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Abstract. We prove that for n ≥ 2, a non-uniform lattice in PU(n,1) does not admit a relatively

geometric action on a CAT(0) cube complex, in the sense of [10]. As a consequence, if Γ is a non-
uniform lattice in a non-compact semisimple Lie group G without compact factors that admits a

relatively geometric action on a CAT(0) cube complex, then G is commensurable with SO(n,1).
We also prove that if a Kähler group is hyperbolic relative to residually finite parabolic subgroups,
and acts relatively geometrically on a CAT(0) cube complex, then it is virtually a surface group.

1. Introduction

A finitely generated group is called cubulated if it acts properly cocompactly on a CAT(0) cube
complex. Agol [1], building on the work of Wise [29] and many others, proved that cubulated
hyperbolic groups enjoy many important properties, and used this to solve several open conjectures
in 3-manifold topology, in particular the Virtual Haken and Virtual Fibering Conjectures. Wise
[29, §17] proved the Virtual Fibering Conjecture in the non-compact, finite-volume setting, using
the relatively hyperbolic structure of the fundamental group.

Einstein–Groves define the notion of a relatively geometric action of a group pair (Γ,P) on
a CAT(0) cube complex [10]. For such an action, elements of P act elliptically. This allows
the possibility that even though the elements of P might not act properly on any CAT(0) cube
complex, there still may be a relatively geometric action. Relatively geometric actions are a natural
generalization of proper actions and share many of the same features as in the proper case, especially
when Γ is hyperbolic relative to P .

Uniform lattices in SO(3,1) always act geometrically thus relatively geometrically on CAT(0)
cube complexes [5]. Bergeron–Haglund–Wise [4] prove that in higher dimensions, lattices in SO(n,1)
which are arithmetic of simplest type are cubulated. It also follows from this and Wise’s quasi-
convex hierarchy theorem [29] that many “hybrid” hyperbolic n-manifolds have cubulated funda-
mental groups. In the relatively geometric setting, using the work of Cooper–Futer [7], Einstein–
Groves proved that non-uniform lattices in SO(3,1) also admit relatively geometric actions, relative
to their cusp subgroups [10]. In fact, they prove that if (G,P) is hyperbolic relative to free abelian
subgroups and the Bowditch boundary ∂(G,P) is homeomorphic to S2, then G is isomorphic to
a non-uniform lattice in SO(3,1) if and only if (G,P) admits a relatively geometric action on a
CAT(0) cube complex. This result is a relative version of the work of Markovic [25] and Häıssinsky
[22] in the convex-cocompact setting, giving an equivalent formulation of the Cannon conjecture
in terms of actions on hyperbolic CAT(0) cube complexes. It is not known in general whether the
above results extend to all lattices in SO(n,1) for n ≥ 3.
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In contrast, work of Delzant–Gromov implies that uniform lattices in PU(n,1) are not cubulated
[8]. Recall that a group Γ is Kähler if Γ ≅ π1(X) for some compact Kähler manifold X. If Γ ≤
PU(n,1) is a torsion-free, uniform lattice, then Γ acts freely, properly discontinuously cocompactly
on complex hyperbolic n–space Hn

C. The quotient M = Γ/H
n
C is a closed, negatively curved Kähler

manifold, and in particular Γ is a hyperbolic, Kähler group. In this context, Delzant–Gromov
showed that any infinite Kähler group that is hyperbolic and cubulated is commensurable to a
surface group of genus g ≥ 2 [8]. Thus Γ is not cubulated for n ≥ 2. Since every uniform lattice in
PU(n,1) is virtually torsion-free, it follows that uniform lattices in PU(n,1) are not cubulated if
n ≥ 2.

On the other hand, uniform lattices in PU(1,1) = SO(2,1), are finite extensions of hyperbolic
surface groups, hence are hyperbolic and cubulated. Similarly, non-uniform lattices in PU(1,1) are
the orbifold fundamental groups of surfaces with finitely many cusps, hence virtually free. Such
lattices admit both proper cocompact and relatively geometric actions on CAT(0) cube complexes.
Since the cusp subgroups of a non-uniform lattice in PU(n,1) (n ≥ 2) are virtually nilpotent but
not virtually abelian, it follows from a result of Haglund [21] that such a lattice does not admit a
proper action on a CAT(0) cube complex (see Proposition 4.3 below).

However, the parabolic subgroups do not yield such an obstruction to the existence of a relativeley
geometric action. Thus, this leaves open the question of whether non-uniform lattices in PU(n,1)
admit relatively geometric actions on CAT(0) cube complexes for n ≥ 2. Our first result answers
this question in the negative.

Theorem 1.1. Let Γ ≤ PU(n,1) be a non-uniform lattice with n ≥ 2, and let P be the collection of
cusp subgroups of Γ. Then (Γ,P) does not admit a relatively geometric action on a CAT(0) cube
complex.

Corollary 1.2. Let Γ be a lattice in a non-compact semisimple Lie group G without compact
factors. If either

(1) Γ is uniform and cubulated hyperbolic, or
(2) Γ is non-uniform, hyperbolic relative to its cusp subgroups P, and (Γ,P) admits a relatively

geometric action on a CAT(0) cube complex,

then G is commensurable to SO(n,1) for some n ≥ 1.
Proof. A uniform lattice (resp. non-uniform lattice) Γ in a semisimple Lie group G is hyperbolic
(resp. hyperbolic relative to its cusp subgroups P) if and only if G has rank 1, by a result of
Behrstock–Druţu–Mosher [3]. Any rank 1 noncompact semisimple Lie group is commensurable with
one of SO(n,1), PU(n,1), Sp(n,1) for n ≥ 2, or the isometry group of the octonionic hyperbolic
plane H2

O. The latter and Sp(n,1) have Property (T), while SO(n,1) and PU(n,1) do not. Hence

if Γ is commensurable with a lattice in Sp(n,1) or Isom(H2
O), then Γ has (T).

By a result of Niblo–Reeves [26], any action of a group with Property (T) on a CAT(0) cube
complex has a global fixed point, so lattices in Sp(n,1) and Isom(H2

O) admit neither geometric nor

relatively geometric actions on CAT(0) cube complexes. Hence if Γ is as in the statement of the
result, it must be commensurable to a lattice in either PU(n,1) or SO(n,1). For n ≥ 2, the uniform
case of Γ ≤ PU(n,1) is eliminated by work Delzant–Gromov [8]. The corollary now follows from
Theorem 1.1. □

We say that a relatively hyperbolic group pair (Γ,P) is properly relatively hyperbolic if P ≠ {Γ}.
The following result considers general relatively geometric actions of Kähler relatively hyperbolic
groups on CAT(0) cube complexes (when the peripheral subgroups are residually finite).
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Theorem 1.3. Let (Γ,P) be a properly relatively hyperbolic pair such that each element of P is
residually finite. If Γ is Kähler and acts relatively geometrically on a CAT(0) cube complex, then
Γ is virtually a hyperbolic surface group.

We will deduce Theorem 1.1 from Theorem 1.3 in Section 4. In fact, non-uniform lattices in
PU(n,1) are Kähler for n ≥ 3 [28], hence Theorem 1.1 follows immediately from Theorem 1.3 in
this range. However, our proof of Theorem 1.1 will work for all n ≥ 2, and will not use this fact.
In [9], Delzant–Py considered actions of Kähler groups on locally finite, finite-dimensional CAT(0)
cube complexes that are more general than geometric ones (see Theorem A for precise hypotheses),
and showed that every such action virtually factors through a surface group. We remark that the
cube complexes appearing in relatively geometric actions will in general not be locally finite.

We conclude the introduction with a sample application of Theorem 1.3.

Corollary 1.4. Suppose that A and B are infinite residually finite groups which are not virtually
free. Any C ′ ( 1

6
)–small cancellation quotient of A ∗B is not Kähler.

Proof. Let Γ be such a small cancellation quotient of A∗B. According to [13], Γ is residually finite
and admits a relatively geometric action on a CAT(0) cube complex. If Γ were Kähler, it would be
a virtual surface group, by Theorem 1.3. However, A embeds in Γ as an infinite-index subgroup,
and the only infinite index subgroups of virtual surface groups are virtually free. □

Outline: In Section 2, we review the definition of a relatively geometric action of a group pair on
a CAT(0) cube complex and the notion of group-theoretic Dehn fillings, then collect some known
results about these. In Section 3 we prove Theorem 1.3. In Section 4, after reviewing the Borel–
Serre and toroidal compactifications of non-uniform quotients of complex hyperbolic space, we prove
Theorem 1.1.
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author was supported by NSF grants DMS-1904913 and DMS-2203343. The third author would
like to thank his advisor, Daniel Groves, for introducing him to the subject and answering his ques-
tions. He would like to thank his co-advisor, Anatoly Libgober, for his constant support and warm
encouragement. He would also like thank Hao Liang and Xuzhi (Carl) Tang for helpful discussions.

2. Actions on CAT(0) Cube Complexes

In this section, we review the notion of a relatively geometric action of a group pair (Γ,P) on a
CAT(0) cube complex, defined by Einstein and Groves in [10]. We then introduce Dehn fillings of
group pairs and recall some useful results from [11].

Definition 2.1. Let Γ be a group and P a collection of subgroups of Γ. An action of Γ on a
CAT(0) cube complex X is relatively geometric with respect to P if

(1) Γ/X is compact;
(2) Each element of P acts elliptically on X;
(3) Each cell stabilizer in X is either finite or else conjugate to a finite-index subgroup of an

element of P.

Recall that if (Γ,P) is a relatively hyperbolic group pair and Γ0 ≤ Γ has finite-index then (Γ0,P0)
is also a relatively hyperbolic group pair, where P0 is the set of representatives of the Γ0–conjugacy
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classes of

(1) {P g ∩ Γ0 ∣ g ∈ Γ, P ∈ P}

Since [Γ∶ Γ0] is finite, P0 is still a finite collection of subgroups. It follows that if Γ admits a
relatively geometric action on a CAT(0) cube complex X, then (Γ0,P0) also admits a relatively
geometric action on X by restriction. Indeed, (2) and (3) in Definition 2.1 follow immediately and
(1) follows from that fact that under the natural map Γ0

/X → Γ/X , each cell of Γ/X has at most

[Γ∶ Γ0] <∞ pre-images. Hence if Γ/X is compact, so is Γ0
/X . We have just proven

Lemma 2.2. Let Γ0 ≤ Γ be a finite-index subgroup. If (Γ,P) has a relatively geometric action on a
CAT(0) cube complex X, then the restriction of this action to (Γ0,P0) is also relatively geometric,
where P0 is defined as in Equation 1.

2.1. Dehn fillings.
Dehn fillings first appeared in the context of 3-manifold topology and were subsequently generalized
to the group-theoretic setting by Osin [27] and Groves–Manning [18]. We now recall the notion of
a Dehn filling of a group pair (G,P):

Definition 2.3 (Dehn Filling). Given a group pair (G,P), where P = {P1, ..., Pm} and a choice
of normal subgroups of peripheral groups N = {Ni ⊴ Pi}, the Dehn filling of (G,P) with respect

to N is the pair (G,P) where G = G/K and K = ⟪∪Ni⟫ is the normal closure in G of the group
generated by {∪iNi} and P̄ is the set of images of P under this quotient. The Ni are called the
filling kernels. When we want to specify the filling kernels we write G(N1, . . . ,Nm) for the quotient
G.

Definition 2.4 (Peripherally finite). If each normal subgroup Ni has finite-index in Pi, the filling
is said to be peripherally finite.

Definition 2.5 (Sufficiently long). We say that a property X holds for all sufficiently long Dehn
fillings of (G,P) if there is a finite subset B ⊂ G ∖ {1} so that whenever Ni ∩B = ∅ for all i, the
corresponding Dehn filling G(N1, ...,Nn) has property X .

The proof of the next theorem relies on the notion of a Q–filling of a collection of subgroups Q
of G. Recall from [17] that given a subgroup Q < G, the quotient G(N1, . . . ,Nm) is a Q–filling if
for all g ∈ G, and Pi ∈ P, ∣Q∩P g

i ∣ =∞ implies Ng
i ⊆ Q. If Q = {Q1, . . . ,Ql} is a family of subgroups,

then G(N1, . . . ,Nm) is a Q–filling if it is a Q–filling for every Q ∈ Q.
Let Q be a collection of finite-index subgroups of elements of P so that any infinite cell stabilizer

contains a conjugate of an element of Q. The following is proved in [11].

Theorem 2.6 (Proposition 4.1 and Corollary 4.2 of [11]). Let (Γ,P) be a relatively hyperbolic pair
such that the elements of P are residually finite. If (Γ,P) admits a relatively geometric action on
a CAT(0) cube complex X then

(1) For sufficiently long Q–fillings Γ → Γ = Γ/K, the quotient X = K/X is a CAT(0) cube
complex; and

(2) Any sufficiently long, peripherally finite Q–filling of Γ is hyperbolic and virtually special.

The following result is implicit in [11]. For completeness, we provide a proof.

Lemma 2.7. In the context of Theorem 2.6.(1), the action of Γ on X is relatively geometric.
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Proof. Since Γ/X = Γ/X the action is cocompact. Let P be the induced peripheral structure

on Γ (the image of P). The fact that elements of P act elliptically on X follows from the fact
that elements of P act elliptically on X. Because each cell-stabilizer of Γ ↷ X is either finite or
conjugate to a finite-index of subgroup of some Pi ∈ P, this implies that the cell-stabilizers of Γ↷X
are conjugate to finite-index subgroups of Pi/(K ∩ Pi) (the elements of P). Thus the action of ∆
on Y is relatively geometric. □

3. Relatively geometric actions: the Kähler case

In this section, we apply Theorem 2.6 to prove Theorem 1.3. The main idea is to use Dehn filling
to produce a minimal action of a finite-index subgroup of Γ on a tree with finite kernel. A deep
result of Gromov–Schoen implies that any Kähler group admitting a minimal acting on tree with
finite kernel must be virtually a hyperbolic surface group [16].

Proof of Theorem 1.3. Suppose that (Γ,P) acts relatively geometrically on a CAT(0) cube com-
plex. Since the elements of P are residually finite, there exists a sufficiently long, peripherally
finite Q–filling Γ→ Γ = Γ/K which satisfies the hypotheses of Theorem 2.6.((2)), so Γ is hyperbolic

and X = K/X is a CAT(0) cube complex. Let Γ0 ≤ Γ be a finite-index subgroup such that Γ0 is

torsion-free and Γ0
/X is special, which exists by [11, Theorem 1.4].

Cutting along an embedded essential two-sided hyperplane H in Γ0
/X yields a splitting of Γ0

according to the complex of groups version of van Kampen’s Theorem [6, III.C.3.11.(5), III.C.3.12,
p.552].1 The edge group of such a splitting is a hyperplane stabilizer for the Γ0–action on X, which
is relatively quasi-convex by [12, Corollary 4.11], and infinite-index since the hyperplane is essential.
The action of Γ0 on the Bass–Serre tree T associated to this splitting has finite kernel, since any
normal subgroup contained in an infinite-index relatively quasi-convex subgroup is finite. Let F
denote the kernel of the action of Γ0 on T .

By [16], the induced action of Γ0 on T factors through a surjective homomorphism φ∶ Γ0 → ∆0,
where ∆0 ≤ PSL2(R) is a cocompact lattice. The kernel of φ is contained in F , hence finite, so Γ0

is commensurable up to finite kernels with ∆0, which is itself virtually a hyperbolic surface group.
Since any group commensurable up to finite kernels with a hyperbolic surface group is virtually a
hyperbolic surface group, this means that Γ0, and hence Γ, is virtually a hyperbolic surface group,
as desired. □

4. Relatively geometric actions: Lattices in PU(n,1)
Let Γ be a non-uniform lattice in PU(n,1). Then Γ acts properly discontinuously on complex

hyperbolic space Hn
C and the quotient, which we henceforth denote byM = Γ/H

n
C , is a non-compact

orbifold of finite volume with finitely many cusps. Each cusp corresponds to a conjugacy class of
subgroups stabilizing a parabolic fixed point in ∂∞H

n
C. Farb [14] proved that Γ is hyperbolic relative

to the collection of these cusp subgroups, which we denote by P. In this section, we prove Theorem
1.1, namely that (Γ,P) does not admit a relatively geometric action on a CAT(0) cube complex.

Throughout the course of the proof, we pass freely to finite-index subgroups by invoking Lemma
2.2. In order to streamline the exposition, we do not refer to Lemma 2.2 each time. First we reduce
the Theorem 1.1 to the case where Γ is torsion-free.

Lemma 4.1. Γ has a torsion-free subgroup of finite index.

1One can also see this tree directly by considering the dual tree to the collection of hyperplanes of X which project
to H. See [17, Remark 1.1] for more details.
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Proof. We have a short exact sequence

1→ Z/(n + 1)Z→ SU(n,1)→ PU(n,1)→ 1.

Restricting to Γ, we get a short exact sequence

1→ Z/(n + 1)Z→ Λ→ Γ→ 1,

where Λ is the pre-image of Γ in SU(n,1). Since Γ is finitely generated and Z/(n + 1)Z is finite,
Λ is finitely generated. As SU(n,1) is linear, Selberg’s lemma implies that Λ has a finite-index
torsion-free subgroup, say, Λ0. Thus Λ0 ∩Z/(n + 1)Z = 1 and hence it is mapped isomorphically to
finite-index subgroup Γ0 ≤ Γ. □

Following Lemma 4.1, for the remainder of this section we assume that Γ ≤ PU(n,1) is torsion-
free.

4.1. The structure of cusps. We now briefly review the geometric structure of cusps in M . For
more details see [15]. Recall that up to scaling each horosphere in Hn

C is isometric to H2n−1(R), the
(2n− 1)–dimensional real Heisenberg group, equipped with a left-invariant metric. The Heisenberg
group is a central extension

(2) 1→ R→H2n−1(R)→ R2n−2 → 1

with extension 2–cocycle equal to the standard symplectic form

ω = 2
n−1
∑
i=1

dxi ∧ dyi,

where (x1, y1, . . . , xn−1, yn−1) are coordinates on R2n−2. The Lie algebra h2n−1 is 2–step nilpotent
with basis {X1, Y1, . . . ,Xn, Yn, Z} where

[Xi, Yi] = Z
and all other brackets vanish. Thus Z generates the center of h2n−1 representing the kernel R in
Equation (2), while the remaining coordinates project to the generators of R2n−2. Choosing the
identity matrix I2n−1 as the inner product on h2n−1, we see that the isometry group of H2n−1(R) is
isomorphic to H2n−1(R) ⋊U(n − 1), where the H2n−1(R) factor is the action of H2n−1(R) on itself
by left translation, and the unitary group U(n − 1) is the stabilizer of the identity. Indeed, any
isometry which fixes 1 ∈H2n−1(R) must also be a Lie algebra isomorphism; it therefore preserves the
center ⟨Z⟩ and induces an isometry of R2n−2 ≅ ⟨X1, Y1,⋯,Xn−1, Yn−1⟩ preserving ω. We conclude
that such an isometry lies in U(n − 1) = O2n−2(R) ∩ Sp2n−2(R).
Definition 4.2. Let π∶ H2n−1(R)⋊U(n− 1)→ U(n− 1) be the projection. For any g ∈H2n−1(R)⋊
U(n − 1), we call π(g) the rotational part of g.

Since the center of H2n−1(R) is invariant under any isometry we have a short exact sequence

(3) 1→ R = Z(H2n−1(R))→H2n−1(R) ⋊U(n − 1)→ R2n−2 ⋊U(n − 1)→ 1

Since Γ is torsion-free, each cusp subgroup P ≤ Γ is isomorphic to a discrete, torsion-free,
cocompact subgroup of Isom(H2n−1(R)). In particular, P0 = P ∩H2n−1(R) is a discrete cocompact
subgroup and P ∩Z(H2n−1(R)) ≅ Z. By Equation 3, P fits into a short exact sequence

(4) 1→ Z = P ∩Z(H2n−1(R))→ P → Λ→ 1

where Λ is a discrete cocompact subgroup of R2n−2 ⋊U(n − 1). It follows that Λ has a finite-index
subgroup Λ0 isomorphic to Z2n−2, which is the image of P0.
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On the level of quotient spaces, the sequence in Equation (4) has the following translation. The

quotient space O = Λ/R
2n−2

is a Euclidean orbifold finitely covered by the (2n − 2)–dimensional

torus T = Λ0/C
n−1

, and Σ = P/H2n−1(R) is the total space of an S1–bundle over O, i.e., there is

a fiber sequence

(5) S1 ↪ Σ→ O
Since O need not be smooth, this is not generally a locally trivial fibration. However, as P is
torsion-free, Σ is smooth. Passing to the torus cover, we obtain an actual fiber bundle

S1 ↪ Σ̂→ T

The finite group F = P /P0 acts on Σ̂ preserving the fibration, hence defines a finite group of
isometries of T . Thus the stabilizer of a point in T acts freely on the S1 fiber. Since the action of F
on Σ̂ is free, it follows that point stabilizers in T must be cyclic of finite order, and act by rotations
on the fiber. Since F ≤ U(n − 1), any abelian subgroup is diagonalizable. Thus, locally each point
in N has a neighborhood of the form (S1 ×Dn−1)/(Z/mZ) where D ⊂ C is the open unit disk, and
Z/mZ acts on S1 by rotation by 2π/m and on the polydisk Dn−1 by a diagonal unitary matrix

∆ = diag(e
2πk1
m , . . . , e

2πkn−1
m ), where at least one ki is coprime to m. See Figure 1 for a schematic.

Since F acts by rotation on each fiber, Σ is the boundary of a disk bundle over O, which we denote
by EO.

Dn−1

Figure 1. Local picture of the fibration in Equation 5 near a singular point of O.
A nonsingular fiber, shown in blue, winds m = 2 times around the singular fiber,
shown in red.

Recall that the center of H2n−1(R) is quadratically distorted. It follows that the center of P is
quadratically distorted as well. By [21, Theorem 1.5], there is no proper action of P on a CAT(0)
cube complex. Therefore, we have:
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Proposition 4.3. Let Γ ≤ PU(n,1) be a non-uniform lattice, and suppose Γ acts on a CAT(0) cube
complex X. The action of each cusp subgroup of Γ is not proper. In particular, Γ is not cubulated.

4.2. The toroidal compactification of M . Another natural compactification of M fills in the
cusps with the Euclidean orbifolds described in Section 4.1. Let Oi be the Euclidean orbifold
quotient of Σi, with corresponding disk bundle Ei. Thus, we can identify Ei ∖Oi with the cusp Ci,
then compactifyM by adding ⊔iOi at infinity. The result is a Kähler orbifold T (M) with boundary
divisor D = ⊔iOi. The pair (T (M),D) is called the toroidal compactification of M . See [24, 2] for
more details.

When the parabolic elements in Γ have trivial rotational part, then each Oi is a (2n − 2)–
dimensional torus, T (M) is a smooth Kähler manifold and D is a smooth divisor in T (M). More-
over, Hummel–Schroeder show that T (M) admits a nonpositively curved Riemannian metric [24].
In particular, T (M) is aspherical; if ∆ = π1(T (M)) then T (M) is a K(∆,1). The following lemma
ensures that we can always find a finite cover of M whose toroidal compactification is smooth.

Lemma 4.4. Let Γ ≤ PU(n,1) be torsion-free and let M = Γ/H
n
C be the quotient. There exists a

finite cover M ′ →M such that the toroidal compactification of M ′ is smooth.

Proof. By the main theorem of [23] (p. 2453), there exists a finite subset F ⊂ Γ of parabolic
isometries such that if a N ⊴ Γ is a normal subgroup satisfying F ∩ N = ∅, then any parabolic
isometry in N has no rotational part. Since Γ is residually finite and F is finite, we can find a
finite-index normal subgroup Γ′ ⊴ Γ such that Γ′ ∩ F = ∅. Therefore the finite cover M ′ ∶= Γ′/H

n
C

of M admits a toroidal compactification which is smooth. □

For the rest of this section, we assume that T (M) is smooth. Since M0 ∖∂M0 ≅M ≅ T (M)∖D,
there is a natural map of pairs f ∶ (M0, ∂M0)→ (T (M),D) that is a diffeomorphism on the interior
of M0 and sends ∂M = ⊔Σi →D = ⊔iOi via the fibering in Equation 5.

4.3. Proof of Theorem 1.1. We now have all the ingredients necessary to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.1 and Lemma 4.4, we may assume that Γ ≤ SU(n,1) is torsion-
free, and that the toroidal compactification T (M) is smooth. In particular, Γ and all of its periph-
eral subgroups are residually finite.

Suppose (Γ,P) admits a relatively geometric action on a CAT(0) cube complex X. Given a
finite-index subgroup Γ0 ≤ Γ, let P0 be the induced peripheral structure on Γ0, and let ∆0 be
π1(T (M0)), where M0 = Γ0

/Hn
C . Since the kernel of the quotient map Γ0 → ∆0 is normally

generated by subgroups in P0, we get an induced peripheral structure (∆0,A0), where A0 is the
collection of images of elements of P0. Our strategy is to show that there exists a finite-index
subgroup Γ0 ≤ Γ so that the pair (∆0,A0) is relatively hyperbolic and admits a relatively geometric
action on a CAT(0) cube complex. Since T (M0) is smooth (since T (M) is), ∆ is Kähler. Thus,
as n ≥ 2, we will get a contradiction by Theorem 1.3.

Let P = {P1, . . . , Pk} be the induced peripheral structure on Γ. Now let Z(Pi) be the center of
Pi. We apply Theorem 2.6(1) to a sufficiently long Q–filling Z = {Z1, . . . , Zk} where Zi ≤ Z(Pi) is
a finite-index subgroup. We then obtain a Dehn filling ψ∶ Γ → ∆ = Γ/K determined by the Zi so
that Y = K/X is a CAT(0) cube complex.

Let (∆,A) be the induced peripheral structure on ∆. By Theorem 2.6, we know that (∆,A) is
relatively hyperbolic. Lemma 2.7 implies that the action of ∆ on Y is relatively geometric.

Finally, we claim that there exists a finite-index subgroup ∆0 ≤∆ that is torsion-free. Since the
elements of A are virtually abelian, hence residually finite, we know that ∆ is also residually finite
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by Corollary 1.7 of [11]. Since Γ is torsion-free, by [19, Theorem 4.1] so long as the filling Γ → ∆
is long enough (which we may assume without loss of generality), any element of finite order in ∆
is conjugate into some element of A. As there are finitely many elements of A, each of which has
only finitely many conjugacy classes of finite order elements, we can find a finite-index subgroup
∆0 ≤∆ which avoids each of these conjugacy classes, hence is torsion-free. The induced peripheral
structure (∆0,A0) is relatively hyperbolic and ∆0 ↷ Y is relatively geometric by Lemma 2.2. Let
Γ0 = ψ−1(∆0) and let P0 = {P0,1, . . . , P0,r} be the induced peripheral structure on Γ0. Then K ≤ Γ0,
and since ∆0 is torsion-free, this implies K ∩ P0,i = Z(P0,i) for each i. As the P is the collection

of cusp subgroups of M0 = Γ0
/Hn

C , we conclude that ∆0 = π1(T (M)). Thus, ∆0 is Kähler and
acts relatively geometrically on Y . By Theorem 1.3, we conclude that ∆0 is virtually a hyperbolic
surface group, which is impossible because ∆0 contains a subgroup isomorphic to Z2n−2 and n ≥ 2.
This contradiction completes the proof. □

Remark 4.5. In [20, Definition 1.9], Groves–Manning introduce the notion of a weakly relatively
geometric action on a CAT(0) cube complex. We can replace “relatively geometric” with “weakly
relatively geometric” in Theorem 1.1 using similar arguments. Indeed, after performing the toroidal
filling of (Γ,P) to land in the Kähler setting, we can perform a further peripherally finite filling to
obtain a hyperbolic quotient, which is virtually special [20, Theorem 4.5].

In this case the cube complex for the quotient is not K/X where K is the kernel of the filling

homomorphism Γ→ Γ. Indeed, the action of Γ on K/X in general has cell stabilizers that are vir-

tually free. Nevertheless, Theorem D of [17] implies that in this case Γ is still cubulated hyperbolic.
The arguments from the remainder of the proof of Theorem 1.1 still apply.
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