence the tight path f#(σ) is a loop. Since f is
a homotopy equivalence, this loop must be trivial. �

Definition 3.5.2 (Abstract preferred futures). The (immediate) preferred
future of a non-vanishing bead σ is a particular bead in the beaded decompo-
sition of f#(σ), as defined below. The k-step preferred future is then defined
by an obvious recursion.

(1) If σ is a GEP then f#(σ) is also a GEP, and we define the preferred
future of σ to be f#(σ).

(2) If σ is a ΨEP then either σ or σ has the form σ = Eτ kνγ. If it is σ,
then by Corollary 2.6.11, f#(σ) is either of the form σ′ � ξ, where σ′

is a ΨEP (which has the same weight as σ), or else of the form E� ξ,
where E has the same weight as σ and is the unique highest weight
edge in f#(σ). In the first case, the preferred future of σ is σ′. In the
second case, the preferred future of σ is E. The preferred future of a
ΨEP σ where σ has the above form is defined in an entirely analogous
way.

(3) If σ is a Nielsen path then the preferred future of σ is f#(σ) = σ.

39in f#(ρ), in a diagram, and in a concatenation of beaded paths
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(4) Finally, we consider a non-vanishing atom σ.
(a) If the beaded decomposition of f#(σ) consists entirely of Nielsen
paths and GEPs, then we fix a highest weight GEP to be the preferred
future of σ; otherwise, we fix a highest weight Nielsen path.
(b) If not, then let ε be the edge described in Lemma 3.4.3, fix a
displayed occurrence of ε in f#(σ) (in case ε is exponential, choose
a displayed occurrence that is neither leftmost nor rightmost40) and
define this to be the preferred future of ε.

Remark 3.5.3. Suppose that ε is an edge in G, considered as a bead,
and suppose that ε is not contained in a zero-stratum. Then ε has a preferred
future, which is an edge contained in the same stratum as ε. We always assume
that the preferred future of ε is a (fixed) occurrence of ε in f#(ε) which satisfies
the requirements of the above definition. This situation is very close in spirit
to the definition of preferred future in Part 1.

We now divide the beads into classes according to the growth of the paths
fk#(σ), k = 1, 2, . . .. Specifically, we define left-fast and left-slow beads in
accordance with Subsection 1.5.1.

Definition 3.5.4 (Left-fast beads). GEPs and Nielsen paths are left-slow.
Suppose that α is an atom or a ΨEP. Then α is left-fast if the distance

between the left end of fk#(α) and the left end of the preferred future of α in

fk#(α) grows at least quadratically with k, and left-slow otherwise.

Note that if a ΨEP σ is left-fast then it is σ which it is of the form Eτ kνγ.

Remark 3.5.5. We only care that fast growth be super-linear, but it hap-
pens that this is the same as being at least quadratic (cf. [14]).

The concepts of right-fast and right-slow beads are entirely analogous.

3.5.2. Preferred future in diagrams. In this subsection we define the
notion of ‘preferred futures’ within van Kampen diagrams. We also define ‘bit-
ing’ and ‘consumption’, which are the analogues in this paper of ‘consumption’
from Section 1.5.

The folding convention of Subsection 3.1.2 expresses ⊥(S) as the concate-
nation of coloured paths µ(S), each labelled by a monochromatic path in G.
The Beaded Decomposition Theorem gives us a hard splitting into beads

ˇµ(S) = β̌1 � β̌2 � · · · � β̌mµ ,

and it is convenient to refer to the sub-paths βi ⊆ ⊥(S) carrying the labels β̌i
as beads, as we did in Subsection 3.1.2.

40this exists by Proposition 3.4.7



3.5. PREFERRED FUTURES OF BEADS 121

If µ1, . . . , µk are the colours appearing in S, in order, then the label on
>(S) is obtained by tightening

f#( ˇµ1(S)) · · · f#( ˇµk(S)).

The path f#( ˇµ1(S)) · · · f#( ˇµk(S)) is called the semi-naive future of S.
We have adopted a left-to-right convention to remove any ambiguity in how

one tightens the semi-naive future to obtain the label of >(S).
We previously defined the (immediate) future of a bead β ⊂ ⊥(S) to consist

of those edges of >(S) whose immediate past lies in β. Since it is integral to
what we shall do now, we re-emphasize:

Lemma 3.5.6. The immediate future of a bead β ⊂ ⊥(S) is a (possibly
empty) interval equipped with a hard-splitting into beads.

If ρ is the immediate future of β, then ρ is also an interval in the semi-naive
future of S, and hence its label ρ̌ is a specific sub-path of f#(β̌). [Note that

one has more than the path ρ̌ here, one also has its position within f#(β̌);
thus, for example, we would distinguish between the two visible copies of ρ̌ in
f#(β̌) = ρ̌σρ̌.]

Definition 3.5.7 (Preferred and tenuous futures in ∆). Consider a bead
β ⊂ µ(S) ⊂ ⊥(S) in ∆ whose immediate future ρ ⊂ >(S) determines the
subpath ρ̌0 of β̌ in G.

If the (abstract) preferred future β̌+ of β̌, as defined in Definition 3.5.2,
is entirely contained in ρ̌0, then the corresponding sub-path β+ of ρ is the
preferred future of β.

If ρ̌0 does not contain β̌+, then β does not have a preferred future. In this
situation we say that the future of β is tenuous.

Remark 3.5.8. Note that, if it exists, the preferred future of a bead β ⊂
µ(S) is a bead in the beaded decomposition of both ρ and the µ-coloured
interval of >(S).

Also, if a bead happens to be a single edge ε whose label is not contained
in a zero stratum, the preferred future is a single (displayed) edge, with the
same label as ε.

Definition 3.5.9 (Biting and consumption). If the future of a bead β ⊂
⊥(S) is tenuous, we say that β is bitten in S. If, in the notation of (3.5.7), no
edge of the preferred future of β̌ appears in ρ̌, then we say that β is consumed
in S.

Remark 3.5.10. The above definition says in particular that any bead
whose label is a vanishing atom is consumed.

Let β′ ⊂ ⊥(S) be a bead whose label is non-vanishing. If β′ is bitten in
S, there is a specific edge ε in the semi-naive future of S that, during the
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tightening process, is the first to cancel with an edge ε′ in the interval labelled
by the preferred future of β̌′. The edge ε is in the immediate future of a bead
β, necessarily of a different colour than β′.

Definition 3.5.11. In the above situation, we say that β bites β′ from the
left if β lies to the left of β′ in S, and that β bites β′ from the right if β lies
to the right of β′ in S. We say that the edges ε and ε′ discussed above exhibit
the biting.

The above concepts of biting and consumption replace the single, simpler,
notion of consumption from Section 1.5: there, since the preferred future was
a single edge, if it was bitten it was consumed. In Part 1, a frequently used
concept was for an edge to be ‘eventually consumed’. In this part of the book,
we need the following replacement:

Definition 3.5.12. Suppose that ρ1 ⊂ µ1(S) and ρ2 ⊂ µ2(S) are beads in
⊥(S). We say that ρ1 is eventually bitten by ρ2 if there is a corridor S ′ which
contains a preferred future β1 of ρ1 and a bead β2 in the future of ρ2 so that
β2 bites β1 in S ′.

With these definitions in hand, we have the following, which is an appro-
priate replacement for 1.5.3

Lemma 3.5.13 (cf. Lemma 1.5.3). There exists a constant C0 with the
following property: if ρ is a bead such that f#(ρ) contains a left-fast displayed
edge E and if UV ρ is a (tight) path with V ρ = V � ρ and |V | ≥ C0 then for
all j ≥ 1 the preferred future of E is not bitten when f j(UV ρ) is tightened.
Moreover, |f j#(UV ρ)| → ∞ as j →∞.

Proof. We first prove the result in the special case that V ρ is a nibbled
future of a left-fast edge E1, where ρ is the preferred future of E1. In other
words, we will prove the existence of a constant C ′0 so that if |V | ≥ C ′0 then
the statement of the lemma holds for the particular path UV ρ. (We will later
reduce to this special case.)

Note that V and V ρ are monochromatic paths, and thus admit a beaded
decomposition. Suppose first that V does not contain any beads of length
greater than J . In this case, the proof is entirely parallel to that of Lemma
1.5.3, where we count using the number of non-vanishing beads rather than
the number of edges.

In case V contains long GEPs or long ΨEPs, we note that the cancellation
by U on the left, and possibly by one of the edges in the GEP or ΨEP on the
right can only decrease the length of a GEP or ΨEP by at most 2B at each
iteration. Thus it is straightforward to include long GEPs and ΨEPs into the
above calculation. We now turn to the general case.

Suppose that V is an arbitrary path so that V ρ = V � ρ. Then V can
shrink of its own accord (it needn’t be beaded), and can be cancelled by the
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future of U . However, there is certainly a constant C0 so that if |V | ≥ C0 then
by the time this shrinking of V combined with cancelling by the future of U
can have reduced V to the empty path, the future of the edge E has at least
C ′0 edges to the left of its preferred future. We are then in the special case
that we dealt with first. �

The following two lemmas are proved in an entirely similar manner to
Lemma 1.5.5. Recall that displayed edges are particular types of beads, and
the (abstract) preferred futures of beads were defined in Definition 3.5.2. Recall
from Remark 3.5.8 that the preferred future of a displayed edge whose label is
not contained in a zero stratum is a single displayed edge.

Lemma 3.5.14. Let χ1σχ2 be a tight path in G. Suppose that χ1 and χ2

are monochromatic and that, for i = 1, 2, the edge Ei is displayed in χi and
that Ei is not in a zero stratum. Suppose that σ is a concatenation of beaded
paths. Then the preferred futures of E1 and E2 cannot cancel each other in
any tightening of f#(χ1)f#(σ)f#(χ2).

Suppose that S is a corridor in a well-folded diagram, and that µ1(S) and
µ2(S) are non-empty paths in ⊥(S), where µ1 and µ2 are colours. Suppose
further that for i = 1, 2 there is a displayed edge εi such that ε̌i is not contained
in a zero stratum. Then the edges in the semi-naive future of S corresponding
to the preferred futures of ε1 and ε2 do not cancel each other when folding the
semi-naive future of ⊥(S) to form >(S).

Lemma 3.5.15. Let S be a corridor and suppose that ε1 and ε2 are edges in
⊥(S) whose labels lie in parabolic strata. In the naive future of each εi (that
is, before even the beads have been tightened), there is a unique edge ε′i with
the same label as εi. At no stage during the tightening of >(S) can ε′1 cancel
with ε′2.

Corollary 3.5.16. A displayed edge in any coloured interval µ(S) which
is labelled by a parabolic edge Ěi ∈ Hi can only be consumed by an edge whose
label is in GrGi.

3.5.3. Abstract paths, futures and biting. In many of the arguments
in later sections, we wish to work with concatenations of beaded paths in
G rather than sides of corridors in diagrams. This is done as in Subsection
3.2.2 by associating to such a path ρ = ρ1 . . . ρm, with the ρi beaded, the van

Kampen diagram ∆(l, ρ) with boundary label t−lρtlf l#(ρ). But we modify the
usual definition of colour by defining the colours on the bottom of the first
(earliest) corridor not to be single edges but rather to be intervals labelled ρi.
We then use the definitions of the previous subsection (biting, preferred future
etc.) to define the associated concepts for beads in ρ.

We emphasize, ρ itself need not beaded; only the ρi are. We also emphasize
that edges do not have preferred futures, only beads do.
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However, some beads are single, displayed edges, and when considered as
beads they do have a preferred future.

3.6. Counting Fast Beads

This section is the analogue of Section 1.6; it is here that the proof of the
Main Theorem begins in earnest.

Let ∆ be a minimal area van Kampen diagram, folded according to the
convention of Section 3.1.2, and fix a corridor S0 in ∆. As explained in Section
3.3, the core of our task is to bound the number of beads in the decomposition
of ⊥(S0). In order to do so, we must undertake a detailed study of the preferred
futures of these beads.

First we dispense with the case that β̌ is a vanishing atom.

Lemma 3.6.1. Suppose that S is the collection of beads in S0 which are not
vanishing atoms. If

∑
β∈S |β| = D then |S0| ≤ B(D + 1).

Proof. This follows immediately from the Bounded Cancellation Lemma.
�

Narrowing our focus in the light of this lemma, we define:

Definition 3.6.2 (Bead norm). Given a concatenation ρ = ρ1 . . . ρm of
beaded paths, we define the bead norm of ρ, denoted || ρ || β, to be the number

of non-vanishing beads in the concatenation. (This is poor notation, since the
norm depends on the decomposition into the ρi and not just the edge-path ρ.
But in the contexts we shall use it, specifically ⊥(S0), it will always be clear
which decomposition we are considering.)

Remark 3.6.3. All beads have length at least 1. Thus bead norm is domi-
nated by length. In particular, estimates concerning Bounded Singularities and
Bounded Cancellation remain true when distance is replaced by bead norm;
cf. Lemma 3.6.6.

Remark 3.6.4. An important advantage of bead norm over edge-length
is that when one takes the repeated images fk#(χ) of a monochromatic path,
its length can decrease, due to cancellation within beads, whereas bead norm
cannot.

In Definition 3.2.4 we defined the bead length [S]β of a corridor S in a
well-folded diagram. It is convenient for our future arguments to concentrate
on non-vanishing atoms, and hence on bead norm rather than bead length.
However, an immediate consequence of the Bounded Cancellation Lemma is
the following bi-Lipschitz estimate:

Lemma 3.6.5. Suppose S is a corridor in a well-folded corridor. Then

||S || β ≤ [S]β ≤ B ||S || β.
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3.6.1. The first decomposition of S0. [cf. Subsection 1.6.1]
Let β be a bead in S0 that is not a vanishing atom. As we follow the

preferred future of β forwards in time, one of the following events must occur:

1. The last preferred future of β intersects the boundary of ∆ nontriv-
ially.

2. The last preferred future of β intersects a singularity nontrivially.
3. The last preferred future of β is bitten in a corridor S.

We remark that, unlike in Part 1, these events are not mutually exclusive; this
is because a bead can consist of more than one edge.

We shall bound the bead norm of S0 by finding a bound on the number of
non-vanishing beads in each of the three cases.

We divide Case (3) into two sub-cases:

3a. The preferred future of β is bitten by a bead that is not in the future
of S0.

3b. The preferred future of β is bitten by a bead that is in the future of
S0.

3.6.2. Bounding the easy bits. [cf. Subsection 1.6.2]
Label the non-vanishing beads which fall into the above classes S0(1), S0(2),

S0(3a) and S0(3b), respectively. We shall see, just as in Part 1, that S0(3b) is
by far the most troublesome of these sets.

The following lemma is proved in an entirely similar way to Lemmas 1.6.1
and 1.6.2, using the Bounded Cancellation Lemma and simple counting argu-
ments.

Lemma 3.6.6.

(1) ||S0(1) || β ≤ |∂∆|.
(2) ||S0(2) || β ≤ 2B |∂∆|.
(3) ||S0(3a) || β ≤ B |∂∆|.

We have thus reduced our task of bounding ||S0 || β to bounding the num-

bers of beads in S0(3b), i.e. to understanding cancellation within the future of
S0. The bound on the number of beads in S0(3b) is proved in an analogous
way to Part 1, and takes up a large part of the remainder of this part of the
book (through Section 3.11).

3.6.3. The chromatic decomposition. [cf. Subsection 1.6.3]
Fix a colour µ and consider the interval µ(S0) in ⊥(S0) consisting of beads

coloured µ.
We shall subdivide µ(S0) into five (disjoint but possibly empty) subintervals

according to the fates of the preferred futures of the beads.
Let lµ(S0) be the rightmost bead β in µ(S0) such that f#(β̌) contains a

left-fast displayed edge ε so that the preferred future of ε is eventually bitten
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from the left from within the future of S0. Let A1(S0, µ) be the set of beads
in µ(S0) from the left end up to and including lµ(S0).

Let A2(S0, µ) consist of those beads which are not in A1(S0, µ) but whose
preferred futures are bitten from the left from within the future of S0.

Let A3(S0, µ) denote those beads which do not lie in A1(S0, µ) or A2(S0, µ)
and which fall into the set S0(1) ∪ S0(2) ∪ S0(3a).

All of the beads which are not in A1(S0, µ), A2(S0, µ) or A3(S0, µ) must
have their preferred future bitten from the right from within the future of S0.

Analogous to the definition of lµ(S0), we define a bead rµ(S0): the bead

rµ(S0) is the leftmost bead β′ so that f#(β̌′) contains a right-fast displayed
edge whose preferred future is eventually bitten from the right from within the
future of S0.

Let A4(S0, µ) denote those beads which are not in A1(S0, µ), A2(S0, µ) or
A3(S0, µ) and which lie strictly to the left of rµ(S0).

Finally, letA5(S0, µ) denote those edges not inA1(S0, µ), A2(S0, µ), A3(S0, µ)
or A4(S0, µ) which lie to the right of rµ(S0) (include rµ(S0) in A5(S0, µ) if it
has not already been included in one of the earlier sets).

Now Lemma 3.6.6 immediately implies

Lemma 3.6.7. ∑
µ

||A3(S0, µ) || β ≤ (3B + 1) |∂∆|.

We also have

Lemma 3.6.8. Let C0 be the constant from Lemma 3.5.13 above. Then

(1) ||A1(S0, µ) || β, ||A5(S0, µ) || ≤ C0; and

(2) |A1(S0, µ) r lµ(S0)|, |A5(S0, µ) r rµ(S0)| ≤ C0.

Proof. We prove the bounds only for A1(S0, µ), the proofs for A5(S0, µ)
being entirely similar.

The entire future of beads in A1(S0, µ) other than lµ(S0) must be eventually
consumed from the left from within the future of S0; cf. Lemma 1.5.9.

If ||A1(S0, µ) || β or |A1(S0, µ)r lµ(S0)| were greater than C0 then we would
conclude from Lemma 3.5.13 that no left-fast bead in the immediate future of
lµ(S0) could be bitten at any stage from the left from within the future of S0,
contrary to the definition of lµ(S0). �

As we continue to follow the proof from Part 1, our next goal is to reduce
the task of bounding the bead norm of S0 to that of bounding the number of
Nielsen beads contained in A2(S0, µ) and A4(S0, µ). We focus exclusively on
A4(S0, µ), the arguments for A2(S0, µ) being entirely similar.

In outline, our argument proceeds in analogy with the subsections begin-
ning with Subsection 1.6.4, commencing with the decomposition of A4(S0, µ)
into subintervals C(µ,µ′). But we quickly encounter a new phenomenon that
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requires an additional section of argument – HNP cancellation – which does
not arise in the case of positive automorphisms.

3.6.4. The decomposition of A4(S0, µ) into the C(µ,µ′). All beads in
A4(S0, µ) are eventually bitten from the right from within the future of S0. For
a colour µ′ 6= µ, define a subset C(µ,µ′) of A4(S0, µ) as follows: given a bead
σ ∈ A4(S0, µ), there is a bead σ′ in S0 so that σ is eventually bitten by σ′. If
σ′ is coloured µ′ then σ ∈ C(µ,µ′).

The sets C(µ,µ′) form intervals in S0.

3.7. HNP-Cancellation and Reapers

The results of the previous section reduce the task of bounding ||S0 || β to
that of establishing a bound on the sum of the bead norms of the monochro-
matic intervals C(µ,µ′). In Part 1, the corresponding intervals (also labelled
C(µ,µ′)) contained no exponential edges. In the current context, however, there
may be exponential edges trapped in Nielsen paths, which may themselves be
contained in beads of any type. This raises the concern that our attempts to
control the length of the C(µ,µ′) in the manner of Part 1 will be undermined by
the release of these trapped edges when the Nielsen path is bitten, leading to
rapid growth in subsequent nibbled futures of the Nielsen path. Our purpose
in this section is to develop tools to control this situation, specifically Lemmas
3.7.22 and 3.7.23.

We must also deal with a second threat that arises from the phenomenon
described in Example 3.7.6; we call this Half Nielsen Path (HNP-) cancellation.

Recall that a ΨEP is an edge path ρ in G; it is associated to a GEP and
either ρ or ρ̄ is of the form Eτ̄ kν̄γ where E is an edge with f#(E) = E � τm,
where τ and ν are Nielsen paths, and γ̄ν is a terminal segment of τ (and
m, k > 0). These are the prototypes of the following types of paths.

Definition 3.7.1. Suppose that E is a linear edge with f#(E) = E � τm,
where τ is a Nielsen path and m > 0. Suppose further that ν is a Nielsen path
and γ an edge-path so that γ̄ν is a terminal segment of τ .

A PEP is a path ρ so that either ρ or ρ̄ has the form Eτ̄ kν̄γ where k > 0.

Remark 3.7.2. Every ΨEP is a PEP, but an arbitrary PEP has no GEP
associated to it.

It is important to note that in the following definition the PEP being
discussed is not assumed to be a bead in the decomposition of ⊥(S). (Beads
along ⊥(S) are monochromatic whereas we want to discuss HNP cancellation,
as in Definition 3.7.7, in the context of adjacent colours interacting.)

Definition 3.7.3 (HNP cancellation). Let S be a corridor in a well-folded
diagram, let ε and ε′ be edges in the naive (unfolded) future of ⊥(S) that
cancel in the passage to >(S) and assume that ε is to the left of ε′.
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Suppose further that the past of ε is e with label ě = E a linear edge and
that ε′ is in the future of an edge eγ whose label is an edge γ.

We call the cancellation of ε and ε′ left HNP-cancellation and write εIε′ if
the interval from e to eγ in ⊥(S) (inclusive) is labelled by a PEP of the form
Eτ̄ kν̄øγ, where τ is a Nielsen path so that τ = ξν, where ξ and ν are Nielsen
paths, and øγ is a terminal sub edge-path of ξ.

Right HNP-cancellation is defined by reversing the roles of ε and ε′ and
insisting upon a PEP in ⊥(S) of the form γ̄ø̄ντ kĒ. It is denoted εJε′.

When we are unconcerned about the distinction between left and right, we
refer simply to HNP-cancellation.

We extend this definition to concatenations of beaded paths in G by using
the obvious stack-of-corridors diagram as in Subsection 3.2.2.

Remark 3.7.4. HNP-cancellation occurs at the ‘moment of death’ of the
PEP; see Section 2.6 for an explanation of the significance of this moment and
an analysis of it (in the language of ΨEPs).

Lemma 3.7.5. Suppose that Eτ kνøγ is a PEP which exhibits an HNP-
cancellation, as in Definition 3.7.3. Then ø is empty, so γ is the first edge of
ξ.

Proof. The assumption that HNP-cancellation occurs means that we can
restrict our attention to cancellation when tightening

f(Eτ kνøγ).

This can be written as

Eτmf(τ kν)f(øγ).

The path τ kνøγ admits a hard splitting τ �· · ·� τ � ν� øγ. Therefore, under
any choice of tightening, the m copies of τ cancel with the k copies of f(τ)
(partially tightened), then with f(ν); they then begin to interact with f(øγ).
Just as in the proof of Proposition 2.6.9, under the assumptions of Lemma
2.5.1, there is only a single edge in øγ whose future can interact with f(E)
when tightening. �

We now present the deferred example that explains the need to consider
HNP-cancellation. This will also lead us to a further definition — HNP bit-
ing — that encodes a genuinely troublesome situation where HNP cancel-
lation must be accounted41 for. Fortunately, many other instances of HNP-
cancellation are swept-up by our general cancellation and finiteness arguments,
allowing us to avoid a detailed analysis of the possible outcomes.

41We usually account for it by excluding it from our definitions. When it cannot be
excluded, we often sidestep it, using the notions of ‘robust future’ and ‘robust past’ given
in Definitions 3.7.12 and 3.7.13 below.
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The problem at the heart of the following example did not arise in Part 1
because the natural realisation of a positive automorphism does not map any
linear edge across other linear edges.

Example 3.7.6. Suppose that u is a Nielsen path, and that E1 and E2

are edges so that f(Ei) = Eiu
k for i = 1, 2 and some integer k > 0. For any

integer j, the path τj = E1u
jE2 is an indivisible Nielsen path.

Suppose that E3 is an edge so that f(E3) = E3τ
l
j , for some integers j and

l (with l > 0). For ease of notation, we will assume that l = 1.
Consider the path ρ = E3τ

r
jE2, for some r > 0. Then ρ is a PEP.

In the iterated images f#(ρ), the visible copy of E2 has a unique future
labelled E2, which we will call the ‘preferred future’ of E2 for the purposes of
this example. After r+1 iterations of ρ under f# (and any choice of tightening
at each stage), the future of E3 cancels the preferred future of the visible copy
of E2. If we encode the evolution of ρ in a stack diagram as in Subsection 3.2.2
then the cancellation of E2 is HNP-cancellation.

In the following discussion, we assume that the reader is familiar with Part
1, in particular the vocabulary of teams and reapers.

The phenomenon described in the above example causes problems when
the sub-path ρ1 = τ rjE2 of ρ is monochromatic and E2 is displayed in ρ1. In
this situation, it shows that the most obvious adaptation of Lemma 1.6.7 would
be false. It is for this reason that we must exclude HNP-biting in Definition
3.8.7.

Similarly, because Example 3.7.6 renders a naive version of the results of
Section 1.8 false, HNP-biting must be excluded from the Two Colour Lemma
and the associated results in Section 3.9.

A situation in which we cannot exclude HNP-biting by decree arises in
the analysis of teams and in particular the definition of a reaper (Subsection
3.7.3). Suppose that ρ labels some interval in the bottom of a corridor, with
many copies of u to its immediate right. In this case, the edge ε2 labelled
E2 will consume copies of u in the first r units of time, but its future will
then be cancelled (assuming no other cancellation occurs from either side, and
that there are no singularities, etc.). Since ε2 was acting as the reaper of a
team, we must find a continuing manifestation of it at subsequent times, for
otherwise we will lose control over the length of teams (r being arbitrary)
and the structure of our main argument will fail. This problem is solved by
introducing the robust future of ε2 (Definition 3.7.12), which in this case is an
edge labelled E1 that ‘replaces’ the preferred future of ε2 when it is cancelled.

Definition 3.7.7. Suppose that χ1 and χ2 are beaded paths in G and
χ1χ2 is tight. Suppose that there is a bead ρ1 ⊂ χ1 and a bead ρ2 ⊂ χ2 so
that
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(1) either ρ1 is a displayed edge γ in χ1 which is linear or else ρ1 is a
displayed ΨEP in χ1 of the form Eτ̄ kν̄γ, where γ is a linear edge;

(2) when tightening f#(χ1)f#(χ2) to form f#(χ1χ2), ρ1 bites ρ2 and the
edge ε′ in the exhibiting pair (ε′, ε) (see Definition 3.5.11) is in the
future of γ;

(3) moreover42, ε′Jε.
Under these circumstances we say that ρ2 is left-HNP-bitten by ρ1 and we write
ρ1G#ρ2. There is an entirely analogous definition of right-HNP-biting ρ1H#ρ2,
and when we are unconcerned about the direction we will refer simply43 to
HNP-biting.

We make the analogous definition for HNP-biting within diagrams.

Definition 3.7.8. Suppose that χ1 and χ2 are beaded paths and that ρ1 is
a bead in χ1. We say that ρ1 is eventually HNP-bitten by χ2 if ρ1 is eventually
bitten by χ2 (Definition 3.5.12) and this biting is HNP-biting.

We make the analogous definition within diagrams.

Definition 3.7.9. Suppose that E and E ′ are edges in G. We say that E
and E ′ are indistinguishable if there is a Nielsen path τ and an integer s > 0
so that f(E) = Eτ s and f(E ′) = E ′τ s.

The edges E1 and E2 in Example 3.7.6 are indistinguishable.

3.7.1. Parabolic HNP-cancellation and robust futures. The follow-
ing is a simple (but key) observation, and has an obvious application to HNP-
cancellation of edges of parabolic weight.

Lemma 3.7.10. Suppose that τ , ν, ν ′ and σ are Nielsen paths, with σ
irreducible and τ = ν ′σν. Suppose further that γ is the initial edge of σ, and
that f(γ) = γ � ξl for some Nielsen path ξ. Then σ has the form γξrγ′ where
r is some integer and γ′ is an edge so that γ and γ′ are indistinguishable.

Moreover, suppose that E is an edge so that f(E) = E � τm, and let ρ =

Eτ iνγ be a PEP with 0 ≤ i < m. Then f#(ρ) has the form E � τm−i−1ν ′γ′ξ
j

where γ and γ′ are indistinguishable.

Proof. The first assertion is an immediate consequence of the structure
of indivisible Nielsen paths of parabolic weight, and the second is then obvious
(a detailed analysis of the Nielsen paths of parabolic weight is undertaken in
Section 2.1). �

Definition 3.7.11. In general, non-displayed edges ε in diagrams do not
have preferred futures. But if ε̌ has parabolic weight, there is a unique edge of
the same weight in f#(ε̌), and it is natural to define the (immediate) preferred

42The PEP implicit in the symbol J is not the ΨEP in (1).
43We swap orientation in Definition 3.7.8 so as to emphasize this point immediately.
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future of ε to be the corresponding edge in the immediate future of ε. (If ε
happens to be displayed, this agrees with our earlier definition.)

In Section 3.9, when proving the Pincer Lemma, we will have to exclude
HNP-biting. This will also be the case in the applications of the Pincer Lemma
in Sections 3.10 and 3.11. Thus, in following the future of a linear edge γ when
HNP-cancellation occurs, we would like to ignore the preferred future (which
disappears), and rather follow the future of the indistinguishable edge γ′ from
Lemma 3.7.10 above. Thus we make the following

Definition 3.7.12 (Robust Futures for Parabolic Edges). Suppose that ε
is a (not necessarily displayed) edge in a colour µ(S), and that ε̌ is contained
in a parabolic stratum. If the preferred future of ε is cancelled from the left
[resp. right] by HNP-cancellation in >(S), then Lemma 3.7.10 provides an
edge γ′ that is indistinguishable from ε̌ and survives in the tightened path
f#(Eτ̄ kν̄øγ) [resp. its reverse] considered in Definition 3.7.3.

We define the robust future of an edge ε ⊆ ⊥(S) as follows. If the preferred
future of ε survives in >(S), then the robust future of ε is just the preferred
future of ε. If the preferred future is cancelled by HNP-cancellation, then the
robust future of ε is the above edge labelled γ′, provided this survives in >(S).
Otherwise there is no robust future.

Definition 3.7.13 (Robust Pasts for Linear Edges). Let ε′ be an edge of
>(S) and suppose that both it and its immediate past are labelled by linear
edges. If ε′ is not the robust future of any edge then the robust past of ε′ is
the past of ε′. But if ε′ is the (immediate) robust future of ε then the robust
past of ε′ is ε.

Just as for preferred futures, the notions of robust future and robust past
can be extended arbitrarily many steps forwards or backwards in time by
iterating the definition.

3.7.2. A setting where we require cancellation lemmas. Consider
the following situation. Let χ1σχ2 be a tight path in G with χ1 and χ2

monochromatic and σ a path with a preferred decomposition into monochro-
matic paths (each of which comes equipped with a beaded decomposition). We
will analyse the possible interaction between χ1 and χ2 in iterates of χ1σχ2

under f (where the tightening follows the convention of Subsection 3.5.3).
As ever, the following lemma remains valid with left/right orientation re-

versed.

Lemma 3.7.14. Suppose that χ1, χ2 and σ are as above, and suppose that
each non-vanishing bead in χ2 is eventually bitten by a bead from χ1 in some
iterated image fk#(χ1σχ2) of χ1σχ2.
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Suppose further that ρ is a bead in χ2 so that f#(ρ) has parabolic weight,
and that ρ is eventually left-HNP-bitten by a bead from χ1 in the evolution of
χ1σχ2. Then ρ is the rightmost non-vanishing bead in χ2.

Proof. Pass to the iterate fk−1
# (χ1σχ2) so that the preferred future of ρ

lies in a PEP π, which exhibits the (eventual) HNP-biting of ρ in the tightening
to form fk#(χ1σχ2). Let ρ1 be the preferred future of ρ in fk−1

# (χ1σχ2). Since
f#(ρ) has parabolic weight, ρ1 has parabolic weight, and is either a displayed
edge or a displayed ΨEP or GEP. We must prove that no bead to the right of
ρ1 is eventually bitten by the future of χ1.

By Definition 3.7.7 and Lemma 3.7.5 the PEP π has the form γτ̄ kν̄ε, where

(1) γ is an edge so that f(γ) = γ � τm;
(2) γ is either a displayed edge in the future of χ1 in fk−1

# (χ1σχ2) or else
if the rightmost edge in a displayed ΨEP; and

(3) ε is contained in ρ1.

Let α be the displayed edge or ΨEP containing γ.
Let ρ′1 be the terminal part of ρ1 from ε to its right end, and let χ′2 be the

terminal part of the future of χ2 in fk−1
# (χ1σχ2), from ε to its right end.

Since ρ1 is displayed, we have χ′2 = ρ′1 � β for some path β.
By Lemma 3.7.10, when tightening to form fk#(χ1σχ2), the edge ε is re-

placed by an indistinguishable edge ε′ which comes from the future of α. Sup-
pose that δ is that part of f#(αρ′1) from ε′ to the right end. Since α is a (linear)
edge or a ΨEP, the edge ε′ survives in all iterates of α (under any choices of
cancellation). Similarly, since ε and ε′ are indistinguishable, ε′ survives in all
iterates of δ (under any choices of tightening). This implies that we have a
hard splitting f#(αχ′2) = f#(αρ′1) � f#(β), and the fact that α is displayed
implies that no bead in β can be eventually bitten by the future of χ1, as
required. �

In applications of Lemma 3.7.14 (and of Lemmas 3.7.22 and 3.7.23 below),

we usually take χ1 = ˇµ1(S) and χ2 = ˇµ2(S), where µ1 and µ2 are colours and
S is some corridor, and we will choose σ to be the label of that part of ⊥(S)
which lies strictly between µ1(S) and µ2(S).44 Since the folding conventions of
Subsections 3.1.2 and 3.5.3 are compatible, and because of the hardness of our
splittings, the interaction between µ1 and µ2 in the future of S can be analysed
by studying the interaction between the futures of χ1 and χ2 in iterated images
of χ1σχ2 under f .

3.7.3. Reapers. In Part 1 proving the existence of reapers was straight-
forward (see Section 1.9). In the current context, however, we have to work
harder to prove that a suitable incarnation of a reaper exists, because of the

44However, it will also be convenient sometimes to take χ1 to be a subinterval of ˇµ1(S)
consisting of an interval of beads.
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phenomena discussed in the preceding subsection. At the heart of our difficul-
ties is the fact that Nielsen atoms need not be single edges.

Definition 3.7.15. A beaded Nielsen path in a corridor S is a subinterval
σ ⊂ ⊥(S) so that σ̌ is a beaded path all of whose beads are Nielsen paths.

Note that in the above definition we do not assume that σ is a single colour,
or even that each bead in σ̌ is contained in a single colour. Examples of beaded
Nielsen paths include that part of a GEP between the extremal edges, and the
sub-paths τ i of a PEP Eτ kν̄øγ.

Although the beads in a beaded Nielsen path might not be displayed in a
path ˇµ(S), it is still possible to define the future of a bead in a beaded Nielsen
path, and the notions of preferred future and biting still make sense. We will
use this observation in the sequel.

The following notion is parallel to that of Definition 1.10.1, which was
pivotal in the bonus scheme (cf. Section 3.11 below). Here, it plays a more
central role.

Definition 3.7.16 (Swollen present and swollen future). Suppose S is a
corridor and that I ⊆ ⊥(S) is a beaded Nielsen path in S. The swollen present
of I is the45 maximal subinterval I ′ ⊆ ⊥(S) such that (i) I ⊆ I ′; (ii) I ′ is a
beaded Nielsen path in S; and (iii) the beads of I are beads of I ′.

The left swollen present of I is that part of the swollen present from the
left end up to the right end of I, whilst the right-swollen present goes from the
left end of I to the right end of the swollen present.

If the actual future of I is a beaded Nielsen path the (immediate) swollen
future sw1(I) of I is the swollen present of the (actual) future of I. With a
similar qualification, the swollen future swk(I) at time(S) + k is defined to be
sw1(swk−1(I)).

With the same qualifications, the left and right swollen futures are defined
in the obvious ways.

The first qualification in the above definition is required because it is possi-
ble that the immediate future of a beaded Nielsen path is not a beaded Nielsen
path. Thus we must be careful only to apply this concept in cases where we
know the swollen future to exist.

Definition 3.7.17 (Reapers). Suppose that S is a corridor and I ⊂ ⊥(S)
is a beaded Nielsen path in S with nonempty swollen future sw1(I). Suppose
that α is an edge in ⊥(S) immediately adjacent to I on the left. We say that
α is a left-reaper for I if (i) α̌ is a linear edge; (ii) α̌ bites some of the future of
Ǐ in f#(α̌I); and (iii) the robust future of α is immediately adjacent to sw1(I)
in >(S).

45Uniqueness is immediate from the observation that if a terminal sub-path σ of a
Nielsen path τ is itself Nielsen then σ is a concatenation of beads in τ .
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There is an entirely analogous definition of right-reapers. As usual, when
we are unconcerned about the direction we will refer to reapers.

Definition 3.7.18 (Left-edible). Let S be a corridor in a well-folded dia-
gram, and I ⊂ ⊥(S) a beaded Nielsen path. We say that I is left-edible if each
bead in I is eventually bitten by a bead coloured µ in the future of S, where
µ(S) lies to the left of I.

Right-edible paths are defined with a reversal of the left-right orientation.

In the remainder of this section we work towards proving Propositions
3.7.19 and 3.7.21.

Proposition 3.7.19. Let S be a corridor in a well-folded diagram and
I ⊂ ⊥(S) a left-edible path so that |I| ≥ B + J . Then the immediate future of
I in >(S) is left-edible.

The following lemma is straightforward, and allows us to focus our attention
on the time when cancellation between colours begins.

Lemma 3.7.20. Let S be a corridor in a well-folded diagram and let I ⊂
⊥(S) be a left-edible colour, all of whose beads are eventually bitten by beads
coloured µ. Let SI be the corridor in the future of S so that the first biting
of a bead in the left swollen future of I by something coloured µ occurs in SI .
Then the left swollen future of I in ⊥(SI) is left-edible.

In the following statement B is the Bounded Cancellation Constant from
Proposition 3.1.5 and J is the constant from the Beaded Decomposition The-
orem 3.2.1. The corridor SI is as in Lemma 3.7.20 above, and Iλ is the left
swollen future of I in SI .

Proposition 3.7.21. Suppose that S is a corridor in a well-folded diagram
and I ⊂ ⊥(S) is a left-edible path, all of whose beads are eventually bitten by
beads coloured µ. Suppose also that |I| ≥ B + J . Then

(1) the immediate future of Iλ in >(SI) has an associated left reaper α,
which is coloured µ; and

(2) for each bead in the immediate future of Iλ, when it is eventually bitten
the biting is by the robust future of α.

3.7.4. Two Cancellation Lemmas. The following lemma is useful in
the proof of Lemma 3.8.8 below. We record it now because a variation on it
(Lemma 3.7.23) is needed in the proof of Proposition 3.7.21.

We revert to the setting described in Subsection 3.7.2.

Lemma 3.7.22. Assume that in the iterates of χ1σχ2 (i.e. forward-images
under f#) each bead in χ2 is eventually bitten by a bead in χ1. Suppose that χ2

has weight i, where Hi is an exponential stratum, and that all beads of weight
i in χ2 are Nielsen beads. Let ρ be a bead of weight i in χ2.
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(1) If ρ is not bitten in f#(χ1σχ2) but is eventually bitten in the image
fk#(χ1σχ2) then ρ is entirely consumed in fk#(χ1σχ2).

(2) If ρ is bitten but not entirely consumed in f#(χ1σχ2) then ρ is the
rightmost bead in χ2.

Proof. There is at most one indivisible Nielsen path of weight i and the
lemma is vacuous unless there is exactly one.

Let β be a bead in χ2 of weight i, and suppose that an edge η in the future
of χ1 is the edge which cancels the rightmost edge in the preferred future of
β to exhibit the biting of β by χ1. Since β is an indivisible Nielsen path, it
has edges of weight i on both ends, as does its preferred future, and so η has
weight i. Suppose that the past of η in χ1σχ2 has weight i. Then by Theorem
2.8.1 and Assumption 3.4.7, η is either a displayed edge in the future of χ1,
or else is contained in a Nielsen bead. Suppose first that η is contained in a
Nielsen bead τ . Since η is to cancel with an edge in β, the path τ must have
weight i. Hence τ = β̄, and β is entirely consumed when it is bitten.

Suppose then that η is displayed in the future of χ1. By Assumption
3.4.7.(5) we may assume that the edge η is contained in a displayed path of
the form f(η). Since f(η) is i-legal, and β is not, it is not possible for the
illegal turn in β (of weight i) to be cancelled by any iterates of η. However,
|f(η)| > |β|, by Assumption 3.4.7(1), so it is not possible for the displayed
copy of f(η) to be cancelled by the future of β. Therefore, in this case β must
be the rightmost bead in χ2.

Furthermore, suppose that β and η are as above, and the past of η in
χ1σχ2 has weight i, and suppose moreover that β is not bitten in f#(χ1σχ2).
Then β is bitten by η in some fk#(χ1σχ2), and k ≥ 2. Thus we may assume
that the immediate past of η is also displayed and is η. By applying Lemma
3.4.5 and noting that the rightmost edge of β must be η̄, we see that the
sub-path between the immediate past of β and the immediate past of η has
the form · · · η̄ωη · · · for some path ω. The path ω must start and finish at
he same vertex, and in order for the written copy of η̄ to cancel with the
written copy of η it must be that f#(ω) is a point. However, ω is not a point,
because otherwise the past of β and the past of η would already cancel. This
contradicts the fact that f is a homotopy equivalence. The same argument
shows that if η is contained in a Nielsen bead and β is not bitten in f#(χ1σχ2)
then β cannot be bitten by η.

Therefore, if β is bitten by an edge η whose past in χ1σχ2 has weight i then
β is close to the left end of χ2, and is either entirely consumed when bitten or
is the rightmost bead in χ2.

We may now assume that the bead ρ is cancelled by an edge η whose past in
χ2 has weight greater than i. The above arguments show that we may assume
that the immediate past of η also has weight greater than i, and by Lemma
3.4.5 we may assume that this past is contained in a displayed edge, a GEP, or
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a ΨEP. It is easy to see that the immediate past of η cannot have exponential
weight and cannot be a GEP. Thus we may assume that the immediate past
of η is either the edge on the left end of a ΨEP of the form γντ kE, (and that
the edge γ is parabolic) or else is displayed and parabolic.

Lemma 3.4.5 and the above arguments imply that this immediate past of
η must be a linear edge, and the above arguments now imply that if ρ is bitten
in a corridor it must be entirely consumed. �

The following variant of Lemma 3.7.22 is the one we need in the proof of
Proposition 3.7.21. We continue to study χ1σχ2 as in Subsection 3.7.2.

Lemma 3.7.23. Suppose that χ2 is a beaded Nielsen path and each of its
beads is eventually bitten by a bead in χ1 in some iterated image of χ1σχ2

under f .
Let ρ be a bead in χ2 which is not bitten in f#(χ1σχ2). If ρ is bitten but

not consumed in some iterated image of χ1σχ2 then ρ is the rightmost bead in
χ2.

Proof. We follow the proof of Lemma 3.7.22 above, with the added wrin-
kle that there may be parabolic weight Nielsen paths to consider in χ2. In this
case there needn’t be a unique Nielsen path of weight i.

Suppose that ρ is as in the statement of the Lemma. If ρ has exponential
weight, then the arguments of the proof of Lemma 3.7.22 give the required
properties. If ρ has parabolic weight, Lemma 3.5.15 implies that when ρ is
bitten by an edge η in the future of χ1, the immediate past of η has weight
greater than that of ρ. Also, this immediate past must be parabolic. Arguing
as in the proof of Lemma 3.7.22, one sees that either ρ is entirely consumed
when bitten, or else ρ is the rightmost bead in χ2. �

Corollary 3.7.24. Suppose that I is a beaded Nielsen path in ⊥(S) for
some corridor S of a well-folded diagram, and suppose that all beads of I are
eventually bitten from the left by beads in a single colour µ. Then, with the
possible exception of B beads on the left end and one bead on the right (the final
one bitten), whenever µ bites a Nielsen bead in the future of I, it consumes it
entirely.

Proof of the Proposition 3.7.19

Proof. If the immediate future of I in >(S) were not left-edible, then
Corollary 3.7.24 would ensure that no bead in I which is not bitten in S is
ever bitten by µ. However, the assumption on the length of I (and the Bounded
Cancellation Lemma) ensure that there are beads in I not bitten in S. The
fact that I is left-edible therefore ensures that the future of I in >(S) is also
left-edible. �
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Proof of the Proposition 3.7.21

Proof. Let S ′ be the corridor containing the immediate past of Iλ. Lemma
3.7.23 implies that in >(S ′) there is an edge ρ in µ which cancels a whole
Nielsen path in the future of I.

Since |I| ≥ B + J , there is a bead in I not bitten in >(S). The proof of
Lemma 3.7.23 now implies that there is a reaper as in the statement of the
proposition. �

3.8. Non-fast and Unbounded Beads

With the technical exertions of the previous section behind us, we are now
able to return to the main argument, picking up the flow of Part 1 at Subsection
1.6.6. Thus our next purpose is to reduce the task of bounding the bead norm
of the intervals C(µ,µ′) to that of bounding the lengths of certain long blocks of
Nielsen atoms. These blocks are the analogue of the intervals C(µ,µ′)(2) from
Part 1, and will be the building blocks of the teams introduced in Section 3.10
(in analogy with Section 1.9).

Definition 3.8.1. Suppose that ρ = γντ kEi is a PEP (with k ≥ 0). We
say that ρ is left-slow if γ is empty or a concatenation of left-slow beads.

There is an entirely analogous definition of right-slow PEPs of the form
ρ = Eiτ

kνγ.

Often, we will just speak of slow PEPs, since a single PEP can only be
left-slow or right-slow, but not both.

Definition 3.8.2. Suppose that the bead ρ is such that f#(ρ) is not a
Nielsen bead. Then the function n 7→ |fn#(ρ)| grows at least linearly. In this
case, we call ρ an unbounded bead.

Definition 3.8.3. A beaded path is called right-tame if all of its beads
are GEPs, slow ΨEPs, Nielsen paths and atoms which do not have a right-fast
displayed edge in their immediate future.

The next lemma follows immediately from the definition.

Lemma 3.8.4. A4(S0, µ) is a right-tame path.

Lemma 3.8.5. Suppose that α is a non-vanishing atom which is not right-
fast. Then either all of the beads in f#(α) are Nielsen paths and GEPs, or
else the preferred future of α is parabolic.

Proof. The only modification to Lemma 3.4.3 is the exclusion of expo-
nential edges in the second case, which is valid because such an edge would
obviously contradict the fact that α is not right-fast. �
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Definition 3.8.6. Suppose that σ is a right-tame path. The untrapped
weight of σ is the largest j so that f#(σ) contains a bead of weight j which is
not Nielsen.

Definition 3.8.7. Suppose that, for some pair (µ, µ′) ∈ Z, the untrapped
weight of C(µ,µ′) is j. For each 1 ≤ i ≤ j, define ρi to be the leftmost bead in
C(µ,µ′) so that f#(ρi) has an unbounded bead of weight at least i that is not
HNP-bitten in the future of S0.46

Let Ei denote those beads in C(µ,µ′) from the right end up to and including
ρi, and let Di = Ei r Ei+1.

The following is the analogue of Lemma 1.6.7

Lemma 3.8.8. For all 1 ≤ i ≤ ω there is a constant C1(i) so that for each
of the paths C(µ,µ′) and decomposition into intervals Di as above, we have

|| Di || β ≤ C1(i).

Proof. As far as possible, we try to follow the proof of Lemma 1.6.7.
However, due to the phenomena described in Section 3.7, the proof here is
somewhat more complicated.

We go forward to the time, t say, which is one step before the moment
when µ′ first starts to bite the preferred futures. By virtue of Remark 3.6.4,
and the definition of Di, there are at least as many beads in the future of Di
at time t as there are in S0. Therefore, it is sufficient to bound the number of
beads in the future of Di at time t; to ease the notation, we write Di for this
future, i.e. pretend that t = time(S0).

It is possible that there exist beads ρ ∈ Di so that f#(ρ) has weight greater
than i. In such a case, all of the beads in f#(ρ) of weight greater than i are
Nielsen beads.

Consider the highest weight k for which there is a bead ρ in Di with f#(ρ) of
weight k, and suppose that k > i. Suppose first that ρ has exponential weight.
Then by Lemma 3.7.22 either Di has bead norm at most B (and length at
most ` = JB(B + 1)), or else ρ is entirely consumed when it is bitten. In the
first case ρ is the leftmost bead in Di, and also in C(µ,µ′). A similar argument
applies when ρ has parabolic weight.

Thus, excluding cases where |Di| < `, we may treat the Nielsen beads of
weight higher than i as indivisible units, which are entirely consumed when
bitten. We are therefore in the situation of the proof of Lemma 1.6.7, where
the unbounded beads in Ci grow apart at a linear rate, and so must be cancelled
quickly. Otherwise, the proof is entirely parallel to the one from Part 1. �

We are trying to reduce the task of bounding the bead norm to that of
bounding the size of intervals consisting entirely of Nielsen beads, which are

46Note that it is possible that ρi = ρi+1 for some i.
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each consumed by a reaper. In order to make this reduction, we still have some
HNP-biting to deal with. In order to deal with this, we need an analogue of
Lemma 1.9.4.

Recall that L is the maximal length of f(E) where E is an edge in G.

Proposition 3.8.9 (cf. Lemma 1.9.4). There is a constant C4 depending
only on f which satisfies the following properties. If I is an interval on >(S)
labelled by a beaded path all of whose beads are Nielsen atoms, then the path
labelling the past of I in ⊥(S) is of the form uαv where α is a beaded path all
of whose beads are Nielsen atoms and |u| and |v| are less than C4.

If the past of I begins (respectively ends) with a point fixed by f , then u
(respectively v) is empty.

In particular, |I| ≤ |α|+ 2LC4.

Proof. The interval I ⊂ >(S) is a beaded path, all of whose beads are
Nielsen paths of length at most J . Therefore, along I there are points where
I admits a hard splitting and these points occur with a frequency of at least
one every J edges. Since these points are vertices, the set of labels of points
at which the splitting occurs is finite. Consider the path from >(S) to ⊥(S)
starting from one of these vertices. The label of this path is wt̄i where w is a
(possibly empty) path in G of length at most L, and ti is one of the edges from
the mapping torus M(f). (We are about to use a finiteness argument and it
will be important that the repetition we infer includes the labels of the points
on ⊥(S). Thus it is important which of the t-edges this path includes.)

Since the data we record — the label of the vertex on >(S), the path wt̄i
and the label of the end of this path on ⊥(S)) — range over a finite set, there
is a constant C ′ such that in the interval within C ′ vertices of the left end of
I there will be repetition of these data. Since the vertices occur at least every
J edges, this repetition occurs within C ′J of the left end of I.

Once we have found this repetition, we have an interval λ ⊂ ⊥(S), an
interval η ⊂ >(S) and a path w0 of length at most L such that f#(λ) = w0ηw̄0.
Therefore, the free homotopy class of f#(λ) is the same as that of η = f#(η),
since η is a beaded path all of whose beads are Nielsen paths. Since f is a
homotopy equivalence, the free homotopy class of λ must be the same as that
of η.

Suppose that η = p1 . . . pm where each pi is an indivisible Nielsen path.
Now, λ is tight, so λ = σpipi+1 . . . pmp1 . . . pi−1σ̄, for some path σ. Thus, if ‘∼’
denotes free homotopy,

f(λ) ∼ f#(σ)pi . . . pi−1f#(σ̄),

which tightens to
w0p1 . . . pmw̄0.

By the Bounded Cancellation Lemma, tightening the path f(λ) as written
above reduces the length of f#(σ) by less than B, and the result has length at



140 MARTIN R. BRIDSON AND DANIEL GROVES

most 2L+ |η|. This implies that |f#(σ)| < L+B. Therefore, || σ || is bounded,
and by a small increase we may also assume that i = 1. By considering only
one vertex out of every B(L + B), we can find such a path η where there is
some pj in the middle of λ such that the path from the copy of pj ⊂ >(S) to
the copy of pj ⊂ ⊥(S) is a single edge labelled t, for some j.

We have argued that, for some path η of bounded length which lies on the
left end of I, the past of η is of the form uηu′ where |u| and |u′| are bounded,
and the paths from the splitting points in η ⊂ I to ⊥(S) consist of single edges
labelled t.

Consider the analogous situation on the right end of I. We can find a path
η′ ⊂ I lies at the right end of I such that the past of η′ is of the form v′η′v
where |v| and |v′| are bounded and the paths from the vertices of η′ ⊂ I to
⊥(S) consist of single edges labelled t.

Consider the paths along ⊥(S) and >(S) from the left end of η to the right
end of η′. We have a path ρ ⊂ ⊥(S) with fixed points of f on either end which
maps to a Nielsen path f#(ρ) ⊂ I ⊂ >(S). The same argument as in the proof
of Lemma 2.1.14 then shows that ρ = f#(ρ). Hence ρ is a beaded path, all of
whose beads are Nielsen paths, and the paths u and v on either side of ρ are
of bounded length as required. This proves the first assertion in the statement
of the lemma.

The second assertion follows similarly, and the final assertion follows im-
mediately from the first. �

Consider a pair (µ, µ′) ∈ Z, and recall the definition of the subintervals Ei
from Definition 3.8.7.

Proposition 3.8.10. There is a constant C5, depending only on f so that
the following holds. For each (µ, µ′) ∈ Z, the interval C(µ,µ′) r E1 in A4(S0, µ)
has the form uNv where u and v are such that ||u || β, || v || β ≤ C5 and N is a
beaded path all of whose beads are Nielsen beads.

Proof. By Lemma 3.7.14, for each adjacency of colours (µ, µ′) there can
only be one bead in µ(S) which is eventually HNP-bitten by µ′.

The result now follows from Proposition 3.8.9 and the definition of E1. �

Definition 3.8.11. For (µ, µ′) ∈ Z, define C(µ,µ′)(2) := N , the beaded
Nielsen path from Proposition 3.8.10.

The sum of our arguments to this point has reduced the task of bounding
the sum of the bead norms of the intervals µ(S0) in S0 to that of bounding the
sum of the lengths of the intervals C(µ,µ′)(2) for pairs (µ, µ′) ∈ Z.

We summarise the results from this section as follows.

Proposition 3.8.12. There is a constant C1, depending only on f , so that

||C(µ,µ′) || β ≤ ||C(µ,µ′)(2) || β + C1.
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Remark 3.8.13. Since the intervals C(µ,µ′)(2) consist entirely of Nielsen
beads, we have the following obvious relationship between length and bead
norm:

|C(µ,µ′)(2)| ≤ ||C(µ,µ′)(2) || β ≤ J |C(µ,µ′)(2)|.

Therefore, in order to finish the bound on bead norm, it is sufficient to bound
the total lengths of the intervals C(µ,µ′)(2).

It is important for the remainder of the paper that the path C(µ,µ′)(2) is a
beaded path that consists entirely of Nielsen atoms. This is a stronger state-
ment than just asserting it is a Nielsen path, since we require a decomposition
into beads of uniformly bounded size, each of which is a Nielsen path. This
makes the path C(µ,µ′)(2) very similar to the long blocks of constant letters
which played such a prominent role in Part 1

At this point the reader may benefit from consulting Section 1.7, which
outlines the strategy for the remainder of the proof of the Main Theorem (the
strategy from the positive case still holds here). For the remainder of this
part of the book, we will mostly continue without reminding the reader of this
strategy.

3.9. The Pleasingly Rapid Disappearance of Colours

We are now at the point in our arguments where we need to formulate
and prove the Pincer Lemma, as in Section 1.8. In Part 1 the Pincer Lemma
was proved by counting colours which essentially vanished, which is to say
they came to consist entirely of constant letters. For positive automorphisms,
this is a well-defined event and can only occur once for each colour. For gen-
eral automorphisms, the analogues of constant letters are indivisible Nielsen
paths. However, since Nielsen paths can contain non-constant edges, indivis-
ible Nielsen paths are not indivisible in an absolute sense (the terminology
refers to the fact that an indivisible Nielsen path cannot be split into two
Nielsen paths). Thus, it is possible that a colour can be labelled by a Nielsen
path at some time t but not at some later time t + k. There are two ways
to circumvent this problem. The first is to concentrate on the times when a
colour decreases in weight, whilst the second is to focus on the times when
a colour becomes Nielsen and seek compensation when a colour subsequently
ceases to be Nielsen. We mostly pursue the second idea but there are aspects
of the first also.

The version of the Pincer Lemma which we need in this part of the book
is Theorem 3.9.27.

The ideas in the proof of the Pincer Lemma here are very similar to those
in Part 1 but the execution is somewhat different.
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Definition 3.9.1. Suppose that I is a non-empty beaded Nielsen path and
that U and V are beaded paths. We say that I is stably Nielsen in the path
UIV if the future47 of I in f#(UIV ) is also a non-empty Nielsen beaded path.

Suppose that µ1, µ2 and µ3 are colours in a well-folded diagram and that
the intervals µ1(S), µ2(S) and µ3(S) are non-empty and adjacent in ⊥(S). If

ˇµ2(S) is a non-empty Nielsen path, then we say that µ2(S) is stably Nielsen if,

in the above sense, ˇµ2(S) is stably Nielsen in ˇµ1(S) ˇµ2(S) ˇµ3(S)).

Lemma 3.9.2 (Relative Buffer Lemma). Let i ∈ {1, . . . , ω − 1} and let
I ⊂ ⊥(S) be an edge-path labelled by edges in Gi. Suppose that the colours
µ1(S) and µ2(S) lie either side of I, adjacent to it. Provided that the whole of
I does not die in S, no edge in the future of µ1(S) with label in G r Gi will
ever cancel with an edge in the future of µ2(S) with label in GrGi.

Proof. Given Lemmas 3.4.5 and 3.4.6, the proof of Lemma 1.8.1 applies
modulo changes of terminology. �

We now need the following ‘two-sided’ version of Proposition 3.7.19.

Lemma 3.9.3. Let µ1, µ2, µ3 and S be as in Definition 3.9.1, and suppose
that µ2(S) is stably Nielsen. Then for all corridors S ′ in the future of S, if
µ1(S ′) and µ3(S ′) are nonempty then µ2(S ′) is a (possibly empty) Nielsen path.

Proof. Whilst µ1(S ′) and µ3(S ′) are non-empty, any bead in µ2 which is
bitten must be bitten by a bead coloured either µ1 or µ3. Let I1 be the set
of (Nielsen) beads in µ2(S) which are eventually bitten by a bead coloured
µ1 (and are bitten whilst µ1(S ′) and µ3(S ′) are non-empty). Define I2 to be
those beads in µ2(S) which are bitten by a bead coloured µ3 (with the same
proviso).

Suppose that I1 and I2 are non-empty. They form intervals, and I1 is to
the left of I2.

Proposition 3.7.21, and the fact that µ2(S) is stably Nielsen, implies that
unless I1 is immediately consumed there is a left reaper coloured µ1 associated
to I1, and similarly there is a right reaper coloured µ3 associated to I2. The
properties of reapers in Definition 3.7.17 imply the result.

In case one or both of I1 and I2 are empty (or immediately consumed),
there is at most one reaper to consider, but the result follows in the same
way. �

Lemma 3.9.4 (Buffer Lemma). Suppose, for some corridor S in a well-
folded diagram, that I ⊂ ⊥(S) is a beaded Nielsen path and that µ1(S) and
µ2(S) lie either side of I, immediately adjacent to it. Suppose further that Ǐ

is stably Nielsen in ˇµ1(S)Ǐ ˇµ2(S). Provided that the whole of I does not die in
S, no bead in µ1(S) can be eventually bitten by a bead coloured µ2 (and vice
versa), unless it is (eventually) HNP-bitten.

47as defined in (3.2.2)
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Proof. Given Lemmas 3.4.5, 3.4.6 and 3.9.3, and the exclusion of HNP-
biting, the proof of Lemma 1.8.1 applies. �

The proof of the following lemma follows that of Lemma 1.8.1.

Lemma 3.9.5 (Weighted Buffer Lemma). Suppose, for some corridor S in
a well-folded diagram, that I ⊂ ⊥(S) is a beaded path consisting of Nielsen
beads and beads of weight at most i, and that µ1(S) and µ2(S) lie either
side of I, immediately adjacent to it. Suppose further that the only beads
of f#( ˇµ1(S)Ǐ ˇµ2(S)) that are in the future of I and have weight greater than i
are Nielsen beads.

Then, provided that the whole of I does not die in S, no bead in µ1(S)
can be eventually bitten by a bead coloured µ2 (and vice versa), unless it is
(eventually) HNP-bitten.

3.9.1. The Two Colour Lemma. Example 3.7.6 can be used to con-
struct examples where the above two results are false if HNP-biting is not
excluded. The same is true of the results in this section. This accounts for
the caution that the reader will note in Sections 3.10, 3.11 and 3.12, where we
are careful to ensure that the Pincer Lemma is applied only to pincers that
involve no HNP-biting.

Definition 3.9.6 (Stable f -neutering). Suppose that U and V are beaded
paths, that for some k the futures of V in fk#(UV ) and fk+1

# (UV ) are Nielsen,

but that the future of V in fk−1
# (UV ) contains a non-Nielsen bead.

Denote the futures of U and V in fk−1
# (UV ) by Uk−1 and V k−1, respectively.

Let β be the rightmost non-Nielsen bead in f#(V k−1). If the biting of β in the
tightening of f#(Uk−1)f#(V k−1) to form fk#(UV ) is not HNP-biting then we
say that U stably left f -neuters V in k steps.

The definition of stable right f -neutering is identical with the roles of U
and V reversed, and when we are unconcerned about the direction we will refer
simply to stable f -neutering.

In the light of Proposition 3.7.19, once stably f -neutered, the subsequent
futures of V remain beaded Nielsen paths.

Proposition 3.9.7 (Two Colour Lemma, cf. Proposition 1.8.4). There
exists a constant T0, depending only on f , so that if U and V are beaded paths
and U stably f -neuters V then it does so in at most T0 steps.

Proof. Denote the future of U in f i#(UV ) by U i and the future of V by

V i.
As in the proof of Proposition 1.8.4, we will decompose each of the paths

V i into an unbounded part and a bounded part. The bounded part will be an
interval on the right end of V i whose immediate (abstract) future is a beaded
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Nielsen path. The unbounded interval lies on the left end of V i, and we will
bound its length.

This would be a straightforward adaptation of the proof from Part 1 if
Proposition 3.8.12 provided a bound of the length of that part of C(µ,µ′) not
contained in C(µ,µ′)(2). However, the bound in Proposition 3.8.12 is just a
bound on bead norm. Thus, we need to deal with the possibility of long GEPs
and ΨEPs.

The following enumerated claims will together yield an upper bound on
the length of the unbounded part of V i, which in the course of the proof will
be decomposed into V i

fast and V i
nc

Three of the claims concern the existence of a constant kj that depends
only on f ; we use the abbreviation ∃kj = kj(f).

Claim 1: ∃k1 = k1(f) such that any GEP in V i has length less than k1.

This follows in a straightforward way from the Buffer Lemma 3.9.4 and the
fact that the obvious preferred future of the rightmost edge in any GEP in V i

must eventually cancel with an edge from the future of U i.

Next we consider long ΨEPs in V i. Suppose that ρ is a ΨEP in V i. Then
the label on ρ or ρ̄ has the form Eτ̄ kν̄γ, where τ is Nielsen path, f(E) = E�τm
and γ̄ν is a terminal segment of τ . We consider a number of different cases.
First we dismiss a case that follows immediately from Lemma 3.5.13 and from
the fact that exponential edges are left-fast:

Claim 2: If ρ̌ = Eτ̄ kν̄γ and γ is an exponential edge then the right end
of ρ lies within C0 of the left end of V i.

Next we consider V i
fast, which is defined to consist of those beads from the

left end of V i up to and including the rightmost bead in V i whose immediate
(abstract) future contains a left-fast bead.

Claim 3: ∃k2 = k2(f) such that |V i
fast| ≤ k2.

This follows immediately from Lemma 3.5.13 unless the rightmost bead in
V i

fast is a ΨEP. (Note that this rightmost bead is not a GEP, since a GEP does
not have a left-fast bead in its immediate abstract future.)

Suppose, then, that the rightmost bead in V i
fast is a ΨEP, say ρ. If ρ̌ =

Eτ̄ kν̄γ, then we are done by Claim 2. So suppose that ρ̌ = γ̄ντ kĒ. Let ε be
the edge in ρ whose label is Ē. The preferred future of ε is to be cancelled by
an edge in the future of U i. By an obvious finiteness argument (as in the proof
of Proposition 1.8.4), there is a constant p so that the path V p contains no
left-fast beads. This gives a bound on the amount of time before the future of
ρ is bitten, and hence a bound on the amount that the future of ρ can shrink
before then. Suppose that V j is the first future of V i in which the future
of ρ has been bitten. Because the preferred future of ε is to be cancelled,
Proposition 3.7.21 and the Buffer Lemma 3.9.4 imply that the length of the
future in V j of ρ is bounded above by a constant depending only on f .
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The required bound on |V i
fast| is now at hand: Lemma 3.5.13 bounds the

length of V i
fast r ρ, and the combination of the bound on j and the bound

on the length of the future of ρ in V j gives a bound on the length of ρ. This
completes the proof of Claim 3. We remark that the above argument also gives
a bound on the amount of time it takes for V 1

fast to be entirely consumed.

We now define a set V i
nc as follows: Let ρnc be the rightmost bead in V i

whose immediate abstract future is not Nielsen. We define V i
nc as follows:

(1) if ρnc ∈ V i
fast then V i

nc = ∅;
(2) if ρnc is not a ΨEP, then V i

nc consists of those beads from (but not
including) the rightmost bead in V i

fast up to and including ρnc;
(3) if ρnc is a ΨEP with label of the form γ̄ντ kĒ or ρnc is a ΨEP with

label of the form Eτ̄ kν̄γ and γ is not a Nielsen path, then V i
nc consists

of those beads in V i from (but not including) the rightmost bead in
V i

fast up to and including ρnc;
(4) finally, if ρnc is a ΨEP with label of the form Eτ̄ kn̄uγ and γ is either

empty or a Nielsen path, then V i
nc consists of that interval from (but

not including) the rightmost bead in V i
fast up to and including the

leftmost edge in ρnc (the label of this leftmost edge is E).

Note that in Case 4 the bead ρnc is certainly not contained in V i
fast.

Claim 4: ∃k3 = k3(f) such that |V i
nc| ≤ k3.

The proof of Claim 3 above established an upper bound on the time before
all of V i

fast is entirely consumed, and hence also on the time before the future
of V i

nc begins to be consumed. We now follow the proof of Lemma 3.8.8, which
establishes an upper bound on the time that can elapse before the final non-
constant bead in V i is bitten. We will be done if we can bound this time from
below by a positive constant times |V i

nc|.
In the current setting, we have non-constant beads in V i

nc that may not be
growing apart like those in the proof of Lemma 3.8.8.48 But there is a lower
bound on the rate at which the surviving futures of these beads can come
together. Hence the length of V i

nc provides a lower bound on the amount of
time that must elapse before V j becomes stably Nielsen, since the future of
V i

nc must be entirely consumed before this time. (Note that in Case 4, the
preferred future of the edge Ē in ρnc must be eventually consumed by the
future of U i.) This proves Claim 4.

The unbounded part of V i is the union of V i
fast and V i

nc, whilst the bounded
part is the remainder of V i. The sum of the previous four claims bound the
length of the unbounded part of V i by a constant that depends only on f .

There is a similar bound on the number of edges in U i that have an edge
in their future that cancels with an edge in the future of V i. (Here we need

48This is because we are now measuring length rather than bead-norm.
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the hypothesis that the path V k becoming stably Nielsen does not arise from
HNP-biting.)

At this stage, we can follow the proof of Proposition 1.8.4 directly. After
an amount of time bounded by a constant that depends only on f , either the
future of V becomes stably Nielsen or empty, or else there is a repetition of
the following data: (i) the unbounded part of V i plus the leftmost B+J edges
of the bounded part; (ii) a terminal segment of U i containing all of the edges
that can ever interact with the future of V . Once we have such a repetition, if
the future of V has not become stably Nielsen or vanished then it never will,
contrary to hypothesis. �

We need a weighted version of neutering and the two-colour lemma.

Definition 3.9.8 ((f, i)-neutering). Fix i ∈ {1, . . . , ω} and let U and V
be beaded paths. Suppose that for some k the future of V in fk#(UV ) has

weight less than i, but that the future of V in fk−1
# (UV ) has weight at least i.

Denote the futures of U and V in fk−1
# (UV ) by Uk−1 and Vk−1, respectively.

Let β be the rightmost bead in f#(Vk−1) of weight at least i. If the biting of
β in the tightening of f#(Uk−1)f#(Vk−1) to form fk#(UV ) is not HNP-biting
then we say that U (f, i)-neuters V in at most k steps.

Proposition 3.9.9 (Weighted Two Colour Lemma). There exists a con-
stant T ′0, depending only on f , so that for any i ∈ {1, . . . , ω}, if U and V are
beaded paths and U (f, i)-neuters V then it does so in at most T ′0 steps.

Proof. We decompose the futures of U and V in fk#(UV ) as in Lemma
3.9.7.

The proof is similar to that of Lemma 3.9.7, except that when we appeal
to the proof of Proposition 3.8.8 we assume that we have a path Ej with j ≥ i.
Otherwise, the proof of Lemma 3.9.7 above and that of Proposition 1.8.4 can
now be followed mutatis mutandis. �

By replacing T0 by T ′0 if necessary, we may assume that T0 ≥ T ′0. We
henceforth make this assumption.

3.9.2. The disappearance of colours: Pincers and implosions.

Definition 3.9.10. Consider a pair of non-constant edges ε1 and ε2 which
cancel in a corridor St of ∆, and suppose that, for i = 1, 2, the immediate past
of εi lies in a bead of some µi(St) that is either a unbounded atom, a GEP
or a ΨEP. Suppose further that the cancellation of ε1 and ε2 is not HNP-
cancellation, and that µ1 6= µ2. Consider the paths p1, p2 in F ⊂ ∆ tracing
the histories of ε1 and ε2. Suppose that at time τ0 the paths p1 and p2 lie
in a common corridor Sb. Under these circumstances, we define the pincer
Π = Π(p1, p2, τ0) to be the sub-diagram of ∆ enclosed by the chains of 2-cells
along p1 and p2, and the chain of 2-cells connecting them in Sb.
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We define SΠ to be the earliest corridor of the pincer in which µ1(SΠ) and
µ2(SΠ) are adjacent. Define χ̃(Π) to be the set of colours µ 6∈ {µ1, µ2} such
that there is a 2-cell in Π coloured µ. Finally, define

life(Π) = time(SΠ)− time(Sb).

See Section 1.8 for illustrative pictures.

Proposition 3.9.11 (Unnested Pincer Lemma, cf. Proposition 1.8.7).
There exists a constant T1, depending only on f , such that for any pincer Π

life(Π) ≤ T1(1 + |χ̃(Π)|).

In the proof of Proposition 1.8.7 (Regular Implosions) the strategy was
to identify a constant T1 such that over each period of time of length T1

within a pincer, at least one colour became constant. There are a number of
impediments to implementing this strategy in the current situation. The first
is that Nielsen paths can consist of edges which are not constant edges, so if
a colour becomes Nielsen then it may cease to be Nielsen at some stage in the
future. In order to overcome this impediment, we make the following

Definition 3.9.12. Suppose that for some colour µ and some corridor S,
the path ˇµ(S) is stably Nielsen, and let ν1 and ν2 be the colours immediately
on either side of µ in S. If there is some corridor S ′ in the future of S in which

ˇµ(S ′) is not Nielsen and S ′ is the earliest such corridor, then we say that µ is
resuscitated in S ′. By Lemma 3.9.3, at least one of ν1 and ν2 is not adjacent
to µ in S ′, so either ν1(S ′) or ν2(S ′) is empty. If νi(S

′) is empty, we say that
νi sacrifices itself for µ.

Remark 3.9.13. A colour can sacrifice itself for at most one colour.
A colour may become stably Nielsen and be resuscitated a number of times,

but a different colour must sacrifice itself for each resuscitation.
The concept of ‘becoming stably Nielsen’ is analogous to that of a colour

‘essentially vanishing’ in Section 1.8. However, the concept of ‘resuscitation’
does not have an analogue in Part 1.

Fix a pincer Π and assume that life(Π) > 1. The strategy to prove Proposi-
tion 3.9.11 is to identify a constant T1 so that during the life of Π, in each T1/2
steps of time there is a colour that becomes stably Nielsen (perhaps vanishing)
In order to obtain the bound in the statement of Proposition 3.9.11, we then
count the colours which become stably Nielsen or vanish, and the colours which
sacrifice themselves for those that are resuscitated. A colour can therefore be
counted twice – once for disappearing (or for the last time it becomes stably
Nielsen), and once as a sacrifice – but no colour is counted more than twice.
Thus Proposition 3.9.11 is an immediate consequence of the following result
whose proof will occupy the remainder of this subsection.
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Proposition 3.9.14. There is a constant T1, depending only on f , so that
for any pincer Π in a minimal area van Kampen diagram over M(f), in any
interval of time of length T1/2, at least one colour in χ̃(Π) becomes stably
Nielsen or vanishes.

Definition 3.9.15 (p-implosive arrays). Let p be a positive integer and
S a corridor. A p-implosive array of colours in S is an ordered tuple A(S) =
[ν0(S), . . . , νr(S)], with r > 1, such that

(1) each pair of colours {νj, νj+1} is separated in S only by a stably Nielsen
(or empty) path;

(2) in each of the corridors S = S1, S2, . . . , Sp in the future of S, no νj(S
i)

is empty or a stably Nielsen path, j = 1, . . . , r − 1;
(3) in Sp, either an edge coloured ν0 from a unbounded atom, a GEP or

a ΨEP cancels with an edge coloured νr from a unbounded atom, a
GEP or a ΨEP (and hence the colours νj with j = 1, . . . , r − 1 are
consumed entirely), or else each of the colours νj (j = 1, . . . , r − 1)
become stably Nielsen or vanish, while ν0 and νr are not Nielsen in
f#( ˇν0(Sp) · · · ˇνr(Sp)) (although they may nevertheless become stably
Nielsen or even disappear in Sp because of colours external to the
array).

Arrays satisfying the first of the conditions in (3) are said to be of Type
I, and those satisfying the second condition are said to be of Type II. (These
types are not mutually exclusive).

The residual block of an array of Type II is the stably Nielsen path which
lies between ν0(Sp) and νr(S

p) (if either ν0(Sp) begins or νr(S
p) ends with an

interval of Nielsen atoms include these in the residual block). Note that the
residual block may be empty. The enduring block of the array is the set of
stably Nielsen paths in ⊥(S) that have a future in the residual block.

Note that there may exist some unnamed colours between νj(S) and νj+1(S);
if they exist, these form a stably Nielsen path.

Remark 3.9.16. Let [ν0(S), . . . , νr(S)] be a p-implosive array.

(1) Any q-implosive sub-array of [ν0(S), . . . , νr(S)] has q = p.
(2) If an edge of νi cancels with an edge of νj and j − i > 1, then this

cancellation can only take place in Sp. If the edges cancelling come
from displayed unbounded atoms, GEPs or ΨEPs, then the sub-array
[νi(S), . . . , νj(S)] is p-implosive of Type I.

(3) If u, v and w are beaded edge-paths such that u, v and f#(uwv) are
Nielsen paths then w is a Nielsen path. It follows that the residual
block of any array of Type II contains edges from at most two of the
colours νj, and if there are two colours then they are consecutive,
νj, νj+1.
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(4) Likewise, the enduring block of an implosive array of Type II is an
interval involving at most two of the νj and if there are two such
colours they must be consecutive.

Lemma 3.9.17. Let Π be a pincer. The ordered list of colours along each
corridor before time(SΠ) in a pincer Π must contain a p-implosive array for
some p.

Proof. The definition of p-implosive array is designed so that when a
colour becomes stably Nielsen (or disappears) in a pincer there is a p-implosive
array. See the proof of Lemma 1.8.10 for more details. �

Definition 3.9.18. Suppose thatA(S) = [ν0(S), . . . , νr(S)] is a p-implosive
array. We say that A(S) is an HNP-implosive array if either

(1) A(S) is of Type I and in Sp the cancellation between ν0 and νr is
HNP-biting, or

(2) A(S) is of Type II and in Sp, for some 0 < i < r, ν0 and νi are
involved in HNP-biting or for some 0 < j < r, νj and νr are involved
in HNP-biting.

In order to follow the arguments from Part 1, we need to sharpen Lemma
3.9.17: HNP-cancellation can beget p-implosive arrays with p arbitrarily large,
and therefore we must argue for the frequent occurrence of p-implosive arrays
that are not HNP-implosive. A first step in this direction is given by the
following

Lemma 3.9.19. Let Π be a pincer, and let µ1 and µ2 be the colours as-
sociated to the bounding-paths p1 and p2 of Π. Then there is no HNP-biting
between beads in µ1 and µ2 within Π.

Proof. Follows from Lemmas 3.7.14 and 3.7.22. �

When we are unconcerned about p in a p-implosive array, we refer merely
to an implosive array. The first restriction to note concerning implosive arrays
is this:

Lemma 3.9.20. If [ν0(S), . . . , νr(S)] is implosive of Type I, then r ≤ B. If
it is implosive of Type II, then r ≤ 2B.

Proof. In Type I arrays, the interval ν1(Sp) · · · νr−1(Sp) ⊂ ⊥(Sp) is to die
in Sp, so the bound is an immediate consequence of the Bounded Cancellation
Lemma. For Type II arrays, one applies the same argument to the intervals
joining ν0(Sp) and νr(S

p) to the residual block. �

Proof of Proposition 3.9.14. We give a suitable formulation of ‘short’
so that in any corridor S within Π, S contains a short p-implosive array. Propo-
sition 3.9.14 then follows from an obvious finiteness argument.
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Let A(S) = [ν0(S), . . . , νr(S)] be the implosive array guaranteed to exist
by Lemma 3.9.17, and suppose that p ≥ 2T0 (if not then a colour becomes
stably Nielsen or vanishes within 2T0 of time(S)).

We can decompose each of the colours νj(S) in analogy with Part 1, using
the decomposition in Section 3.6.3 above.

We fix a constant Λ1 so that if ||A(S) || > Λ1 then one of the following
must occur in ST0 :

(1) there is a block of displayed Nielsen atoms in some νj(S
T0) of length

at least J + 4B,
(2) there is a displayed GEP in some νj(S

T0) of length at least J+4B+2,
(3) there is a displayed ΨEP in some νj(S

T0) of length at least J + 4B +
L+ 1, or

(4) there is an interval of unnamed colours in A(S) (which form a stably
Nielsen block) of length at least J + 4B between ν0(ST0) and νr(S

T0).

In the remainder of the proof, we shall use the term block to refer generically
to the identified interval in whichever of the above cases we find ourselves.
Increasing Λ1 if necessary, we may assume that the past of the block in S
satisfies the relevant condition from (1) – (4) with the bound increased by
2BT0.

For such a block I in ST0 , consider the first edge on either side of this block
which is not contained in a Nielsen path. These edges may be on one end of
a GEP or a ΨEP (including the GEP or ΨEP from condition (2) or (3)), or
may be contained in unbounded atoms. Call these edges ε1 and ε2.

The Buffer Lemma 3.9.4 implies that either (i) one of ε1 and ε2 must be
‘stabbed in the back’ – we do not exclude the possibility that this stabbing
happens by HNP-biting, or (ii) there is HNP-cancellation across the above
block.

We first dispose of case (ii). Suppose, for ease of notation, that the edge ε1

HNP-bites the edge ε2 across the above block I. Let ε1 have weight k. Then
all edges in I and ε2 must have weight less than k. Let ε′2 be the first edge
to the right of I that has weight at least k. Then the Relative Buffer Lemma
3.9.2 implies that either ε1 or ε′2 must be stabbed49 in the back (again, this
could be by HNP-biting).

We have argued that some edge must be stabbed in the back. Suppose
that this stabbing is of an edge ε in ST0 and that ε has weight k1. Consider
first the possibility that ε is stabbed in the back via HNP-biting. Then this
occurs by an edge ε′ of weight at least k1 + 1. Now, either this stabbing in the
back occurs within T0 of ST0 , or by the Weighted Two Colour Lemma (3.9.9)
there is another block as in (1) – (4) above. This block has higher weight than

49Note that if there is no such edge ε′2 in Π then ε1 must be stabbed in the back, by
Lemmas 3.9.2 and 3.9.19.
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the previous block, and as above leads to another stabbing in the back. If this
stabbing is HNP-biting, pass to a yet higher weight stabbing, and so on.

Eventually (after less than ω iterations of this argument), we get an edge
ε stabbed in the back with the stabbing not HNP-biting. Suppose that ε has
weight k2. Suppose for ease of notation that ε is to the left of the long block,
and suppose that ε is coloured νi. Because of the block of Nielsen atoms to
the non-stabbing side of ε, the Two Colour Lemma (Proposition 3.9.7) implies
that if the edge ε′ which stabs ε in the back is coloured by νj then i− j > 1;
we then write νj ↘ νi.

Passing to an innermost pair νl1 ↘ νl2 between νi and νj we can see that
there are no blocks in ST0 satisfying any of (1) – (4) above, for otherwise there
would be a further stabbing, leading to a related pair of colours between our
innermost pair, contradicting the innermost nature of this pair.

Once there are no such blocks, we have a bound on the length of the
p-implosive array implicit in the relation νl1 ↘ νl2 . An obvious finiteness
argument now finishes the proof. �

We have already seen how Proposition 3.9.14 implies Proposition 3.9.11.
Just as in Section 1.8, we must now deal with the possibility of ‘nested pincers’.

3.9.3. Super-buffers.

Definition 3.9.21. We consider sequences of 5-tuples of tight edge-paths
in G.

Uk :=
(
uk,1, uk,2, uk,3, uk,4, uk,5

)
, k = 1, 2, ...

with |uk,1| and |uk,2| at most C0 + C1 + 2B(B + 1) + 1, while |uk,2| and |uk,4|
are at most C0 + C1 + J and |uk,3| ≤ 4B(B + 1) + 1.50 We fix an integer T ′1
sufficiently large to ensure that for any sequence of length T ′1 there will be a
repetition, i.e. some t1 < t2 ≤ T ′1 with(

ut1,1, ut1,2, ut1,3, ut1,4, ut1,5

)
=
(
ut2,1, ut2,2, ut2,3, ut2,4, ut2,5

)
.

We also choose T ′1 ≥ T1.

With appropriate changes of terminology and the results of the previous
subsection in hand, the proof of Proposition 1.8.21 yields:

Lemma 3.9.22. Let V = V1V2V3 be a tight concatenation of three beaded

paths in G. If the future of V2 is not stably Nielsen in f
T ′1
# (V ) then the future

of V2 is not stably Nielsen in fk#(V ) for any k ≥ 0.

50The purpose of these constants is just as in Definition 1.8.19, with appropriate changes
due to Lemmas 3.6.8 and 3.6.1 and Proposition 3.8.12.
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3.9.4. Nesting and the Pincer Lemma. Let λ0 = J + 2B(T0 + 1) + 1,
which is the obvious analogue of the constant of the same name in Section 1.8.
As in Remark 1.9.5, it is convenient to assume that LC4 < λ0, and we increase
λ0 to make this so. (This makes certain statements in Section 3.10 easier, but
has no serious affect.)

Definition 3.9.23. Consider one pincer Π1 contained in another Π0. Sup-
pose that in the corridor S ⊆ Π0 at the top of Π1 (where its boundary paths
p1(Π1) and p2(Π1) come together) the future in >(S) of at least one of the
edges containing p1(Π1) ∩ >(S) or p2(Π1) ∩ >(S) is not contained in any sta-
bly Nielsen path and this future 51 lies in a beaded path consisting of Nielsen
beads and beads of weight strictly less than the weight of the edges containing
p1(Π1) ∩ >(S) and p2(Π1) ∩ >(S), and that this beaded path has at least λ0

non-vanishing beads. Then we say that Π1 is nested in Π0.

Remark 3.9.24. Besides the obvious translations, the above differs from
Definition 1.8.22 in that the path at the top of the pincer may now consist of
Nielsen beads and lower weight beads, whereas in Part 1 it consisted entirely
of constant letters. This more general setting does not make any of the proofs
in this section harder (because of the Weighted Two Colour Lemma), but is
needed because of the more complicated definition of the ‘cascade of pincers’
below (Definition 3.10.17).

Definition 3.9.25. For a pincer Π0, let {Πi}i∈I be the set of all pincers
nested in Π0. Then define

χ(Π0) = χ̃(Π0) r
⋃
i∈I

χ̃(Πi).

The corridor St was defined in Definition 3.9.10.

Lemma 3.9.26 (cf. Lemma 1.8.25). If the pincer Π1 is nested in Π0 then
time(St(Π1)) < time(SΠ0).

Proof. The existence of the beaded path at the top of the pincer Π1 makes
this an immediate consequence of the Weighted Buffer Lemma 3.9.5. �

Define T1 = T ′1 + 2T0. The following theorem is the main result of this
section, and is the strict analogue of Theorem 1.8.26. The proof in the current
context follows the proof from Part 1 mutatis mutandis.

Theorem 3.9.27 (Pincer Lemma). For any pincer Π

life(Π) ≤ T1(1 + |χ(Π)|).

51We allow this future to be empty, in which case “contained in” means that the imme-
diate past of the long stably Nielsen path is not separated from Π1 by any edge that has a
future in >(S).
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3.10. Teams

By virtue of Lemma 3.8.12, Remark 3.8.13 and the results of Section 3.6,
we have reduced the task of bounding the bead norm of S0 to that of bounding
the lengths of certain blocks C(µ,µ′)(2) which consist of Nielsen beads coloured
µ all of which are to be eventually bitten by beads coloured µ′ in the future
of S0. By Proposition 3.7.21, if such a block has length at least B + J , then
there is an associated reaper, which consumes Nielsen beads in C(µ,µ′)(2) at a
constant rate (and entirely consumes any bead it bites, up to the final bead).
Note that to each pair (µ, µ′) there is at most one associated reaper.

This puts us in the situation where we can develop the technology of teams
as in Section 1.9. However, there are a number of key differences to Part 1: we
already had to work hard in Section 3.7 to establish the existence of a reaper
for C(µ,µ′)(2), and now we have to work harder to identify the times t̂1(µ, µ′)
and t1(T ) attached to a pair (µ, µ′) ∈ Z and a team T , using the robust past of
the reaper instead of the actual past; this is required in order that the Pincer
Lemma apply to teams of genesis (G3). It is worth remarking that once we
have identified the pincer ΠT associated to a team T of genesis (G3), we revert
to an analysis of actual pasts (as in the definition of pincer).

Note that the colour of the edges in the robust future of an edge may not
always be the same, contrary to the actual future. In fact, whenever the robust
past is not the actual past, the colour changes. This explains a slight difference
between Definition 3.10.3 below and Definition 1.9.1.

Consider an interval C(µ,µ′)(2) so that |C(µ,µ′)(2)| > B+J , and let εµ be the
reaper associated to C(µ,µ′)(2) in Proposition 3.7.21 above. Let t0 be the time
at which εµ first bites a Nielsen bead in C(µ,µ′)(2), and let βµ be the rightmost
bead in the future of C(µ,µ′)(2) at this time. Note that βµ is a Nielsen bead.
Let εµ be the rightmost edge in βµ.

Remark 3.10.1. Since |C(µ,µ′)(2)| > B + J , and each bead of C(µ,µ′)(2) is
to be bitten by µ′, the colour of εµ is µ′.

Lemma 3.10.2. Suppose that the immediate past of εµ exists (i.e. that εµ
does not lie on ∂∆). Then the immediate past of εµ lies in some bead σ, and
σ contains the immediate past of each edge in βµ.

The above lemma, applied at each stage in the past, implies that we can
follow the past of the edge εµ and deduce consequences about the past of all
edges in βµ.

We now define a time t̂1(µ, µ′) as follows: We go back to the last point in
time when (i) the past of εµ and the robust past of εµ lay in a common corridor;
and (ii) εµ is contained in a beaded Nielsen path whose swollen present is
immediately adjacent to the robust past of εµ.

We denote this corridor S↑.
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Definition 3.10.3. The robust past of εµ at time t̂1(µ, µ′) is called the

reaper, and is denoted ρ̂(µ, µ′). The interval T̂(µ, µ′) is the maximal beaded
Nielsen path in ⊥(S↑) all of whose beads are eventually bitten by ρ̂(µ, µ′). The

pre-team T̂ (µ, µ′) is defined to be the set of pairs (µ1, µ2) ∈ Z so that (i) the
robust past of εµ is coloured µ2 at some time between t̂1(µ, µ′) and t0; and (ii)

T̂(µ, µ′) contains some edges coloured µ1. The number of beads in T̂(µ, µ′) is

denoted || T̂ || .

As in Section 1.9, we will define teams to be pre-teams satisfying a certain
maximality condition (see Definition 3.10.6 below).

Remark 3.10.4. Just as in Remark 1.9.2, if t̂1(µ, µ′) < time(S0) then near

the right-hand end of T̂(µ, µ′) one may have an interval of colours ν for which
ν(S0) is empty.

Lemma 3.10.5 (cf. Lemma 1.9.3). If t̂1(µ, µ′) ≥ time(S0) then∑
(µ1,µ2)∈T̂ (µ,µ′)

|C(µ,µ′)(2)| ≤ || T̂ (µ, µ′) || +B(B + 1).

Proof. The extra B(B + 1) is to account for the beads consumed before
the reaper comes into play. Otherwise the proof is just as in Part 1. �

3.10.1. The Genesis of pre-teams. [cf. Subsection 1.9.2]
We consider the various events that may occur at t̂1(µ, µ′) which prevent

us pushing the pre-team back one step in time. Recall that S↑ is the corridor

at time t̂1(µ, µ′) which contains T̂ (µ, µ′). Suppose that µ2 is the colour of
ρ̂(µ, µ′).

There are four types of events:

(G1) The immediate past of C(µ,µ2)(S↑) is separated from the robust past
of ρ̂(µ, µ′) by an intrusion of ∂∆.

(G2) We are not in Case (G1), but the immediate past of C(µ,µ2)(S↑) is
separated from the robust past of ρ̂(µ, µ′) because of a singularity.

(G3) The immediate past of C(µ,µ2)(S↑) is still in the same corridor as the
robust past of ρ̂(µ, µ′), but the swollen present of the immediate past
of C(µ,µ2)(S↑) is not immediately adjacent to the robust past of ρ̂(µ, µ′).

(G4) We are not in any of the above cases, but the immediate past of the
rightmost edge in C(µ,µ2)(S↑) is not contained in a beaded Nielsen
path.

We now make the definition of a team.

Definition 3.10.6 (cf. Definition 1.9.6). All pre-teams T̂ (µ, µ′) with
t̂1(µ, µ′) ≥ time(S0) are defined to be teams, but the qualification criteria
for pre-teams with t̂1(µ, µ′) < time(S0) are more selective.
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If the genesis of T̂ (µ, µ′) is of type (G1) or (G2), then the rightmost com-
ponent of the pre-team may form a pre-team at times before t̂1(µ, µ′). In par-

ticular, it may happen that (µ1, µ2) ∈ T̂ (µ, µ′) but t̂1(µ, µ′) > t̂1(µ1, µ2) and

hence (µ, µ′) 6∈ T̂ (µ1, µ2). To avoid double-counting in our estimates on || T ||
we disqualify the (intuitively smaller) pre-team T̂ (µ1, µ2) in these settings.

If the genesis of T̂ (µ, µ′) is of type (G4), then again it may happen that

what remains to the right of T̂ (µ, µ′) at some time before t̂1(µ, µ′) is a pre-team.

In this case, we disqualify the (intuitively larger) pre-team T̂ (µ, µ′).
The pre-teams that remain after these disqualifications are now defined to

be teams.

A typical team will be denoted T and all hats will be dropped from the
notation for their associated objects (just as in Section 1.9).

A team is said to be short if || T || ≤ λ0 or
∑

(µ1,µ2)∈T |C(µ1,µ2)(2)| ≤ λ0.
Let Σ denote the set of short teams.

Lemma 3.10.7 (cf. Lemma 1.9.7). Teams of genesis (G4) are short.

We wish our ultimate definition of a team to be such that every pair (µ, µ′)
with C(µ,µ′)(2) non-empty is assigned to a team. The above definition fails to
achieve this because of two phenomena: first, a pre-team T (µ, µ′) with genesis
of type (G4) may have been disqualified, leaving (µ, µ′) teamless; second, in
our initial discussion of pre-teams we excluded pairs (µ, µ′) with |C(µ,µ′)(2)| ≤
B + J . The following definitions remove these difficulties.

Definition 3.10.8 (Virtual team members). If a pre-team T̂ (µ, µ′) of type
(G4) is disqualified under the terms of Definition 3.10.6 and the smaller team

necessitating disqualification is T̂ (µ1, µ2), then we define (µ, µ′) ∈v T̂ (µ1, µ2)

and T̂ (µ, µ′) ⊂v T̂ (µ1, µ2). We extend the relation ⊂v to be transitive and
extend ∈v correspondingly. If (µ, µ′) ∈v T then (µ2, µ

′) is said to be a virtual
member of the team T .

Definition 3.10.9. If (µ, µ′) is such that 1 ≤ |C(µ,µ′)(2)| ≤ B + J and
(µ, µ′) is neither a member nor a virtual member of any previously defined
team, then we define T(µ,µ′) := {(µ, µ′)} to be a (short) team with || T(µ,µ′) || =
|C(µ,µ′)(2)|.

Lemma 3.10.10 (cf. Lemma 1.9.10). Every (µ, µ′) ∈ Z with C(µ,µ′)(2) non-
empty is a member or a virtual member of exactly one team, and there are less
than 2 |∂∆| teams.

Proof. The first assertion is an immediate consequence of the preceding
three definitions, and the second follows from the fact that |Z| < 2 |∂∆|. �



156 MARTIN R. BRIDSON AND DANIEL GROVES

3.10.2. Pincers associated to teams of genesis (G3). [cf. Subsection
1.9.3]

In this subsection we describe a pincer ΠT canonically associated to each
team of genesis (G3), as in Subsection 1.9.3. The only real difference between
the definitions here and those in Part 1 is the use of robust past and beaded
Nielsen paths. Sadly, this variation leads to complications in the cascade of
pincers; see Definition 3.10.17 and Remark 3.9.24.

Definition 3.10.11 (cf. Definition 1.9.11). The narrow past of a team T
at time t consists of those beaded Nielsen paths whose beads are displayed in
their colour and whose future is contained in T. The narrow past may have
several components at each time, the set of which are ordered left to right
according to the ordering in T of their futures. We call these components
sections.

For the remainder of this subsection we consider only long teams of genesis
(G3).

The following lemma follows from the definition of teams of genesis (G3)
in a straightforward manner.

Lemma 3.10.12. Let T be a team of genesis (G3). There exist beads y(T )
and y1(T ) of different colours, both lying strictly between the immediate past of
the swollen present of T and the robust past of ρ̂(µ, µ′), so that y(T ) is bitten
by y1(T ) and this is not HNP-biting.

Definition 3.10.13 (The Pincer Π̃T ). Choose a leftmost pair of beads
y(T ), y1(T ) satisfying Lemma 3.10.12, and let x(T ) be the leftmost edge in
y(T ). Let x1(T ) be the edge in y1(T ) which is the past of the edge which
cancels with the leftmost edge in the immediate future of x(T ).

Define p̃l(T ) to be the path in the family forest F that traces the history
of x(T ) to ∂∆, and let p̃r(T ) be the path that traces the history of x1(T ).

Define t̃2(T ) to be the earliest time at which the paths p̃l(T ) and p̃r(T ) lie
in the same corridor.

Remark 3.10.14. Since the pair y(T ), y1(T ) in Definition 3.10.13 are the
leftmost pair satisfying Lemma 3.10.12, any non-vanishing beads which lie
between T and this pair are involved in HNP-biting and are of lower weight
than y1(T ), by the Weighted Buffer Lemma 3.9.5.

Lemma 3.10.15. The segments of the paths p̃l(T ) and p̃r(T ), together with
the path joining them along the bottom of the corridor at time t̃2(T ) form a
pincer.

Proof. Note that when choosing the beads y(T ) and y1(T ) we excluded
HNP-cancellation. That the paths in the statement of the lemma form a pincer
then follows immediately from the definition of pincers. �

We denote the pincer described in Lemma 3.10.15 above by Π̃T .
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3.10.3. The cascade of pincers. The Pincer Lemma argues for the reg-
ular disappearance of colours within a pincer during those times when more
than two colours continue to survive along its corridors. However, when there
are only two colours, the situation is more complicated.

Recall that the constant T0 is as in Proposition 3.9.7, subject to the re-
quirement that T0 ≥ T ′0 as in the assumption immediately after Proposition
3.9.9. The pincer SΠ associated to a pincer Π is defined in Definition 3.9.10.

Lemma 3.10.16. One of the following must occur:

(1) time(SΠ̃T
) > t1(T )− T0;

(2) the path p̃l(T ) and the entire narrow past of T are not in the same
corridor at time t1(T )− T0; or

(3) at time t1(T )− T0 the path p̃l(T ) and the narrow past of T are sepa-
rated by a path which does not split as a beaded path whose beads are
either Nielsen paths or of weight less than p̃l(T ).

Proof. If not, the Weighted Two Colour Lemma (Lemma 3.9.9) would
give a contradiction, since there is to be interaction between the beads y(T )
and y1(T ) at time t1(T ), and this interaction is not HNP-biting. �

We now consider each of the three cases in turn, seeking a definition of
times t2(T ) and t3(T ) and (possibly) a pincer ΠT . The following definition is
entirely analogous to Definition 1.9.13, with the appropriate translations.

Definition 3.10.17 (cf. Definition 1.9.13).

(1) Suppose some section of the narrow past of T is not in the same
corridor as p̃l(T ) at time t1(T )− T0: In this case52 we define t2(T ) =
t3(T ) to be the earliest time at which the entire narrow past of T lies
in the same corridor as p̃l(T ) and has length at least λ0.

(2) Suppose that Case (1) does not occur and time(SΠ̃T
) > t1(T ) − T0.

We define ΠT = Π̃T and t3(T ) = time(SΠT ). If the narrow past of T
at time t1(T ) − T0 has length less than λ0, we define t2(T ) = t3(T ),
and otherwise t2(T ) = t̃2(T ).

(3) Suppose that neither Case (1) or Case (2) occurs: In this case, Lemma
3.10.16(3) pertains. We pass to the latest time at which there is a path
between p̃l(T ) and the narrow past of T which has an edge of at least
the same weight as p̃l(T ) at this time and is not contained in a Nielsen
path. Choose a pair of beads y′(T ), y′1(T ) as in Lemma 3.10.12, as
well as edges x′(T ), x′1(T ). Let p̃′l(T ) be the path tracing the history
of x′(T ). Let p̃′r(T ) trace the history of the edge x′1(T ) that cancels
x′(T ). Let t̃′2(T ) be the earliest time at which the paths p̃′l(T ) and
p̃′r(T ) lie in the same corridor and consider the pincer formed by these

52this includes the possibility that p̃l(T ) does not exist at time t1(T )− T0
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paths after time t̃′2(T ) and the path joining them along the bottom of
the corridor at time t̃′2(T ).

We now repeat our previous analysis with the primed objects
p̃′l(T ), t̃′2(T ), etc. in place of p̃l(T ), t̃2(T ), etc., checking whether we
now fall into Case (1) or (2); if we do not then we pass to p̃′′l (T ), etc..
We iterate this analysis until we fall into Case (1) or (2), at which
point we acquire the desired definitions of ΠT , t2(T ) and t3(T ).

Define pl(T ) (resp. pr(T )) to be the left (resp. right) boundary path of the
pincer ΠT extended backwards in time through F to ∂∆. Define p+

l (T ) to be
the sequence of edges (one at each time) lying on the leftmost of the primed
p̃l(T ) from the top of πT to time t1(T ).

Definition 3.10.18 (cf. Definition 1.9.14). Let T be a long team of gen-
esis (G3). We define χP (T ) to be the set of colours containing the paths
p̃l(T ), p̃′l(T ), p̃′′l (T ), . . . that arise in Case (3) of Definition 3.10.17 but do not
become pl(T ).

Lemma 3.10.19 (cf. Lemma 1.9.15).

(1) If T is a long team of genesis (G3),

t1(T )− t3(T ) ≤ T0(|χP (T )|+ 1).

(2) If T1 and T2 are distinct teams then χP (T1) ∩ χP (T2) = ∅.

3.10.4. The length of teams. This subsection follows Subsection 1.9.4.
We consider the lengths of arbitrary teams.

Definition 3.10.20 (cf. Definition 1.9.16). Let T be a team. Define
down1(T ) ⊂ ∂∆ to consist of those edges e that are labelled by some ti and
satisfy one of the following conditions:

1. e is at the left end of a corridor containing a section of the narrow
past of T that is not leftmost at that time;

2. e is at the right end of a corridor containing a section of the narrow
past of T that is not rightmost at that time;

3. e is at the right end of a corridor which contains the rightmost section
of the narrow past of T at that time but which does not intersect
pl(T ).

Definition 3.10.21 (cf. Definition 1.9.17). Define ∂T ⊂ ∂∆ to be the
intersection of the narrow past of T with ∂∆.

Lemma 3.10.22 (cf. Lemma 1.9.18).

(1) For distinct teams T1 and T2, the sets ∂T1 and ∂T2 are disjoint.
(2) For distinct teams T1 and T2, the sets down1(T1) and down1(T2) are

disjoint.
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Definition 3.10.23 (cf. Definition 1.9.19). Suppose that T is a team
of genesis (G3). We define Q(T ) be the set of edges ε with the following
properties: pl(T ) passes through ε before time t3(T ), the corridor S with
ε ∈ ⊥(S) contains the entire narrow past of T , and this narrow past has
length at least λ0.

The following lemma reduces the task of bounding the total length of teams
to that of bounding the size of the sets Q(T ). Its proof follows that of Lemma
1.9.20.

Lemma 3.10.24 (cf. Lemma 1.9.20).

(1) If the genesis of T is of type (G1) or (G2), then

|| T || ≤ 2LC4|down1(T )|+ |∂T |.
(2) If the genesis of T is of type (G3), then

|| T || ≤ 2C4|down1(T )|+ |∂T |+ 2LC4|Q(T )|+ 2LC4T0(|χP (T )|+ 1) + λ0.

3.10.5. Bounding the size of Q(T ). Let G3 be the set of long teams of
genesis (G3) for which Q(T ) is nonempty. Our goal for the remainder of this
section is to find a bound for

∑
T ∈G3 |Q(T )|.

Lemma 3.10.25 (cf. Lemma 1.9.22). For all T ∈ G3

t3(T )− t2(T ) = life(ΠT ) ≤ T1(|χ(ΠT )|+ 1).

Lemma 3.10.26 (cf. Lemma 1.9.23). If T1, T2 ∈ G3 are distinct teams then
χ(ΠT1) ∩ χ(ΠT2) = ∅.

Proof. The pincers ΠTi are disjoint or else one is contained in the other.
In the latter case, say ΠT1 ⊂ ΠT2 , the definition of nesting (Definition 3.9.23),
and of the pincer associated to a team (Definition 3.10.17) ensure that ΠT1 is
actually nested in ΠT2 (cf. Remark 3.9.24). �

Corollary 3.10.27 (cf. Corollary 1.9.24).∑
T ∈G3

t3(T )− t2(T ) ≤ 3T1|∂∆|.

We have now reduced our task for this section to bounding the number
of edges in the Q(T ) which occur before t2(T ); this is the cardinality of the
following set.

Definition 3.10.28 (cf. Definition 1.9.25). For a team T ∈ G3 we define
down2(T ) to be the set of edges in ∂∆ that lie at the right-hand end of a
corridor containing an edge in Q(T ) before time t2(T ).

Just as in Part 1, it is not necessarily the case that the sets down2(T ) are
disjoint for distinct teams, and we must deal with the possibility of ‘double-
counting’.



160 MARTIN R. BRIDSON AND DANIEL GROVES

The left-to-right ordering defined on paths in F in Section 1.9 is defined in
the current context exactly as in Part 1.

Notation: Let G ′3 be the set of teams T ∈ G3 with down2(T ) 6= ∅.

Lemma 3.10.29 (cf. Lemma 1.9.26). Consider T ∈ G ′3. If a path p in F
is to the left of pl(T ) and a path q is to the right of pr(T ), then there is no
corridor connecting p to q at any time t < t2(T ).

Definition 3.10.30 (cf. Definition 1.9.27). T1 ∈ G ′3 is said to be below
T2 ∈ G ′3 if pl(T1) and pr(T1) both lie between pl(T2) and pr(T2) in the left-to-
right ordering.
T1 is to the left of T2 if both pl(T1) and pr(T2) lie to the right of pr(T1).
We say that T is at depth 0 if there are no teams above it. Then, inductively,

we say that a team T is at depth d + 1 if d is the maximum depth of those
teams above T .

A final depth team is one with no teams below it.

Note that there is a complete left-to-right ordering of those teams in G ′3 at
any given depth.

Lemma 3.10.31 (cf. Lemma 1.9.28). If there is a team from G ′3 below a
team T ∈ G ′3, then t1(T ) ≥ time(S0) ≥ t2(T ).

Proof. The proof from Part 1 works almost verbatim. In particular, the
same proof shows that time(S0) ≥ t2(T ).

To see that t1(T ) ≥ time(S0), suppose that T ′ is a team below T . As-
sociated to the team T ′ we have the beaded Nielsen path T′, which is to be
consumed by some reaper. The definitions of nesting and of the pincer ΠT ′
ensure that this consumption of T′ must occur before time t1(T ). On the other
hand, T has a non-empty future or past in S0. �

With the preceding results in hand, a direct translation of the proof of
Lemma 1.9.29 finishes the work of this section:

Lemma 3.10.32 (cf. Lemma 1.9.29). There exist sets of colours χc(T ) and
χδ(T ) associated to each team T ∈ G ′3 such that the sets associated to distinct
teams are disjoint and the following inequalities hold.

For each fixed team T0 ∈ G ′3 (of depth d say), the teams of depth d+ 1 that
lie below T0 may be described as follows:

• There is at most one distinguished team T1, and

|| T1 || ≤ 2B
(
T1(1 + |χ(ΠT0)|) + T0(|χP (T0)|+ 1)

)
.

• There are some number of final-depth teams.
• For each of the remaining teams T we have

|down2(T0) ∩ down2(T )| ≤ T1

(
1 + |χc(T )|

)
+ T0

(
|χδ(T )|+ 2

)
.
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Corollary 3.10.33 (cf. Corollary 1.9.30). Summing over the set of teams
T ∈ G ′3 that are not distinguished, we get∑
T

∣∣∣down2(T )
∣∣∣ ≤ 2

∣∣∣⋃
T

down2(T )
∣∣∣+∑

T

T1

(
1+|χc(T )|

)
+
∑
T

T0

(
|χδ(T )|+2

)
.

Summing over the same set of teams again, we finally obtain:

Corollary 3.10.34.∑
T

|down2(T )| ≤ |∂∆|(2 + 3T1 + 5T0).

3.11. The Bonus Scheme

This section closely follows Section 1.10. We have at last reached a stage
where the proofs from Part 1 can be translated without significant modifica-
tion.

In the previous section we defined teams and obtained a global bound on∑
|| T || . If C(µ,µ′)(2) is non-empty then (µ, µ′) is a member or virtual member

of a unique team. If the team is such that t1(T ) ≥ time(S0), then no member
of the team is virtual and we have the inequality

|| T || ≥
∑

(µ1,µ2)∈T

|C(µ1,µ2)| −B(B + 1),

established in Lemma 3.10.5. This inequality might fail in case t1(T ) <
time(S0). The bonus scheme assigns additional edges to teams in order to
compensate for this failure.

By definition, at time t1(T ) the reaper ρ = ρT lies immediately to the right
of T. The beads of T not consumed from the right by ρ by time(S0) have a
preferred future in S0. This preferred future, if contained in a single colour,
lies in C(µ1,µ2)(2) for some member (µ1, µ2) ∈ T . It could also intersect more
than one colour 53. However, not all beads in the C(µ1,µ2)(2) need arise in this
way: some may not have a Nielsen bead as an ancestor at time t1(T ). And if
(µ1, µ2) is only a virtual member of T , then no bead of C(µ1,µ2)(2) lies in the
future of T. The bonus beads in C(µ1,µ2)(2) are a certain subset of those that
do not have a Nielsen bead as an ancestor at time t1(T ). They are defined as
follows.

Definition 3.11.1. Let T be a team with t1(T ) < time(S0) and consider
a time t with t1(T ) < t < time(S0).

The swollen future of T at time t is defined as in Definition 3.7.16 with
respect to the interval T, which lies at time t1(T ).

53Since Nielsen beads have bounded length, and there is a bound on the number of
adjacencies of colours, there are relatively few such beads.
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Let ε be a non-Nielsen bead that lies immediately to the left of the swollen
future of T , but whose immediate ancestor is not a right linear edge in this
position. If the path from ε to the reaper ρT of T is a GEP, then we say
that ε is a rascal. Otherwise, if ε provides more Nielsen beads than the reaper
consumes, then ε is a terror.

In both cases, the bonus provided by ε is the set of beads in the swollen
future of T in S0 that have ε as their most recent ancestor which is not a
Nielsen bead, and which are eventually consumed by ρT .

The set bonus(T ) is the union of the bonuses provided to T by all rascals
and terrors.

Lemma 3.11.2 (cf. Lemma 1.10.2). For any team T ,∑
(µ1,µ2)∈T or (µ1,µ2)∈vT

|C(µ1,µ2)(2)| ≤ || T || + |bonus(T )|+B + J.

Note that the GEP which contains a rascal in the above definition is not
displayed. We now proceed to bound the total bonus provided to teams by all
rascals and terrors. Terrors are straightforward to deal with.

Lemma 3.11.3 (cf. Lemma 1.10.3). The sum of the lengths of the bonuses
provided to all teams by terrors is less than 2L |∂∆|.

Proof. Let ε by a terror, associated to a team T . Since the region from
ε to the reaper of T is not a GEP, ε must be right-fast. Therefore, it will be
separated from the team to which it is associated after one unit of time. Hence
the bonus that ε provides is at most L.

That there can be at most one terror per adjacency of colours follows in a
straightforward manner from Lemma 3.4.6 and the definition of terror.

Thus the total contribution of all terrors is less than 2L |∂∆|. �

In parallel with Definition 1.10.4, we make the following

Definition 3.11.4. Fix a team T with t1(T ) < time(S0) and consider the
interval of time [τ0(ε), τ1(ε)], where τ0(ε) is the time at which a rascal ε appears
at the left end of the swollen future of T , and τ1(ε) is the time at which the
robust future of ε is no longer to the immediate left of the future of the swollen
future of T .

In the case where the robust future ε̂ of ε at time τ1(ε) is cancelled from
the left by an edge e′, we define τ2(ε) to be the earliest time when the pasts
of ε̂ and e′ are in the same corridor. The path in F that traces the past of
ε̂ is denoted pε and the past following the ancestors of e′ from τ2(ε) to τ1(ε)
is denoted p′ε. The pincer54 formed by pε, p

′
ε and the corridor joining them at

time τ2(ε) is denoted Πε.

54we include the degenerate case here where the “pincer” has no colours other than
those of ε and e′.
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The only essential difference between the above definition and Definition
1.10.4 is the use of the robust future of ε rather than the pp-future.

With this definition in hand, the remaining results from Section 1.10 may
be translated directly, yielding in particular:

Proposition 3.11.5 (cf. Lemma 1.10.13). Summing over all teams that
are not short, we have∑
T

|bonus(T )| ≤
(

(B+3)(3T1+2T0)L+6BT1+4BT0+2λ0+2B+5L+1
)
|∂∆|.

3.12. From Bead Norm to Length

The output of the results up to now is a bound for the bead norm of our
corridor S0. In order to complete the proof of Theorem 3.3.1 in the case of
the specified IRTT f (which implies our Main Theorem) we need to turn this
into a bound on the length of S0. For this we need to bound the total length
of the GEPs and ΨEPs in S0 which have length more than J (or indeed any
other fixed length). In this section we explain how the techniques of the bonus
scheme can be used to establish such a bound.

If a bead ρ in µ(S0) has length greater than J , it is either a GEP or a ΨEP.
If it is a ΨEP then we may trace its past: at each time, this past is either of
length at most J or else is a ΨEP or a GEP. Whilst this past remains a ΨEP,
the number of Nielsen paths will decrease with each backwards step in time,
so at some point in the past of ρ, it must become a GEP.

Suppose now that ρ is a GEP. The past of a GEP is either a GEP or else
has length at most J . Thus, the length of the GEP decreases as we go into
the past until eventually it is of length at most J .

There is a strong analogy between teams of genesis (G4) and long GEPs
and ΨEPs. On one end of a long bead is a linear edge which consumes the
Nielsen beads in the middle. This linear edge can be considered as a reaper.
On the other end of a GEP is a linear edge which can be considered as a rascal.
The moment when the past of a ΨEP becomes a GEP is analogous to τ1(ε)
from the bonus scheme, and so a ΨEP in S0 can be thought of as a team with
a rascal ε with τ1(ε) ≤ time(S0). Similarly, a long GEP in S0 can be thought
of as a team with a rascal ε so that τ1(ε) > time(S0).

We can define the bonus associated to such a rascal exactly as we did in
the previous section. Since we are in the setting of genesis type (G4), all of
the Nielsen beads in a long GEP or ΨEP are in the bonus. Thus it is enough
to bound the total of the bonuses associated to long GEPs and ΨEPs.

The only thing we need to be able to follow the bonus scheme directly is a
bound on the number of long GEPs and ΨEPs in S0.

Lemma 3.12.1. The number of beads of length greater than J in S0 is less
then 4 |∂∆|.
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Proof. Let ρ be a bead in S0 of length greater than J , and assign a time
τ1(ρ) to ρ as described above. If ρ is a GEP then τ1(ρ) > time(S0), whilst if ρ
is a ΨEP then τ1(ρ) ≤ time(S0).

Let ρ′ be the past or future of ρ at time τ1(ρ)− 1. Consider the ‘event’ at
time τ1(ρ) which stops the robust future of ρ′ being a GEP.

This ‘event’ is either an intrusion of the boundary, a singularity, or else
there is an associated pincer caused by a cancellation from another colour.
There are less than |∂∆| events of each of the first two types.

The Buffer Lemma ensures that there is at most one event of the third
type for each adjacency of colours. An application of Lemma 3.1.8 completes
the proof. �

A bound on the total length of long beads in S0 now follows exactly as in
the bonus scheme from Section 3.11 (the detailed arguments being in Section
1.10).

3.12.1. The end of the main road. In Section 3.3 we discussed how our
Main Theorem follows from Theorem 3.3.2 and Proposition 3.3.3. The bound
that we just established on the total length of long beads in S0 proves Propo-
sition 3.3.3. The output of our estimates in the previous sections bounded the
bead norm of S0 by a linear function of |∂∆|, and Theorem 3.3.2 follows from
this because

[S]β ≤ B ||S || β,

(see Lemma 3.6.5).
Thus the proof of the Main Theorem is finally at an end, and the reader can

join us in wondering why a statement as simple and engaging as this theorem
should require such a complicated proof.

3.13. Corridor Length Functions and Bracketing

In this section we prove Theorem 3.3.1 in full generality and deduce the
Bracketing Theorem from it. Our proof of Theorem 3.3.1 proceeds via a dis-
cussion of corridor length functions for more general semidirect products and
mapping tori. Such functions should be regarded as measuring the complex-
ity of van Kampen diagrams in the spirit of isoperimetric and isodiametric
functions. We prove the following results (see Subsection 3.13.2 for precise
definitions of the terms involved).

Proposition 3.13.1. Let G1 and G2 be compact combinatorial complexes

with fundamental group Π, and for i = 1, 2 let fi : G
(1)
i → G

(1)
i be an edge-path

map of 1-skeleta inducing φ ∈ Out(Π). Then the t-corridor length function for
the mapping torus M(f1) is ' equivalent to that of M(f2).
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Proposition 3.13.2. If Π is finitely generated and Γ = Π oφ Z is finitely
presented, then for every positive integer p, the corridor length function of Π
is ' equivalent to that of Γp = Π oφp Z

In the previous section we completed the proof of Theorem 3.3.1 in the case
of one particular IRTT representative f of a certain power of an arbitrary free-
group automorphism φ. The above results complete the proof in the general
case. Before turning to the proof of these results, we explain how the Bracket-
ing Theorem stated in the introduction is obtained by applying Theorem 3.3.1
to the most naive topological representation of a free group automorphism φ.

3.13.1. The Bracketing Theorem. The terms in the following theorem
were defined in the introduction.

Theorem . There exists a constant K = K(φ,B) such that any word w ≡
e1 . . . en that represents the identity in F oφ Z admits a t-complete bracketing
β1, . . . , βm such that the content ci of each βi satisfies dF (1, ci) ≤ Kn.

Proof. We work with the mapping torus M of the obvious realisation of
φ on the graph with one vertex whose edges are indexed by B. Given a word
w, we consider a minimal-area van Kampen diagram over M with boundary
label w. We insert a bracket w1(w2)w3 if and only if there is a t-corridor
whose ends are labelled by the initial and terminal letters of w2. (One must
allow t-corridors of zero length in this description; one would exclude them by
making the easy reduction to words that have no proper sub-words that are
null-homotopic.)

These brackets are pairwise compatible because distinct t-corridors cannot
cross. And because every t-edge in the boundary of a van Kampen diagram is
the end of a (perhaps zero-length) corridor, the bracketing is complete. The
content of the bracket is the freely reduced form of the label along the top or
bottom of the corridor (according to the orientation of the sentinels). In the
former case, the length of the corridor bounds the length of this label, and in
the latter case one has to multiply the length by at most L = max{|φ(b)| : b ∈
B}. �

3.13.2. Corridor length functions. If Π is a group with finite generat-
ing set A and φ ∈ Aut(Π) is such that Γ = Π oφ Z is finitely presented, then
Γ has a finite presentation of the form〈

A, t | R, t−1at = φ̂(a) (a ∈ A)
〉
,

where t is the generator of the visible Z, the relationsR involve only the letters
A, and φ̂(a) ∈ F (A) is equal to φ(a) in Π.

We are concerned with the geometry of t-corridors in van Kampen diagrams
over such presentations. Thus we associate to the presentation the t-corridor
length function Λ : N→ N, which is defined as follows. For each w ∈ F (A∪{t})
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with w = 1 in Γ, we choose a van Kampen diagram for w in which the length
of the longest t-corridor is as small as possible, and we define λt(w) to be this
length. We then define

Λ(n) := max{λt(w) | w =Γ 1, |w| ≤ n}.
More generally, since we have a well-defined notion of van Kampen di-

agram and t-corridor in the setting of mapping tori of edge-path maps55 of
combinatorial complexes, we can define the t-corridor length function for such
a complex.

3.13.3. Invariance under change of topological representative. The
scheme of the following proof follows the standard method of showing that
features of the geometry of van Kampen diagrams are preserved under quasi-
isometry. However, one has to be careful to deal only with fibre-preserving
maps in order to retain control over the t-corridor structure.

Proof of Proposition 3.13.1. We have a cocompact action of Γ =
Π oφ Z on the universal cover Xi = M̃(fi) for i = 1, 2, where the action of Π
leaves invariant the connected components Ci,m of the preimage of Gi ⊂M(fi)
and the generator t of Z acts so that tr.Ci,m = Ci,m+r.

The cocompactness of the actions means that there exist constants δ1, δ2

so that every vertex in Ci,m is within a distance δi of any Π-orbit of vertices in
Ci,m, where distance is measured in the combinatorial metric on the 1-skeleton
(unit edge lengths).

We define Γ-equivariant quasi-isometries between the 1-skeleta of the Xi as
follows. First we pick base vertices xi ∈ Ci,0 and define g1 : γ.x1 7→ γ.x2 and
g2 : γ.x2 7→ γ.x1. Then, for each vertex v ∈ Ci,m r Γ.xi we choose a closest
element v′ ∈ Γ.xi ∩ Ci,m and define gi(v) := g(v′). Next, we extend to the
edges in Ci,m by sending each to a shortest edge path connecting the images
of its vertices. Finally, we extend gi to t-edges in Xi so that it sends each such
homeomorphically onto the t-edge joining the images of its endpoints.

With the maps g1, g2 in hand, we can now push van Kampen diagrams back
and forth between X1 and X2 as in the standard proof of the qi-invariance of
Dehn functions (cf. [15], page 143). Thus, given a loop ` in the 1-skeleton of

X1, labelled u1t
ε1u2 . . . ult

εl we consider the loop g1 ◦ ` in X
(1)
2 and fill it with

a van Kampen diagram ∆ so as minimize the length of the longest t-corridor.
We will be done if we can bound λt(`) by a linear function of this length.

Viewing ∆ as a map from a cellulated 2-disc to X2, we compose it with g2

to obtain a map to X1. This new map is obtained from ∆ by simply changing
the labels on the edges: the t-edges are unchanged while the edges labelled
by 1-cells in G2 are now labelled by edge-paths in the 1-skeleton of G1 whose
length is bounded by the constants of the quasi-isometry g2; the boundary

55an edge-path map is a cellular map that sends edges to edge-paths
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label of the diagram will be `′ = v1t
ε1v2 . . . vlt

εl , where the vj are edge-paths
of uniformly bounded length and each vj is contained in the same component
C1,mj as uj. (This is the point at which we use the fact that we chose our
quasi-isometries to respect fibres.) The faces of this diagram can be filled with
van Kampen diagrams in X1; in the case of 2-cells with no t-labels, we use only
lifts of 2-cells from G1; in the case of 2-cells labelled t−1ρtσ we divide them
into (short) t-corridors in the obvious manner. The result56 is a van Kampen
diagram for `′ in X1 whose t-corridors are in bijection with those of ∆ and
whose length is bounded by k times the length of those in ∆, where k is a
constant that depends only on our quasi-isometries.

To complete the desired diagram filling our original loop `, we need an
annular diagram between ` and `′ that does not disrupt the structure of t-
corridors in ∆′. To this end, we join the vertices of uj to those of vj by paths
in Ci,mj of minimal length and fill the resulting loop with a diagram mapping
to Ci,mj ; this gives a diagram ∆′′ with holes corresponding to the occurrences
of t±1 in `. Next, if the arc joining the termini of uj and vj is labelled ρi,
then we insert a t-corridor into the hole associated to . . . ujtuj+1 . . . , where
the bottom of the t-corridor is labelled ρj. (If t is replaced by t−1, the bottom
of the corridor is the arc σj+1 joining the initial vertex of uj+1 to that of vj+1.)
To complete the construction of ∆, one uses 2-cells in Ci,mj+1

to fill the loop
formed by the top of the t-corridor and σj+1. �

Corollary 3.13.3. If Π is finitely generated and Γ = Π oφ Z is finitely
presented then, up to ' equivalence, the t-corridor length function of Π oφ Z
depends only on the semidirect product (i.e. although it depends on the form

of the finite presentation, it does not depend on the choice of A and φ̂).

3.13.4. Passing to Powers. The purpose of this subsection is to prove
Proposition 3.13.2.

Let (A ∪ {t})±1 be as above. Identifying Γp = Π oφp Z with the subgroup
Π o pZ of Γ, we take generators A ∪ {τ} where τ = tp in Γ. To each word
w ∈ (A± ∪ {t±1})∗ that equals 1 ∈ Γ we associate a word wp in the free group
on A ∪ {τ} according to the following scheme. First we draw a path on the
integer lattice in R2 that begins at the origin and proceeds up one space as we
read t, down one as we read t−1 and moves one space to the right as we read a
letter from A±. We shall modify w by replacing certain open segments of this
path that lie in the vertical intervals [mp, (m+ 1)p]; these segments are of two
types, called bumps and steps.

If both endpoints of the subpath are at height mp and none of its edge are at
height (m+ 1)p, then the segment is called an up-bump. If the initial endpoint

56A familiar problem in this type of argument arises from degeneracies that threaten
the planarity of the diagram; such problems are removed by surgery [30]. In the current
setting these surgeries take place only in the regions between the t-corridors and therefore
do not affect our discussion.
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is at height mp, the terminus at height (m + 1)p and all other vertices are at
heights in (mp, (m+1)p), then the segment is called an up-step. A down-bump
and down-step are defined similarly.

When we have replaced all steps and bumps from the path defined by w,
the horizontal segments of the resulting path will all run at heights divisible
by p.

To this end, we write w = u1v1u2v2 . . . where u1 is the first non-trivial
prefix of w whose exponent sum in t is 0 mod p and v1 is the (possibly empty)
subword before the next t±1, then u2 is the first non-trivial prefix of w whose
exponent sum in t is 0 mod p, and so on. Each ui labels either a bump or a
step.

If ui labels a bump then we replace it by the reduced word Ui ∈ F (A) that
is equal in Γ to ui. If ui = tεu′i, ε = ±1, is a step, then we replace it by the
unique reduced word tεpUi with Ui ∈ F (A) and tεUi = ui in Γ.

Let w̃p ∈ (A± ∪{t±1})∗ be the word obtained from w by the above process
and let wp ∈ (A± ∪ {t±p})∗ be the word obtained from w̃p by (starting from
the left) replacing sub-words labelled t±p by τ±p and then freely reducing.

As usual, in the following lemma L = max{|φ(a)| : a ∈ A}.

Lemma 3.13.4. w = w̃p = wp in Γ and |wp| ≤ |w̃p| ≤ Lp−1|w|.

Proof. The bound on |w̃p| comes from the following observation. For a
bump labelled ui, one can pass from ui to Ui by deleting all letters t±1 from
ui and replacing each occurrence of a ∈ A in ui, say ui = αaβ, by the freely
reduced word in F (A) representing φr(a), where −r is the exponent sum of t
in α. Similarly, if a step is labelled ui = tεu′i, then Ui is obtained by deleting
all t from u′i and replacing each occurrence of a ∈ A in ui, say u′i = αaβ, by the
freely reduced word in F (A) representing φε(p−r)(a), where εr is the exponent
sum of t in α. �

The replacement scheme described in the preceding proof corresponds to
the construction of a singular-disc diagram A(w) exhibiting the equality w =
w̃p in Γ. Specifically, for each bump or step, one draws the vertical line joining
each vertex to the height where it will be pushed, one labels it by the appropri-
ate power of t, and then one fills-in the resulting line of rectangles with 2-cells
whose boundary labels have the form t−1atφ−1(a). (Starting from this specific
planar embedding one will in general have to flip some of the components of
the interior in order to get an embedded diagram A(w) with boundary cycle
w̃pw

−1
p .)

Lemma 3.13.5. A(w) is a union of t-corridors; each has at most one of its
ends on the boundary arc labelled w̃p, and the length of a t-corridor in A(w)
is at most Lp−1 max |ui|, where the ui are the sub-words of w labelling bumps
and steps.
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Proof. The diagram A(w) consists of a string of disc diagrams, one for
each bump or step. A t-corridor in a disc corresponding to a bump labelled
ui has both of its ends on the arc labelled ui, while a t-corridor in a disc
corresponding to a step labelled tu′i may have one end on the corresponding
arc labelled tp in w̃p and one on the arc labelled u′i or (if the change in height
along u′i is not monotone) both ends on the arc labelled u′i. In all cases, the
label on the bottom side of the corridor is a concatenation of less than |ui|
words of the form φr(a) with a ∈ A and |r| ≤ p− 1. �

Proof of Proposition 3.13.2. As we discussed immediately before subsec-
tion 3.4.1, the set of diagrams for Γp is, after p-refinement, a subset of the dia-
grams over Γ, and hence the corridor length function of the latter �-dominates
that of the former. (There are some constants to take account of here, such as
a factor of p in length coming from the p-refinement, and an Lp−1 needed to
estimate the area of a t-corridor in terms of the corresponding τ -corridor, but
these are trivial matters.) Thus the true content of the proposition is that the
corridor length function of Γ is �-bounded above by that of the Γp.

For each freely-reduced word W ∈ (A± ∪ {t±p})∗ that is null-homotopic
in Γp we fix a van Kampen diagram ∆(W ) whose τ -corridors have length at
most Λ(|W |). Then, for each freely-reduced w ∈ (A± ∪ {t±1})∗ that is null-
homotopic in Γ we define a van Kampen diagram ∆p(w) as follows. First, we
replace ∆(wp) by its p-refinement (which has boundary label w̃p). We then
attach to this the singular-disc diagram A(w) along the portion of its boundary
labelled w̃p.

We claim that the length of each t-corridor in ∆p(w) is at most

Lp−1 (2 + Λ(Lp−1|w|)).

It follows from Lemma 3.13.5 that each of the t-corridors in ∆p(w) is either
contained in the annular diagram A(w), or else is a layer in the p-refinement
of a τ -corridor from ∆(wp), possibly augmented on each end by a t-corridor in
A(w). (The fact that there are no t-corridors in A(w) with both ends on the
boundary arc labelled w̃p is crucial here.)

The length of a t-corridor in A(w) is at most Lp−1|v|. The length of a
τ -corridor from ∆(wp) is at most Λ(|wp|) ≤ Λ(Lp−1|w|), and the length of each
layer in its refinement is therefore at most Lp−1 Λ(Lp−1|w|). �

3.14. On a Result of Brinkmann

The following theorem is the main result in [19]. It plays a vital role in
the first proof that the conjugacy problem is solvable for free-by-cyclic groups
[8] (our Corollary B).

Theorem 3.14.1. [19, Theorem 0.1] Let φ : F → F be an automorphism
of a finitely generated free group. Then there exists a constant K ≥ 1 such
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that for any pair of exponents N, i satisfying 0 ≤ i ≤ N , the following two
statements hold:

(1) If w is a cyclic word in F , then

||φi(w) || ≤ K
(
||w || + ||φN(w) ||

)
,

where ||w || is the length of the cyclic reduction of w with respect to
some word metric on F .

(2) If w is a word in F , then

|φi(w)| ≤ K
(
|w|+ |φN(w)|

)
,

where |w| is the word length of w.

The purpose of this section is to explain how to extract Theorem 3.14.1
from our proof of the Main Theorem. We regard words and cyclic words in Fn
as, respectively, based and unbased loops in the graph R with one vertex and
n edges; the assertions of Theorem 3.14.1 are then statements about how the
lengths of the tightened images of such loops grow when one applies the obvious
topological realisation φ of φ. As in the previous subsection, these assertions
will follow if we can establish the corresponding bounds with φ : R → R
replaced by a topological (IRTT) representative f : G → G of a power of φ
satisfying Assumption 3.4.7.

Remark 3.14.2. The proof given below shows that the constant K of
Theorem 3.3.1 suffices for Theorem 3.14.1. Brinkmann [19] states that (his
constant) K can be computed effectively, but we do not see how to prove this.
Indeed, given his approach (and ours), this assertion would seem to require an
effective construction of an improved relative train track representative for φ,
and a proof that such a construction exists does not seem to be available at
the moment.

The following lemma allows a proof of the assertions in (1) and (2) to be
undertaken simultaneously.

Lemma 3.14.3. If σ is a nontrivial loop in G, then for some j ≥ 1, the
loop f j#(σ) admits a splitting at a vertex.

Proof. According to [4, Lemma 4.1.2, p.554], σ admits a splitting σ = σ1,
where σ1 is a path, but we argue further to arrange for this splitting to be at
a vertex.

We divide the argument into a number of cases, depending on the largest
i so that the stratum Hi contains an edge of σ1. If this Hi is a zero stratum,
f#(σ1) ⊂ Gi−1 and an obvious induction applies. If Hi parabolic, then we
apply [4, Lemma 4.1.4] to the circuit σ to obtain a splitting into paths, at
least one of which is a basic path, and so has a vertex at one end. If Hi is
an exponential stratum, then there is a positive integer K so that the number
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of i-illegal turns in fk#(σ1) is the same for all k ≥ K. In this case, since all
Nielsen paths of exponential weight are edge-paths and all periodic paths are
Nielsen, [4, Lemma 4.2.6] implies that fK# (σ1) admits a splitting into sub-paths

which are either r-legal or pre-Nielsen paths. If all sub-paths of fK# (σ1) are

pre-Nielsen paths, then fK+1
# (σ1) is a Nielsen path, and we ensured in Section

2.1 that all Nielsen paths are edge-paths.
Suppose, then, that fK# (σ1) contains an r-legal path ρ of weight r in its

splitting. Then an iterate f i#(ρ) of ρ contains a displayed edge ε of weight

r, and the path fK+i
# (σ1) splits immediately on either side of ε. Since σ has

weight i, the splitting of fK+i
# (σ1) induces a splitting of fK+i

# (σ) at a vertex,
as required. �

In order to prove the statements (1) and (2), we analyze the van Kampen
diagram ∆ over the mapping torus of f : G → G that has boundary label
t−kσtkfk#(σ)−1. This is a simple stack of corridors as consider in Subsection
3.2.2.

In the restricted setting of stack diagrams, many of the difficulties that
had to be overcome in the proof of Main Theorem do not arise (there are
no singularities, for example), but there remain difficulties that one does not
encounter in the context of positive automorphisms.

The number of edges in ∂∆ not labelled t is the quantity that determines
the upper bound we seek, n := |σ| + |fN(σ)|). We must bound the length of
each corridor in ∆ linearly in terms of n. Theorem 3.3.1 provides a bound in
terms of |∂∆|, so we must argue is that in the context of stack diagrams, one
can dispose of the contribution of the t-edges to this bound. In order to do
so, we make an exhaustive list of those places in the proof of Theorem 3.3.1
where t-edges were accounted for, and we explain why, in each case, they are
not required in the setting of simple stack diagrams.

(1) The t-edges contributed to the bound on the size of S0(2) and S0(3a)
in Section 3.6, but these sets do not arise in stack diagrams.

(2) The t-edges were required in determining the sets down1(T ) used to
bound the lengths of teams (see Definition 3.10.20). But down1(T ) was used
only to bound the lengths of those teams whose narrow past had several com-
ponents at some time in the past, and this cannot happen in a stack diagram.

(3) The t-edges entered the definition of down2(T ), which was used to
bound the number of edges in Q(T ) before time t2(T ) (see Definition 3.10.28).
But there are no such edges in a stack of corridors, so we do not have to worry
about double-counting, and an improved bound on the lengths of teams can
be derived directly from the Pincer Lemma, noting that there are less than
2|∂∆| adjacencies of colours.
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(4) In the bonus scheme, the set ∂e is used to bound the size of the interval
of time [τ0(e), τ2(e)], but in a stack of corridors it is clear that τ0(e) = τ2(e),
so the edges ∂e are not required.

(5) Likewise, when bounding the size of the bonuses provided by rascals,
we do not need to use the edges down2(e) if our diagram is simply a stack of
corridors

(6) A final use of t-edges is hidden in our references to Part 1 in the im-
plementation of the Bonus scheme, specifically the bound on the sum of the
lengths of blocks satisfying condition (iv) of the ‘tautologous tetrad’. This is
unnecessary in stack diagrams because there are no singularities and no edges
that are cancelled by edges from outside the future of S0, so the paths πl and
πr travel forwards in time until they hit the boundary and

∑
|bdy(B)| < n

bounds the size of the sum of all such blocks. �
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Index

ancestor, 112
of an edge, 11

atom, 71
vanishing, 118

basic path, 74
bead, 71, 82, 113

bitten, 121
consumed, 121
fast, slow, 120
unbounded, 137
vanishing, 118

bead norm, 124
Beaded Decomposition Theorem, 71, 82,

101
biting, 121
blocks B, 62
bonus scheme, 59, 161
Bounded Cancellation Lemma, 10, 112
Bounded Singularities Lemma, 9
Bracketing Theorem, xi, 165
Buffer Lemma, 29, 142

relative, 142
weighted, 143

colour
of an edge, 12, 112

colours
adjacent, 22
consumed, 26
essentially adjacent, 32
resuscitated, 147
unnamed, 148

corridor, 5, 7, 111
bead-length of, 114
chromatic decomposition of, 20, 125
first decomposition of, 19, 125
length of, 6, 13, 115

time-flow of, 11
corridor length function, 165

death (of an edge), 8
Dehn function, 2, 110

edge
cancelled, 18
consumed, 18
displayed, 117
indistinguishable, 130
linear

robust past of, 131
new, 18
old, 18
parabolic, 131

end stability, 117

family forest, 12, 43, 88, 112
future

highlighted, 23
nibbled, 82, 95, 105
of a bead, 115
of an edge, 11, 112
para-preferred, 17
preferred, 16, 119–121
robust, 131
semi-naive, 121
swollen, 59, 133, 161
tenuous, 121

growing exceptional path (GEP), 70

hard splitting, 70
HNP biting, 129
HNP cancellation, 127

implosive array, 32, 33, 148
HNP, 149
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isoperimetric inequality, 3, 110

letter
constant, fast, slow, 16
exponential, 14
non-constant, 19
para-linear, 17
parabolic, 14

mapping torus, 111, 114

naive expansion, 7
neutering, 30, 37

stable, 143
weighted, 146

Nielsen path, 74
beaded, 133
stability of, 142

past
narrow, 156
of an edge, 11

path
displayed, 81, 117
edible, 134
exceptional, 74
exponential, 76
monochromatic, 71, 81
parabolic, 76
weight of, 76

untrapped, 138
PEP, 127

slow, 137
pincer, 31, 146

left(right)-loaded, 40
cascade, 157
colours χ(Π), 152
colours χ(Π)), 31
colours χ(P ), 40
life of, 32, 147, 152
nested, 40, 152
of a team, 48–49, 156

Pincer Lemma, 32, 41, 147, 152
positive automorphism, 2
pre-team, 43, 153
proto-ΨEP, 95, 97
pseudo-exceptional path (ΨEP), 71

rascal, 59, 162
left(right)-biased, 62

reaper, 43, 133, 153

seed, 87
singularity, 8, 111
splitting, 73

hard, 78
stack diagram, 87, 115, 129
strata, 14, 73

exponential, 14, 73
interchangeable, 117
parabolic, 14, 73
zero, 73

super-buffers, 37, 151
swollen present, 133

tameness, 137
tautologous tetrad, 62
teams, 26, 43, 153, 154
Q(T ), 50, 159
downi(T ), 50, 53, 158, 159
∂T , 50, 158
colours χ∗(T ), 49, 54, 160
depth of, 53, 160
distinguished, 54
genesis of, 27, 44, 154
members, 26
narrow past of, 48
times ti(T ), 27, 43, 48, 153, 157
virtual members, 47, 155

terror, 59, 162
time, 6, 111
topological representative, 70, 72, 166
train track map

improved relative, xiii, 75
relative, 74

Two Colour Lemma, 30, 143
weighted, 146

van Kampen diagram, 3, 110, 166
area of, 3
colours in, 12

well-folded diagram, 114


