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Abstract. In this paper we study hyperbolic groups acting on CAT(0) cube

complexes. The first main result (Theorem A) is a structural result about the
Sageev construction, in which we relate quasi-convexity of hyperplane stabiliz-

ers with quasi-convexity of cell stabilizers. The second main result (Theorem

D) generalizes both Agol’s theorem on cubulated hyperbolic groups and Wise’s
Quasi-convex Hierarchy Theorem.

Contents

1. Introduction 1
2. The complex of groups coming from an action on a cube complex 6
3. Quasi-convexity in the Sageev construction 11
4. Conditions for quotients to be CAT(0) 26
5. Algebraic translation 38
6. Dehn filling 42
Appendix A. A quasi-convexity criterion 48
References 53

1. Introduction

In recent years, CAT(0) cube complexes have played a central role in many
spectacular advances, most notably in Agol’s proof of the Virtual Haken and Virtual
Fibering Theorems in [1]. The main result of [1] is that a hyperbolic group which
acts properly and cocompactly on a CAT(0) cube complex is virtually special. A
key ingredient in Agol’s proof was the work of Wise from [36], particularly Wise’s
Quasi-convex Hierarchy Theorem [36, Theorem 13.3]. One of the two main results
of the current paper is Theorem D, which provides a simultaneous generalization
of Agol’s theorem and Wise’s theorem. So far this generalization has been applied
in [13] and [12]. At the end of the introduction in Subsection 1.2, we explain how
Theorem D (together with Theorem A) simplifies the proof of the Virtual Haken
and Virtual Fibering Theorems for hyperbolic 3–manifolds, requiring only a single
immersed quasi-Fuchsian surface instead of a ubiquitous family.

Cube complexes in group theory arise via the construction of Sageev [32] which
takes as input a group G and a collection of codimension–1 subgroups of G and
produces a CAT(0) cube complex X, equipped with an isometric G–action on X
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with no global fixed point. The other main result of the current paper is Theorem
A, which establishes some fundamental properties about the Sageev construction.

Sageev’s construction works in great generality. However, in order to get more
information from the G–action on X, it is useful to add geometric hypotheses.
For example, if G is a hyperbolic group and the codimension–1 subgroups are
quasi-convex, Sageev proved that the associated cube complex is G–cocompact [33,
Theorem 3.1]. Achieving a proper action is harder (see [5, 24] for conditions which
ensure properness).

Even an improper action G y X gives a description of G as the fundamental
group of a complex of groups in the sense of Bridson–Haefliger (see [8, III.C] or
Section 2 below). In this description, the underlying space is G

∖
X and the local

groups can be identified with cell stabilizers for the action.
Our first main result links the geometry of the hyperplane stabilizers with that

of the cell stabilizers.

Theorem A. Let G be hyperbolic. The following conditions on a cocompact G–
action on a CAT(0) cube complex are equivalent:

(1) All hyperplane stabilizers are quasi-convex.
(2) All vertex stabilizers are quasi-convex.
(3) All cell stabilizers are quasi-convex.

Intersections of quasi-convex subgroups are quasi-convex, and cell stabilizers are
intersections of vertex stabilizers. Therefore, the equivalence of (2) and (3) is trivial.
We prove the equivalence of (1) and (2).

We remark that we actually prove the direction (1) =⇒ (2) in the more gen-
eral setting of arbitrary finitely generated groups where we assume the relevant
subgroups are strongly quasi-convex in the sense of [35]. Note that in this more
general setting, (2) and (3) are still equivalent. See Section 3 for more details. In
Subsection 3.7 we explain how Theorem A implies the following result.

Corollary B. Suppose that G is a hyperbolic group acting cocompactly on a CAT(0)
cube complex X with quasi-convex hyperplane stabilizers. Then

(1) X is δ–hyperbolic for some δ;
(2) there exists a k ≥ 0 so that the fixed point set of any infinite subgroup of G

intersects at most k distinct cells; and
(3) the action of G on X is acylindrical (in the sense of Bowditch [6, p. 284]).

Anthony Genevois explained to us how conclusion (2) implies acylindricity for
actions on hyperbolic CAT(0) cube complexes (see Subsection 3.7). The condition
in (2) is not implied by acylindricity since X is not assumed to be locally compact.

Without the conclusion of δ–hyperbolicity, a more general version of Corollary
B holds just as for Theorem A. See Remark 3.44 for more details.

In Sageev’s construction, the stabilizers in G of hyperplanes in the resulting
cube complex are commensurable with the chosen codimension–1 subgroups of G.
Therefore, we have the following result.

Corollary C. Let G be a hyperbolic group and let H = {H1, . . . ,Hk} be a collection
of quasi-convex codimension–1 subgroups. Let X be a CAT(0) cube complex obtained
by applying the Sageev construction to H.

(1) The stabilizers of cells in X are quasi-convex in G. In particular, they are
finitely presented.
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(2) X is δ–hyperbolic for some δ.
(3) There exists a k ≥ 0 so that the fixed set of any infinite subgroup of G

intersects at most k distinct cells.
(4) The action of G on X is acylindrical.

As far as we are aware, even the corollary of item (1) that the cell stabilizers
are finitely generated in the above result is new. We remark that the fact that cell
stabilizers are finitely presented implies that the description ofG as the fundamental
group of the complex of groups associated to G

∖
X is a finite description.

Some of the most dramatic uses of CAT(0) cube complexes have come from
Haglund and Wise’s theory of special cube complexes [20]. A cube complex is
special if it admits a locally isometric immersion into the Salvetti complex of a
right-angled Artin group. A group G is virtually special if there is a finite-index
subgroup G0 ≤ G and a CAT(0) cube complex X so that G0 acts freely and
cubically on X and G0

∖
X is a compact special cube complex. (For some authors

the quotient is allowed to be non-compact but have finitely many hyperplanes.)
As shown in [20], virtually special hyperbolic groups have many remarkable

properties, such as being residually finite, linear over Z and possessing very strong
subgroup separability properties.

Agol [1] proved that if a hyperbolic group G acts properly and cocompactly on
a CAT(0) cube complex then G is virtually special. It is this result that implies
the Virtual Haken Conjecture, as well as the Virtual Fibering Conjecture (in the
compact case), and many other results.

One of the key ingredients of the proof of Agol’s Theorem, and another of the
most important theorems in the area is Wise’s Quasi-convex Hierarchy Theorem
[36, Theorem 13.3] (see also [3, Theorem 10.2]) which states that if a hyperbolic
group G can be expressed as A∗C (respectively A ∗C B) where C is quasi-convex
in G and A is (respectively A and B are) virtually special then G is virtually
special. This theorem can be rephrased as saying that if a hyperbolic group acts
cocompactly on a 1-dimensional CAT(0) cube complex (otherwise known as a ‘tree’)
with virtually special and quasi-convex cell stabilizers, then G is virtually special.

Our second main result is a common generalization of Agol’s theorem and Wise’s
Quasi-convex Hierarchy Theorem.

Theorem D. Suppose that G is a hyperbolic group acting cocompactly on a CAT(0)
cube complex X so that cell stabilizers are quasi-convex and virtually special. Then
G is virtually special.

By Corollary C, Theorem D has the following immediate consequence.

Corollary E. Suppose that G is a hyperbolic group and that H = {H1, . . . ,Hk}
is a collection of quasi-convex codimension–1 subgroups. If the vertex stabilizers of
the G–action on a cube complex obtained by applying the Sageev construction to H
are virtually special, then G is virtually special.

Since finding proper actions of hyperbolic groups on CAT(0) cube complexes
is much harder than finding cocompact actions, Theorem D is expected to be a
powerful new tool for proving that hyperbolic groups are virtually special. As
mentioned above, already Yen Duong [12] has used Theorem D to show that random
groups in the square model at density < 1/3 are virtually special. Theorem D
(as well as Corollary 6.5 below) are also applied in the paper [13] to provide a
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characterization of relatively hyperbolic groups with 2–sphere boundary in terms
of actions on cube complexes.

Theorem A is one of the key ingredients of the proof of Theorem D. We now
explain how Theorem D is a consequence of the above-mentioned results of Agol
and Wise, along with Theorem A and the following result (proved in Section 6).

Theorem F. Suppose that the hyperbolic group G acts cocompactly on a CAT(0)
cube complex X and that cell stabilizers are virtually special and quasi-convex.
There exists a quotient G = G/K so that

(1) The quotient K
∖
X is a CAT(0) cube complex;

(2) The group G is hyperbolic; and
(3) The action of G on K

∖
X is proper (and cocompact).

Proof of Theorem D. Consider the hyperbolic group G, acting on a CAT(0) cube
complex X as in the statement of Theorem D. By Theorem F there exists a hyper-
bolic quotient G = G/K of G so that K

∖
X is a CAT(0) cube complex, and the

G–action on K
∖
X is proper and cocompact. Let Z = K

∖
X .

By Agol’s Theorem [1, Theorem 1.1], there is a finite-index subgroup G0 of G so
that G0

∖
Z is special. Let G0 be the pre-image in G of G0. Clearly, the underlying

space of G0

∖
X is the same as that of G0

∖
Z , and in particular all of the hyperplanes

are two-sided and embedded.
We cut successively along these hyperplanes, applying the complex of groups

version of the Seifert-van Kampen Theorem [8, Example III.C.3.11.(5) and Exercise
III.C.3.12]. In this way, we obtain a hierarchy of G0 with the following properties:

(1) The edge groups are quasi-convex (since they are stabilizers of hyperplanes,
which are quasi-convex by Theorem A); and

(2) The terminal groups are virtually special (since they are finite-index sub-
groups of the vertex stabilizers in G).

Therefore, G0 admits a quasi-convex hierarchy terminating in virtually special
groups, so G0 is virtually special by Wise’s Quasi-convex Hierarchy Theorem [36,
Theorem 13.3] (see [3, Theorem 10.3] for a somewhat different account). Since G0

is finite-index in G, the group G is virtually special, as required. This completes
the proof of Theorem D. �

We now briefly outline the contents of this paper. In Section 2 we recall those
parts of the theory of complexes of groups from [8] which we need. In Section
3, we prove Theorem A and Corollary B. The proof of Theorem A depends on a
quasi-convexity criterion (Theorem A.3) which is proved separately in Appendix A.
We separate out Theorem A.3 and its proof both because it may be of independent
interest and because the methods, unlike in the rest of the paper, are pure δ–
hyperbolic geometry. In Section 4 we investigate conditions on a group G acting on
a CAT(0) cube complex X and a normal subgroup KEG so that the quotient K

∖
X

is a CAT(0) cube complex. In Section 5 we translate these conditions into group-
theoretic statements. In Section 6 we prove various results about Dehn filling (in
particular, Theorem 6.4 and Corollary 6.5 which may be of independent interest) to
see that the conditions from Section 5 are satisfied for certain subgroups K which
arise as kernels of long Dehn filling maps. We use this to deduce Theorem F.

1.1. Notation and conventions. The notation A<̇B indicates that A is a finite
index subgroup of B; similarly, A ĊB indicates A is a finite index normal subgroup.
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We write conjugation as ax = xax−1, or sometimes as Ad(x)(a). For p an element
of a G–set, we denote the G–orbit by JpK.

1.2. Virtual Haken and Fibering with a single surface. Let M be a closed
hyperbolic 3–manifold, and let Γ = π1(M). Agol’s proof that M is virtually Haken
and virtually fibered in [1] relies on Bergeron–Wise’s theorem that Γ acts properly
and cocompactly on a CAT(0) cube complex [5]. In turn, Bergeron–Wise rely on
work of Kahn–Markovic [26], which provides a “ubiquitous”1 family of immersed
quasi-Fuchsian surfaces in M . That there is such an abundance of surfaces follows
from the proofs in [26], but is not explicitly stated there.

Here we point out that the results in this paper show that the fact that Γ
is virtually special follows from the existence of a single immersed quasi-Fuchsian
surface in M . It is explained in [36] how Virtual Haken and Virtual Fibering follow.

Theorem 1.1. Suppose that M is a closed hyperbolic 3–manifold and that M
contains an immersed quasi-Fuchsian surface. Then π1(M) is virtually special.

Proof. If M is non-orientable, we replace it by its orientation double cover. Let

Γ ∼= π1M be a lattice in Isom+(H3), so that M ∼= Γ

∖
H3

. We note that in this

setting a subgroup W < Γ is geometrically finite as a Kleinian group if and only
if it is quasi-convex in Γ (see [27, Theorem 2] or [34, Theorem 1.1 and Proposition
1.3]).

Let H < Γ be the subgroup corresponding to the immersed quasi-Fuchsian sur-
face. Since H is quasi-convex and codimension 1 in Γ, we can apply the Sageev
construction to obtain a cocompact action of Γ on a CAT(0) cube complex X with
no global fixed point, and with hyperplane stabilizers conjugate to H. Theorem A
implies that the vertex stabilizers for this action are quasi-convex in Γ. To apply
Theorem D, we will show that the vertex stabilizers admit quasi-convex hierarchies
and hence are virtually special.

Let V < Γ be a vertex stabilizer. Since V is quasi-convex in Γ it is a geometrically
finite subgroup of Isom+(H3). As V has infinite index in Γ, it acts with infinite
covolume on H3. An argument of Thurston shows that every finitely generated
subgroup of V is also geometrically finite [30, Proposition 7.1].

Since Γ contains no parabolics, neither does V . Thus a small closed neighborhood

N of the convex core of H

∖
H3

is a compact 3–manifold with nonempty boundary,

and hence is irreducible in the sense that every embedded 2–sphere bounds a ball
[29, Propositions 2.36, 3.1]. A compact irreducible 3–manifold with nonempty
boundary is Haken (see [22, Chapter 6], [25, Chapter III]). In particular it has
a Haken hierarchy [25, IV.12]. This topological hierarchy of N gives a group-
theoretic hierarchy of V . The edge groups in the hierarchy are finitely generated.
The previously mentioned argument of Thurston then implies that the edge groups
are geometrically finite and hence quasi-convex in Γ. In particular, this is a quasi-
convex hierarchy, and we may apply Wise’s Quasi-convex Hierarchy Theorem to
conclude that V is virtually special.

Since all vertex stabilizers of the action Γ y X are quasi-convex and virtually
special, we may apply Theorem D to conclude that Γ is itself virtually special. �

1This terminology is from Cooper and Futer [10].
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2. The complex of groups coming from an action on a cube complex

In this section we give a brief account of those parts of the theory of complexes
of groups which we need. Much more detail can be found in Bridson–Haefliger [8,
III.C].

2.1. Small categories without loops (scwols). By a scwol (small category
without loops) we mean a small category in which for every object v, the set
of arrows from v to itself contains only the unit 1v. For an arrow a of a scwol,
we denote its source by i(a) and its target by t(a). If i(a) = t(a), we say a is a
trivial arrow ; it follows that a = 1v for some v. We sometimes conflate v and 1v.
A (non-degenerate) morphism of scwols f : A → B is a functor which induces, for
each object v of A, a bijection between the arrows {a | i(a) = v} and the arrows
{a | i(a) = f(v)}.
Notation 2.1. Given a scwol X , we denote the set of objects of X by V (X ) and
the set of non-unit morphisms in X by E(X ). The set E(X ) comes equipped with
two maps

i : E(X )→ V (X ), t : E(X )→ V (X ),

Where a is a morphism from i(a) to t(a).
Let E±(X ) be the set of symbols a+ and a− as a ranges over E(X ). We refer

to elements e of E±(X ) as oriented edges of X . If e = a+ then i(e) = t(a) and
t(e) = i(a), while if e = a− then i(e) = i(a) and t(e) = t(a).

A key example of a scwol is the (opposite) poset of cells of a simplicial or cubical
complex, with arrows from each cell to all its faces.

Let X be a CAT(0) cube complex, and suppose that G acts on X combinatorially.
The quotient G

∖
X may or may not be a cube complex, depending on whether the

groups Gσ = {g | gσ = σ} and {g | gx = x, ∀x ∈ σ} agree for all cells σ.
Another way to phrase this issue is to note that, if X0 is the scwol of cells of X,

then G acts by morphisms on X0, but the quotient map X0 → G
∖X0 may not be

a morphism of scwols, since some isometry of X may fix the center of some cube,
but permute faces of that cube. In order to obtain a complex of groups structure
on G from the action Gy X, we need a scwol quotient, so we replace X0 with X ,
the scwol of cells of the first barycentric subdivision of X:

Definition 2.2. If W is a cube complex, the idealization of W is a scwol W which
has objects V (W) in one-to-one correspondence with non-empty nested chains of
cubes of W . There is at most one morphism in W between two objects: If c1
contains c2 as a sub-chain, there is an arrow from c1 to c2.

For example, if X is a single 1–dimensional cube e with endpoints a and b, the
nontrivial arrows of the idealization X are as follows:

(a) (a ⊂ e) //oo (e) (b ⊂ e) //oo (b)
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Already a square τ with e as a face is much more complicated. The idealization
is shown on the left as a graph, with detail shown on the right for the highlighted
portion.

(a) (a ⊂ e) //oo (e)

(a ⊂ e ⊂ τ)

��

hh OO

//

88

��

(e ⊂ τ)

OO

��

(a ⊂ τ)

aa

&&
(τ)

Any automorphism of a cube complex gives an automorphism of its idealization.
Moreover if φ maps a chain of cubes to itself, then it also preserves all subchains.
It follows that the quotient Y = G

∖X is also a scwol, and that the quotient map
X → Y is non-degenerate morphism of scwols.

Remark 2.3. A small category C always has a (geometric) realization which is a
simplicial complex whose 0–cells are the objects of C, with 1–cells corresponding to
morphisms, 2–cells to composable pairs of morphisms, and so on. The realization of
the idealization of W is the second barycentric subdivision of W , so it is naturally
homeomorphic to W .

2.2. Paths and homotopies in a category. The definitions here are mainly
taken from [8, III.C.A], though our notation is slightly different.

Let C be a category. We define C–paths to be lists of letters e, where e = a± for
some arrow a of C. For e = a± we have i(a+) = t(a) = t(a−) and t(a+) = i(a) =
i(a−).

A C–path p of length 0 is an object v of C, with i(p) = t(p) = v. We also consider
the path of length 0 at v to be an empty list (though it is an empty list based at
v). For j > 0, a C–path of length j is a list p = (e1, . . . , ek) where for each i we have
t(ei) = i(ei+1). We have i(p) = i(e1) and t(p) = t(ek).

If p is a C–path of length j > 0, q is a C–path of length k > 0, and t(p) = i(q),
then the concatenation p · q is a C–path of length j + k with i(p · q) = i(p) and
t(p · q) = t(q).2

The category C is connected if for any two objects v0, v1 in C there is a C–path
p with i(p) = v0 and t(p) = v1.

If q is any C–path, then i(q) and t(q) can be regarded as paths of length 0. We
use the convention that i(q) · q = q · t(q) = q.

If p is a C–path, then p is non-backtracking if it contains no subpath of the form
(a+, a−) or (a−, a+).

Definition 2.4. Homotopies of C–paths (see [8, III.C.A.11]) are generated by the
following elementary homotopies, valid whenever both sides are paths:

(1) p · a+ · a− · q ' p · q or p · a− · a+ · q ' p · q;

2By ‘concatenation’, we just mean concatenation of lists.



8 D. GROVES AND J.F. MANNING

(2) p · a+ · b+ · q ' p · (ab)+ · q or p · b− · a− · q ' p · (ab)− · q (here ab = a ◦ b);
and

(3) p · 1±v · q ' p · q (where 1v is an identity arrow).

Definition 2.5. If C is the realization of a category C, then there is a canonical
correspondence between combinatorial paths in the 1–skeleton of C and C–paths.
If p is a combinatorial path in C(1), and q the corresponding C–path, we say that
p is the realization of q, and q is the idealization of p.

Remark 2.6. Suppose that C is the idealization of a cube complex C, so that the
realization of C is the second barycentric subdivision of C. In later sections, we
make use of the fact that the following types of paths have canonical idealizations
in C:

(1) Combinatorial paths in the 1–skeleton of the first cubical subdivision Cb of
C (Section 3).

(2) Combinatorial paths in links of cells of C (Section 4).

In both cases, this follows from the fact that subdivisions of these graphs embed
naturally in the 1–skeleton of the second barycentric subdivision.

2.3. Complexes of groups.

Definition 2.7. [8, III.C.2.1] Let A be a scwol. A complex of groups H(A) consists
of the following data:

(1) For each object σ of A, a local group (also called a cell group) Hσ;
(2) For each arrow a ofA, an injective group homomorphism ψa : Hi(a) → Ht(a)

(If a is a trivial arrow, we require ψa to be the identity map); and
(3) For each pair of composable arrows a, b with composition a ◦ b, a twisting

element z(a, b) ∈ Ht(a). (If either a or b is trivial, z(a, b) = 1.)3

These data satisfy the following conditions (writing ab for a◦b) whenever all written
compositions of arrows are defined:

(1) (compatibility) Ad(z(a, b))ψab = ψaψb; and
(2) (cocycle) ψa(z(b, c))z(a, bc) = z(a, b)z(ab, c).

Definition 2.8 (The complex of groups coming from an action). Suppose G acts
on a scwol X so that any g ∈ G fixing an object fixes every arrow from that object.
Let Y be the quotient scwol. We obtain a complex of groups G(Y) once we have
made the following choices [8, III.C.2.9]:

(1) For each object v of Y, a lift ṽ to X ; this lift also determines lifts ã of all
arrows a with i(a) = v.

(2) For each nontrivial arrow a, a choice of element ha so that t(ha(ã)) = t̃(a).

Given these choices, one defines:

(1) Gv is the stabilizer of ṽ,
(2) ψa = Ad(ha)|Gi(a)
(3) z(a, b) = hahbh

−1
ab .

The complex of groups G(Y) can be used to recover the group G. There are
two different ways of doing this. The first is explained in [8, III.C.3.7], and involves
G(Y)-paths. The second way is from [8, III.C.A], and is the way that we proceed.

3In [8] the notation ga,b is used instead of z(a, b).
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The advantage to this second way, which uses categories and coverings of categories,
is that lifting paths to covers is a canonical procedure (as with usual covering
theory).

2.4. Fundamental groups and coverings of categories. In Definition 2.4 we
defined homotopy of C–paths, where C is a category.

Definition 2.9. Given a category C and an object v0 of C, the fundamental group
of C based at v0, denoted π1(C, v0), is the set of homotopy classes of C–loops based
at v0, with operation induced by concatenation of C–paths.

Definition 2.10. [8, III.C.A.15]. Let C be a connected category. A functor f : C′ →
C is a covering if for each object σ′ of C′ the restriction of f to the collection of
morphisms that have σ′ as their initial (respectively, terminal) object is a bijection
onto the set of morphisms which have f(σ′) as their initial (resp., terminal) object.

The universal cover C̃ of a connected category C is described in [8, III.C.A.19]:

Fix a base vertex v0 of Y, and define Obj(C̃) to be the set of homotopy classes of
C–paths starting at v0. If [c] is a homotopy class of path, and α is an arrow from

t(c), then there is an arrow of C̃ from [c] to [c · α−]. The projection π : C̃ → C sets
π ([p]) = t(p) and if α̃ is the arrow described above then π(α̃) = α.

The theory of coverings of categories is entirely analogous to ordinary covering
theory. In fact it is a special case, as the covering spaces of a connected category C
correspond bijectively to the covering spaces of its realization.

We record the following observation.

Lemma 2.11. Let φ : C̃ → C be a covering of categories, and suppose φ(ṽ) = v, for

objects v of C and ṽ of C̃. Any C–path p with i(p) = v has a unique lift to a C̃–path
p̃ with i(p̃) = ṽ. Moreover any elementary homotopy from p to a path p′ gives a
unique elementary homotopy of p̃ to a lift p̃′ of p′ with the same endpoints as p̃.

2.5. The category associated to a complex of groups. Any complex of groups
G(Y) has an associated category CG(Y).

Definition 2.12. [8, III.C.2.8] The objects of CG(Y) are the objects of the scwol
Y. Arrows of CG(Y) are pairs (g, a) so that a is an arrow of Y and g ∈ Gt(a).
Composition is defined by (g, a) ◦ (h, b) = (gψa(h)z(a, b), ab).

Recall that if a is a trivial arrow then ψa is the identity homomorphism and
z(a, x), z(x, a) are always trivial.

Remark 2.13. The map CG(Y)→ Y given by (g, a)→ a is a functor. This map
has an obvious section a 7→ (1, a). If there are nontrivial twisting elements this is
not a functor, but it does allow Y–paths to be “unscwolified” to CG(Y)–paths. In
Definition 2.20, we explain how to go back and forth between paths in covers of
CG(Y) and their associated scwols.

Theorem 2.14. [8, III.C.3.15 and III.C.A.13] Suppose that the group G acts on
the simply connected complex X, giving rise to an action of G on the scwol X , and
that v0 is an object in Y = G

∖X . Let CG(Y) be the category associated to G(Y).
Then G ∼= π1(CG(Y), v0).

Definition 2.15. Let a be a nontrivial arrow of Y. The arrow (1, a) of CG(Y) is
called a scwol arrow. Let g ∈ Gv where v is a vertex of the scwol Y. The arrow
(g, 1v) is called a group arrow.
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In later sections we abuse notation and refer to the edge (g, 1v)
+ (for a group

arrow (g, 1v)) as “(g, v)” or even just “g”. We also blur the difference between the
scwol arrow (1, a) and the Y–arrow a, and often refer to the scwol arrow by “a”.
We also blur the distinction between the CG(Y)–edge (1, a)± and the Y–edge a±.

Lemma 2.16. Every CG(Y)–path is homotopic to a concatenation of group and
scwol arrows.

Proof. Observe that any CG(Y)–arrow (g, a) is a composition of a group arrow and
a scwol arrow: (g, a) = (g, t(a)) ◦ (1, a). �

As described at the end of the last subsection, a choice of base vertex v0 deter-

mines a universal covering map φ : C̃G(Y)→ CG(Y) sending a homotopy class of
path [p] to its terminal vertex t(p), and the arrow from [c] to [c · (g, a)−] to the
arrow (g, a) of CG(Y).

What is important for us is that the group π1(CG(Y), v0) acts on the universal

cover C̃G(Y) with quotient CG(Y), and if H < π1(G(Y), v0) is any subgroup, then

H

∖
C̃G(Y) is an intermediate cover of categories. We only consider covers of this

form.

Definition 2.17. Let C → CG(Y) be a covering of categories. We say that an
arrow is labeled by (g, a) if its image in CG(Y) is (g, a). An arrow of C is said to be
a scwol (resp. group) arrow if its label is a scwol (resp. group) arrow of CG(Y)

Lemma 2.18. If C → CG(Y) is any cover, then every C–path is homotopic to a
concatenation of group and scwol arrows.

Proof. Lemma 2.16 gives a homotopy in CG(Y) to a path of the desired form.
Lemma 2.11 says that the homotopy lifts. �

We are particularly interested in covers of CG(Y) corresponding to normal sub-

groups of G ∼= π1(G(Y), v0). Fix some such K C G, let C̃G(Y) be the universal

cover of CG(Y), and let CK := K

∖
C̃G(Y) be the corresponding cover. The group

K also acts on the scwol X , with quotient scwol Z := K
∖X . We observe that (just

as with ordinary covers) a CG(Y)–loop p represents an element of K if and only if
it lifts to a loop in CK . (Since K CG, the basepoints do not matter.)

Given a regular cover CK of CG(Y), corresponding to the normal subgroupKEG,
there is a natural quotient CK of CK , defined as follows:

Define an equivalence relation on the objects of CK where two objects are equiv-
alent if they differ by an invertible arrow. Define an equivalence relation on arrows
of CK by setting γ1 ∼ γ2 if i(γ1) ∼ i(γ2), t(γ1) ∼ t(γ2) and if there are invertible
arrows: ρ1 : i(γ1)→ i(γ2) and ρ2 : t(γ1)→ t(γ2) so that ρ2γ1 = γ2ρ1.

Objects and arrows of CK up to the above equivalences form a quotient category
CK . Since Mor(v, v) is a group for any object v of CK , the following lemma is
straightforward.

Lemma 2.19. The category CK is a scwol, and the quotient map CK → CK is
a functor. The category CK is G

/
K –equivariantly isomorphic to the scwol Z =

K
∖X .
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Definition 2.20. We denote the functor from CK to Z given by Lemma 2.19 by
ΘK : CK → Z. Since ΘK is a functor, it also gives a way to turn a CK–path p into
a Z–path p̄. Deleting all the trivial arrows from p̄ produces a Z–path which we call
the scwolification of p. Abusing the notation slightly, we denote the scwolification
of p by ΘK(p).

Conversely, if σ is a Z–path, then any CK–path σ̂ so that ΘK(σ̂) = σ is called an
unscwolification of σ. The unscwolification is highly non-unique, but always exists.

The following can be deduced by examining the elementary homotopies.

Lemma 2.21. Scwolifications of homotopic paths are homotopic.

Given a CG(Y)–path p we can lift it to a CK–path p̂, and then scwolify p̂ to the
Z–path ΘK(p̂).

Lemma 2.22. Let p be a CG(Y)–loop at v and let p̂ be a lift to CK . If ΘK(p̂) is a
loop, then there is a group arrow labeled by an element of Gv joining the endpoints
of p̂.

In case K = {1} we have Z = X and CK = C̃G(Y). In this case we just write

Θ: C̃G(Y)→ X .

3. Quasi-convexity in the Sageev construction

In this section, we prove Theorem A. Recall that we have a hyperbolic group G
acting cocompactly on a CAT(0) cube complex X, and we are required to prove
that the vertex stabilizers are quasi-convex if and only if the hyperplane stabilizers
are quasi-convex.

To prepare for this proof it may be useful to think about the case that X is a tree.
In that case, hyperplanes are midpoints of edges, and so the statement is that edge
stabilizers are quasi-convex if and only if vertex stabilizers are. Edge stabilizers
are intersections of vertex stabilizers, and intersections of quasi-convex subgroups
are quasi-convex, so one direction is clear. The other direction is not much harder:
Consider a geodesic joining two vertices of a vertex stabilizer. The vertex stabilizer
is coarsely separated from the rest of the Cayley graph by appropriate cosets of
edge stabilizers. The quasi-convexity of these cosets “traps” the geodesic close to
the vertex stabilizer.

Now remove the assumption that X is a tree, and suppose that vertex stabi-
lizers are quasi-convex. It still follows that edge stabilizers are quasi-convex, but
a hyperplane stabilizer is much bigger than an edge stabilizer. We will express a
hyperplane stabilizer as a union of cosets of edge stabilizers, intersecting in a con-
trolled way, and use a quasi-convexity criterion proved in the Appendix to conclude
that the hyperplane stabilizer is quasi-convex.

If on the other hand we assume that hyperplane stabilizers are quasi-convex,
we will use them as in the tree case to control geodesics joining points in a vertex
stabilizer. We inductively use more and more hyperplanes to corral points on a
geodesic in an argument which terminates because of the finite dimensionality of
the cube complex.

As mentioned in the introduction, we prove the direction (1) =⇒ (2) in a more
general setting. Therefore, for the beginning of this section we do not assume that
G is hyperbolic, merely that it acts cocompactly on a CAT(0) cube complex X.
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We briefly describe the contents of the remainder of this section. In Subsection
3.1 we explain how we consider subset of small categories as graphs. In Subsection
3.2 we identify certain subsets of CG(Y) which are tuned to the cubical geometry
of Xb and associate graphs with these subsets. In Subsection 3.3 we build graphs
upon which intersections of stabilizers of hyperplanes act. In Subsection 3.4 we
prove the direction (1) =⇒ (2) of Theorem A. In fact, we prove the more general
Theorem 3.26. In Subsection 3.5 we prove the direction (2) =⇒ (1) of Theorem
A. In Subsection 3.6 we consider various possible generalizations of Theorem A.
Finally, in Subsection 3.7 we prove Corollary B.

3.1. Graphs from subsets of small categories. Let C be a (small) category,
and let S be a subset of the set of arrows of C. There is an associated graph (really
a 1–complex), which we denote Gr(S), with vertex set the set of objects which are
either the source or target of some arrow in S, and with edges in correspondence
with the arrows S. For Gr(S) a graph constructed this way, we denote the original
set of arrows as Ar(Gr(S)) = S.

Example 3.1. Let S be the set of all arrows in C. Then Gr(C) := Gr(S) is the
1–skeleton of the geometric realization of C.

Example 3.2. Suppose C is a group (i.e. C has a single object and each morphism
of C is invertible), and S0 ⊂ C is a generating set. Let S be the set of arrows in

the universal cover C̃ with label in S0. Then Gr(S) is the Cayley graph of G with
respect to S0.

3.2. Cubical paths. It is convenient for us to work in the cubical subdivision of
X, which we now describe.

Definition 3.3. Suppose that X is a cube complex. The cubical subdivision of X,
denoted Xb, is the cube complex obtained by replacing each n–cube in X by 2n

n–cubes, found by subdividing each coordinate interval into two equal halves, and
then gluing in the obvious way induced from the structure of X.

Of course, Xb is canonically homothetic to X, and Xb is NPC (respectively,
CAT(0)) if and only if X is. We suppose that X is CAT(0), and therefore Xb is
also.

If a group G acts by cubical automorphisms on X, then it clearly does so on
Xb. Moreover, the carrier of a hyperplane W in Xb is homeomorphic to W × [0, 1].
With appropriate choice of orientation, W × {1} is a hyperplane W ↑ of X, and
Stab(W ) ⊂ Stab(W ↑) is an inclusion with index 1 or 2 (depending on whether or
not there is an element of G which fixes W ↑ but exchanges the two sides of W ↑).
We denote W × {0} by W ↓. Note that W ↓ naturally corresponds to the cubical
subdivision of a sub-complex of X.

We observe the following.

Lemma 3.4. Suppose that a hyperbolic group G acts on a CAT(0) cube complex
X. Then hyperplane stabilizers for the G–action on X are quasi-convex if and only
if hyperplane stabilizers for the G–action on Xb are.

Thus, in order to prove Theorem A, we can consider either hyperplane stabilizers
for hyperplanes in X or for hyperplanes in Xb. A similar result holds in the setting
of strongly quasi-convex subgroups of a finitely generated group, as discussed in
Subsection 3.4 below.
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Observation 3.5. The vertices of Xb are in bijection with the cubes of X.
The cells of Xb are in bijection with pairs (σ̃1, σ̃2) of cubes in X so that σ̃1 ⊆ σ̃2.

The dimension of the cube corresponding to (σ̃1, σ̃2) is dim(σ̃2)− dim(σ̃1).
Thus, an edge in Xb corresponds to a pair of cubes (σ̃1, σ̃2) where σ̃1 is a

codimension–1 face of σ̃2. Moreover, each cell of Xb can be naturally identified
with an object of X .

In Section 2.4, we defined C̃G(Y) to be the universal covering of the category

CG(Y) associated to the complex of groups G(Y). Recall that the objects of C̃G(Y)
are homotopy classes of CG(Y)–paths, starting at a (fixed) basepoint v0 ∈ Y, and
arrows are labeled by arrows of CG(Y) (Definition 2.17). It is helpful to assume
(as we may do without loss of generality) that v0 comes from a 0–cube of X. The

basepoint of C̃G(Y) is ṽ0, the homotopy class of the constant path at v0.

The group π1(CG(Y), v0) acts on C̃G(Y), with quotient the category CG(Y). As
in Theorem 2.14, we can identify G with π1(CG(Y), v0). The proof of each direction
of Theorem A begins with choosing a certain connected G–cocompact subgraph Γ of

Gr(C̃G(Y)). The G-cocompact graph is different in the two directions of the proof,
primarily because when we assume that hyperplane stabilizers are quasi-convex,
we do not a priori know that vertex stabilizers are finitely generated (in fact, this
is part of the desired conclusion of Theorem A). In both directions, the graph we
choose is chosen to reflect the cubical geometry of X, or rather that of Xb.

As noted in Remark 2.6 any path in the 1–skeleton of Xb has a canonical ideal-
ization in X . Each 1–cell e of Xb corresponds to some pair of cells (σ̃1 ⊆ σ̃2) with
σ̃1 of codimension 1 in σ̃2. If the path p passes over the edge e, its idealization
p̂ contains consecutive arrows labelled (σ̃1 ⊆ σ̃2) → σ̃1 and (σ̃1 ⊆ σ̃2) → σ̃2, and
every arrow of p̂ has such a label.

Definition 3.6. A pair of opposable scwol arrows in C̃G(Y) is a pair of scwol
arrows γ1, γ2 so that

(1) c = i(γ1) = i(γ2) has the property that Θ(c) is a chain (σ̃1 ⊂ σ̃2) where σ̃1

has codimension one in σ̃2;
(2) the label of γ1 is (1, a) where a is the arrow in Y corresponding to the

G–orbit of the arrow (σ̃1 ⊂ σ̃2)→ σ̃1 in X ; and
(3) the label of γ2 is (1, b), where b is the arrow in Y corresponding to the

G–orbit of the arrow (σ̃1 ⊂ σ̃2)→ σ̃2 in X .

The center of the pair of opposable arrows (γ1, γ2) is the object c = i(γ1) = i(γ2).
The image in CG(Y) of a pair of opposable scwol arrows is also referred to as a
pair of opposable scwol arrows.

Definition 3.7. An object in CG(Y) (equivalently, in Y, since the objects of these
two categories are the same) is cubical if it is an orbit of cubes in X (rather than

an orbit of chains of cubes of length greater than 1). An object in C̃G(Y) is cubical
if its projection to CG(Y) is cubical.

A path p in CG(Y) is cubical if

(1) The initial and terminal objects of p are cubical;
(2) p is a concatenation of group arrows and scwol arrows; and
(3) The scwol arrows occur in consecutive pairs, as pairs of opposable scwol

arrows.
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A path in C̃G(Y) is cubical if its projection to CG(Y) is cubical.

It follows from the definition that all group arrows for a cubical path occur at
cubical objects.

The following result is straightforward to prove, starting with an arbitrary CG(Y)–
path and applying relations until it is of the desired form.

Proposition 3.8. Suppose that v and w are cubical vertices of CG(Y) and σ is a
CG(Y)–path between v and w. Then σ is homotopic to a cubical path.

In particular, every g ∈ G = π1(CG(Y), v0) is represented by a cubical CG(Y)–
path starting and ending at v0.

Definition 3.9. Suppose that for each cubical object o of Y we choose a set Ao ⊂
Go. These determine a subset S(A) of the arrows of C̃G(Y) which is the union of
the following two sets:

(1) S1(A) is the set of (group) arrows with label in some Ao.
(2) S2(A) is the set of scwol arrows occurring in some pair of opposable scwol

arrows.

As discussed in Section 3.1, there is an associated graph Gr(S(A)) which we denote
by Γ(A). A vertex of this graph is called cubical if it comes from a cubical object,
and otherwise it is called central.

Note that any central vertex of Γ(A) only meets opposable scwol arrows and
thus has valence exactly two, and each of its neighbors is a cubical vertex of Γ(A).

Example 3.10. For each cubical object o of Y, let Uo = Go. It follows from
Proposition 3.8 that Γ(U) is connected (see also Proposition 3.23 below).

The functor Θ: C̃G(Y)→ X induces a simplicial map

Ψ: Γ(U)→
(
Xb
)(1)

.

All the graphs we construct are subgraphs of Γ(U), and we keep the terminology
of cubical vertices and central vertices for these subgraphs.

3.3. Graphs associated to tuples of intersecting hyperplanes. In this sub-
section we consider tuples (W1, . . . ,Wk) of hyperplanes of Xb so that

⋂
iWi is

nonempty. We include the possibility of the empty list (), in which case we use the
convention that the intersection is all of Xb. We observe the following consequence
of the cocompactness of Gy X:

Lemma 3.11. There are finitely many G–orbits of finite ordered lists

(W1,W2, . . . ,Wk)

of distinct hyperplanes so that ∩ki=1Wi 6= ∅. For each such list,

Stab(C) = Stab(W1) ∩ · · · ∩ Stab(Wk),

using the convention that the empty intersection of subgroups is G.

Definition 3.12 (Choosing representatives). We choose representatives of these
ordered lists to preserve inclusion. Namely, first choose a collection of representa-
tives of hyperplanes. If W is a hyperplane, denote its representative by W . Next,
choose representatives of pairs (W1,W2) with W1 ∩W2 6= ∅ so that the representa-
tive pair is (W1,W

′
2), where W2 is some hyperplane in the G–orbit of W2, though
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not necessarily W2. What we require is that (W1,W
′
2) is in the G–orbit of (W1,W2),

in the sense that there is some g ∈ G so that gW1 = W1 and gW2 = W ′2. More
generally, the representative of a list (W1, . . . ,Wk) starts with the representative
of the list (W1, . . . ,Wk−1) and then appends an appropriate element of the orbit
of Wk (though not necessarily the element Wk). Let W denote the chosen finite
collection of representative ordered lists of hyperplanes. For 0 ≤ i ≤ dimX, let Wi

denote the subcollection consisting of ordered lists of length i.

Definition 3.13 (Pushing down). Suppose that W is a hyperplane of Xb. As in
Subsection 3.2, we identify the carrier of W in Xb with a product W × [0, 1], where
W ×{1} is a hyperplane W ′ of X, and W ×{0} is one of the connected components
of the frontier of the carrier of W ′. As sub-complexes of Xb, we write these as
W ↑ = W × {1} and W ↓ = W × {0}. If U is a sub-complex of W , then define
U↑ ⊆ W ↑ and U↓ ⊆ W ↓ in the analogous way. It is possible that such a U is a
sub-complex of more than one hyperplane, in which case we need to specify which
hyperplane we are focusing on. We write U↑(W ) and U↓(W ) when there is some
ambiguity.

Definition 3.14 (The graph Γ̂(C)). Suppose that C = (W1, . . . ,Wk) ∈W.
If C is the empty list of hyperplanes, let IC = Xb, let V�(C) be the set of cubical

objects of Xb, and let Γ̂(C) = Γ(U).
Now suppose that k ≥ 1. Let C− = (W1, . . . ,Wk−1) and suppose by induction

that IC− , V�(C−) and Γ̂(C−) have been defined. By the way the set W was chosen,
C− ∈W.

Define
IC = (IC− ∩Wk)

↓(Wk)
.

This is obtained by pushing the first hyperplane into a sub-complex of Xb, intersect-
ing with the next hyperplane and then pushing this intersection into a sub-complex
of Xb, and repeating. In particular IC is a subcomplex of IC− . The intersection
IC− ∩Wk ∩ (Xb)(1) is a collection of midpoints of edges in Xb dual to Wk. Let
O(C) ⊂ X be the set of idealizations of these midpoints. Each such idealization is
a chain c = (σ̃ ⊂ ν̃) where ν̃ is a cube of X contained in IC− which is cut in half

by W ↑k . For v ∈ Θ−1(c) there is a unique scwol arrow γv in C̃G(Y) with i(γv) = v
so that Θ(γv) = (σ̃ ⊂ ν̃)→ σ̃.

Define the set

(†) V�(C) =
{
t(γv) | v ∈ Θ−1 (O(C))

}
∩ V�(C−).

The graph Γ̂(C) is now defined to be Gr (S(C)), where S(C) is the union of the
following two sets of arrows:

(1) S1(C) is the collection of group arrows between objects of V�(C).
(2) S2(C) is the set of scwol arrows occurring in a pair (γ1, γ2) of opposable

scwol arrows with both t(γ1) and t(γ2) in V�(C).

The following lemmas are clear from the definition.

Lemma 3.15.
Γ̂(C) ⊆ Γ̂(C−).

Lemma 3.16. For any C ∈ W, Θ(V�(C)) lies in the idealization of IC.

The next proposition shows that Γ̂(C) is Stab(C)–equivariant in a strong sense.
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Proposition 3.17. Let C = (W1, . . . ,Wk) be as above. The graph Γ̂(C) is Stab(C)–

invariant. Moreover, if gΓ̂(C) ∩ Γ̂(C) 6= ∅, then g ∈ Stab(C).

Proof. We continue to use the notation C− = (W1, . . . ,Wk−1). (Note that for k = 1,
Stab(C−) = G.)

First observe that g preserves Γ̂(C) if and only if g ∈ Stab(V�(C)), defined above
in equation (†).

Suppose that g ∈ Stab(C). Then g ∈ Stab(C−), so by induction, g preserves
V�(C−). To establish that g ∈ Stab(V�(C)), it suffices to show that g preserves
O(C), the set of idealizations of points in IC− ∩Wk ∩ (Xb)(1). This holds because
gWi = Wi for each i ∈ {1, . . . , k}. The first conclusion is proved.

We now assume gΓ̂(C) ∩ Γ̂(C) 6= ∅ and show that g ∈ Stab(C). Suppose that

z ∈ gΓ̂(C) ∩ Γ̂(C) is a vertex. If z is central, then both its (cubical) neighbors are

also in gΓ̂(C) ∩ Γ̂(C), so we may assume z is cubical.
In this case z ∈ V�(C), so z = t(γv) where v ∈ Θ−1(O(C)) is the idealization

of some point of IC− ∩ Wk ∩ (Xb)(1). Similarly z′ = g−1(z) = t(γw) for some

w ∈ Θ−1(O(C)). Because the orbit map from C̃G(Y) to CG(Y) is a covering map,
we must have gγw = γv. But the realization of Θ(i(γv)) is contained in a unique
hyperplane of Xb, namely Wk, and similarly for Θ(i(γw)). We must therefore
have gWk = Wk, so g ∈ Stab(Wk). Induction shows that g ∈ Stab(C−). Since
Stab(C−) ∩ Stab(Wk) = Stab(C), we are finished. �

Lemma 3.18. Suppose that v ∈ V�(C). Let o = JΘ(v)K be the corresponding object

in Y. The set of labels of group arrows in Ar(Γ̂(C)) adjacent to v forms a subgroup
of Go isomorphic to Stab(C) ∩ Stab (Θ(v)). If v, w are in the same Stab(C)–orbit
the corresponding subgroups of Go are equal.

Proof. Fix v ∈ V�(C). By the definition of V�(C), there is a unique scwol arrow
γ with t(γ) = v and i(γ) ∈ Θ−1(O(C)). Let a be a group arrow from v to w for
some w ∈ V�(C). There must similarly be a scwol arrow γ′ with the same label as
γ satisfying t(γ′) = w and i(γ′) ∈ Θ−1(O(C)). In fact we have Θ(γ) = Θ(γ′), so
i(γ) is connected to i(γ′) by a group arrow.

Conversely, if v0 and w0 are two objects in O(C) which are joined by a group
arrow then there is a square with two scwol arrows γv0 and γw0

and a group arrow
between the corresponding objects in V�(C). It is clear that the set of all such group
arrows adjacent to v form a group which is isomorphic to GJΘ(i(γ))K. This group is
isomorphic to Stab(C) ∩ Stab (Θ(v)). The final assertion is clear. �

Definition 3.19. Let v ∈ V�(C), and let o = JΘ(v)K be the corresponding G–orbit
(object in Y). Let Hv,C be the subgroup of Go given by Lemma 3.18.

Note that by Lemma 3.18, Hv,C depends only on C and the Stab(C)–orbit of v,
and not on the particular choice of v.

Lemma 3.20. There are finitely many Stab(C)–orbits of cubical vertices in Γ̂(C).

Proof. Suppose C = (W1, . . . ,Wk), C− = (W1, . . . ,Wk−1), as above.

The cubical vertices in Γ̂(C) are exactly V�(C), so we need to show Stab(C) acts
cofinitely on V�(C).
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We claim first that there is a Stab(C)–equivariant bijection α : V�(C)→ Θ−1(Ξ)
where Ξ is the set of objects

τC := (IC ∩ τ ⊂ IC− ∩ τ ⊂ · · · ⊂ τ),

where τ ranges over those cubes of X meeting
⋂k
i=1Wi. Indeed this can be seen by

induction on k. In case k = 0, these sets are equal. Suppose k > 0. If v ∈ V�(C),
then v = t(γ1) where γ1 has scwolification

(IC ∩ τ ⊂ IC− ∩ τ)→ (IC ∩ τ)

for some cube τ of X. If k = 1, then IC− ∩ τ = τ , and we define α(v) = i(γ1).
Otherwise by induction there is a unique scwol arrow γ2 with t(γ2) = i(γ1) and
scwolification

τC → (IC ∩ τ ⊂ IC− ∩ τ)

and we define α(v) = i(γ2). We note that in either case α : V�(C) → Θ−1(Ξ) is a
bijection.

For any cube τ meeting
⋂k
i=1Wi we have Stab(τ) ∩ Stab(C) = Stab(τC), so

Θ−1(τC) meets exactly one Stab(C)–orbit in Θ−1(Ξ). Since there are finitely many
Stab(C)–orbits of such cubes, the set Θ−1(Ξ) is Stab(C)–cofinite. �

Let ṽC be a basepoint of Γ̂(C). Let d̃C be a cubical C̃G(Y)–path from ṽ0 to ṽC.
The paths without ‘ ˜ ’ on them denote the projected CG(Y)–paths.

Lemma 3.21. Every element of Stab(C) can be represented by a CG(Y)–path of
the form

dC · p · dC,

where p is a cubical CG(Y)–path so that the lift p̃ of p to C̃G(Y) starting at ṽC is

a concatenation of arrows in Ar(Γ̂(C)).

Definition 3.22. Choose a collection of Stab(C)–orbit representatives of objects

of V�(W ). For each such representative v, choose a subset BC
v of Hv,C. Let B̃C

v

be the set of arrows from v which are labelled by elements of BC
v , and extend this

definition equivariantly across the Stab(C)–orbit of v. Let BC be the union of the

B̃C
v and let ΓC(BC) = Gr

(
BC ∪ S2(C)

)
.

Proposition 3.23. The graph ΓC(BC) admits a free Stab(C)–action. If each BC
v is

finite then the Stab(C)–action is cocompact.
Suppose that Stab(C) is generated by a finite set F , and that each g ∈ F is

represented by a CG(Y)–path dC · pg · dC as in the conclusion of Lemma 3.21. If
each group arrow occurring in each pg has label in 〈BC

v 〉 for the appropriate BC
v then

ΓC(BC) is connected.

Proof. Proposition 3.17 implies that Γ̂(C) is Stab(C)–invariant. It then follows
from the construction that ΓC(BC) is also Stab(C)–invariant. The free G–action

on C̃G(Y) by deck transformations thus restricts to a free action of Stab(C) on
ΓC(BC).

Now suppose each BC
v is finite. Since Y is finite, at each object v of C̃G(Y) there

are only finitely many scwol arrows which begin or end at v. Since BC
v is finite, this

implies that the graph ΓC(BC) is locally finite. It now follows from Lemma 3.20
that the Stab(C)–action is cocompact.
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Now suppose that Stab(C) = 〈F 〉 for a finite set F , and that the hypotheses of
the final assertion of the proposition is satisfied. We first note that from any vertex
v of ΓC(BC) there is a g ∈ Stab(C) and a path consisting entirely of scwol arrows
between v and g.ṽC. Therefore, it suffices to find a path in ΓC(BC) between ṽC an
g.ṽC, for an arbitrary g ∈ Stab(C). We can represent g as a product of elements of
F and their inverses. Each of these elements of F is represented by a path based
at v0 of the form dC · p · dC as in Lemma 3.21. Lifting to a path starting at ṽ0,
these paths determine a path between ṽ0 and g.ṽ0 which is homotopic to a path
dC · q̃ ·dC where q̃ is a cubical path starting at ṽC which is a concatenation of arrows
whose labels all lie in the appropriate 〈BC

v 〉, by the choice of F . Therefore, q̃ lies in
ΓC(BC), which proves that ΓC(BC) is connected, as required. �

We denote the restriction of Ψ: Γ(U)→
(
Xb
)(1)

to ΓC(BC) by

ΨC : ΓC(BC)→ (Xb)(1).

3.4. If hyperplane stabilizers are QC then cell stabilizers are QC. In this
section we prove the direction (1) =⇒ (2) of Theorem A. As mentioned in the
introduction, we prove this in greater generality than that of a hyperbolic group
acting cocompactly on a CAT(0) cube complex with quasi-convex hyperplane sta-
bilizers. The right general setting for this proof is that of strongly quasi-convex
subgroups of finitely generated groups, as defined by Tran in [35]. (Such subgroups
were also studied by Genevois [15] under the name Morse subgroups.)

Definition 3.24. [35, Definition 1.1] Let X be a geodesic metric space. A subset
Q ⊆ X is strongly quasi-convex if for every K ≥ 1, C ≥ 0 there is some M =
M(K,C) so that every (K,C)–quasi-geodesic in X with endpoints in Q is contained
in the M–neighborhood of Q. The function M(K,C) is called a Morse gauge.

Strong quasi-convexity persists under quasi-isometries of pairs. This is presum-
ably known to the experts, and is closely related to [35, Proposition 4.2], but we
do not see it in the literature so we provide a proof sketch.

Theorem 3.25. Suppose that X and Y are geodesic metric spaces, that A ⊂ X is
strongly quasi-convex, that φ : X → Y is a quasi-isometry and that B ⊂ Y lies at
finite Hausdorff distance from φ(A). Then B is a strongly quasi-convex subset of
Y .

Proof sketch. This is proved essentially in the same way as the corresponding fact
about quasi-convex subsets of hyperbolic spaces. The difference is that instead of
a single constant of quasi-convexity, we must produce a Morse gauge.

Suppose that φ : X → Y and ψ : Y → X are (λ, ε)–quasi-isometries which are
ε–quasi-inverses, and that dHaus(B,φ(A)) ≤ ε.

Any quasi-geodesic γ joining points in B can be extended by a pair of geodesic
segments of length ≤ ε to make a quasi-geodesic γ′ joining points in φ(A). The
image of γ′ under ψ can likewise be extended to a quasi-geodesic γ′′ between points
of A. If γ was a (K,C)–quasi-geodesic, then γ′′ is a (K ′, C ′)–quasi-geodesic where
K ′, C ′ depend only on K, C, λ, and ε. If M is the Morse gauge for A in X, then let
M1 = M(K ′, C ′). For any point p on γ, the point ψ(p) is on γ′′ so it is within M1

of some point in A. Using φ to move back to X we see that p is within λM1 + 3ε
of some point of B. We can therefore define a Morse gauge M ′ for B in Y by
M ′(K,C) = λM(K ′, C ′) + 3ε. �
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In particular, the notion of strong quasi-convexity makes sense for subgroups of
finitely generated groups.

In this subsection, we prove the following theorem.

Theorem 3.26. Suppose that a finitely generated group G acts cocompactly on
a CAT(0) cube complex X and that the hyperplane stabilizers are strongly quasi-
convex. Then the cell stabilizers are strongly quasi-convex.

Since quasi-convexity is equivalent to strong quasi-convexity for subgroups of
hyperbolic groups, Theorem 3.26 immediately implies the direction (1) =⇒ (2) of
Theorem A.

Note that each cell stabilizer is a finite intersection of vertex stabilizers. Tran
shows that a finite intersection of strongly quasi-convex subgroups is strongly quasi-
convex ([35, Theorem 1.2.(2)]) so we only need to show that vertex stabilizers are
strongly quasi-convex whenever hyperplane stabilizers are.

We will use the following general statement about intersections of strongly quasi-
convex sets, analogous to [8, III.Γ.4.13].

Proposition 3.27. For any Morse gauge M and any D,N, r > 0 there is an R > 0
so that the following holds. Let X be a graph of valence ≤ D with a group G acting
on X with at most N orbits of vertices. Let A, B be M–strongly quasi-convex
subsets of X satisfying:

(1) If g ∈ G satisfies gA ∩A 6= ∅ then gA = A.
(2) If g ∈ G satisfies gB ∩B 6= ∅ then gB = B.
(3) A ∩B is nonempty.

If max{d(p,A), d(p,B)} ≤ r, then d(p,A ∩B) ≤ R.

Proof. Note that a concatenation of a geodesic of length r with a geodesic of any
length is a (1, 2r)–quasi-geodesic. Let M0 = M(1, 2r). Let R be the number of
pointed oriented simplicial paths in X of length ≤ 2M0, up to the G–action.

Let q be the closest point in A ∩ B to p. Suppose d(p, q) > R, and let γ be
a geodesic from p to q. Every vertex on γ lies within M0 of both A and B. By
our choice of R, there must be a pair of distinct vertices a1, a2 on γ and paths σi
joining ai to A, and τi joining ai to B of length at most M0, and an element h ∈ G,
so that ha1 = a2, hσ1 = σ2 and hτ1 = τ2. We may assume that a1 is closer to q
than a2 is.

Since hA ∩ A and hB ∩ B are nonempty, h must stabilize both A and B. Thus
hq ∈ A ∩B. But hq is closer to p than q is, contradicting our choice of q. �

Towards proving Theorem 3.26, suppose that G is a finitely generated group
acting cocompactly on a CAT(0) cube complex X, and suppose that hyperplane
stabilizers are strongly quasi-convex in G. An index 2 subgroup of a strongly quasi-
convex subgroup is strongly quasi-convex, so the stabilizers of hyperplanes in Xb

are strongly quasi-convex in G. We build an appropriate G–cocompact subgraph

of Gr
(
C̃G(Y)

)
, using the structure of intersections of hyperplane stabilizers.

This graph will be ΓC(BC), for some coherent choices of BC over all of the rep-
resentative lists C ∈ W (see Definitions 3.12 and 3.22).

Definition 3.28. Suppose that C = (W1,W2, . . . ,Wk) ∈ W is a representative
ordered list of hyperplanes as above. An initial segment of C is a list (W1, . . . ,Wi)
for some i < k.
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We remark that by the way the representative lists were chosen, if C ∈W then
any initial segment of C is also in W.

Definition 3.29. Suppose that C ∈W. We define

I(C) = {C′ ∈W | C is an initial segment of C′} .

The following holds because the stabilizer of each C is an intersection of hyper-
plane stabilizers, and because intersections of strongly quasi-convex subgroups are
strongly quasi-convex by [35, Theorem 1.2.(2)]. Tran also proves in [35, Theorem
1.2.(1)] that strongly quasi-convex subgroups are finitely generated.

Lemma 3.30. Each Stab(C) is strongly quasi-convex and hence finitely generated.

Now choose finite generating sets AC for each Stab(C) ∈ W. By Lemma 3.21,
each element g of AC can be represented by a CG(Y)–path dC ·pg ·dC where pg is a

cubical CG(Y)–path so that the lift of pg to C̃G(Y) starting at ṽC is a concatenation

of arrows in Ar(Γ̂(C)).
For an object v, choose BC

v to consist of the following collections of group arrows:

(1) all of the group arrows at v that occur in the paths pg for g ∈ AC;
(2) all of the group arrows at v in the pg for g ∈ AC′ for any C′ ∈ I(C); and

Use these choices to define a set BC and a graph ΓC(BC) as in Definition 3.22. The
choices made above give us such a graph ΓC(BC) for each C ∈W.

Proposition 3.31. For each C ∈W the graph ΓC(BC) is connected, and Stab(C)–
invariant. Moreover Stab(C) acts freely and cocompactly on ΓC(BC). For any C′ ∈
I(C) we have ΓC(BC) ⊂ ΓC′(BC′).

Proof. Other than the final statement, the result follows immediately from the
construction and Proposition 3.23. The final statement follows immediately from
Lemma 3.15 and the second condition in the choice of BC

v . �

Finally, choose a finite generating set A for G, and represent each element of A
as a cubical path as in Proposition 3.8. Let A consist of all of the group arrows
appearing in these paths, together with all of the group arrows BC for C ∈ W,
and use this set to build the graph Γ(A). The following is entirely analogous to
Proposition 3.31.

Proposition 3.32. The graph Γ(A) is connected and G acts freely and cocompactly
on Γ(A). For any C ∈W we have ΓC(BC) ⊂ Γ(A).

For the remainder of this subsection, we write Γ = Γ(A) and for C ∈W we write
ΓC = ΓC(BC) for the choices of A and BC as made above.Denote the restriction of
the map Ψ: Γ(U) → (Xb)(1) to Γ by ΨΓ. Note that ΨΓ is continuous, Lipschitz
and G–equivariant.

We will need the following lemma in order to apply Proposition 3.27.

Lemma 3.33. Let C = (W1, . . . ,Wk) ∈ W, and let C− = (W1, . . . ,Wk−1). Then
ΓC− ∩Ψ−1

Γ (Wk) 6= ∅.

Proof. This intersection is nonempty since Wk intersects IC− nontrivially and ΨΓ

surjects the 1–skeleton of Xb. �
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The group G acts properly and cocompactly on Γ and the strongly quasi-convex
subgroup Stab(C) acts properly and cocompactly on ΓC ⊂ Γ. Therefore, by con-
sidering an orbit map G → ΓC and applying Theorem 3.25, we see that each ΓC

is a strongly quasi-convex subset of Γ. Also, for each hyperplane W of Xb the set
Ψ−1

Γ (W ) is a strongly quasi-convex subset of Γ. For C ∈W let MC be a Morse gauge

for ΓC, and for W a hyperplane of Xb, let MW be a Morse gauge for Ψ−1
Γ (W ). Note

that there are finitely many distinct gauges MW as W ranges over all the hyper-
planes of Xb. Define the Morse gauge M to be the maximum of the MC and the
MW .

We now give the main part of the argument of the proof of Theorem 3.26, namely
that if hyperplane stabilizers are strongly quasi-convex, vertex stabilizers are also
strongly quasi-convex. We therefore fix a vertex v of X.

Note that Ψ−1
Γ (v) is a non-empty and Stab(v)–invariant set of vertices of Γ

consisting of finitely many Stab(v)–orbits. Thus in order to show Stab(v) is strongly
quasi-convex in G, it suffices (by Theorem 3.25) to show that the pre-image Ψ−1

Γ (v)
is a strongly quasi-convex subset of Γ.

We fix constants K ≥ 1 and C ≥ 0, suppose that a and b are vertices in Ψ−1
Γ (v)

and let γ be a (K,C)–quasi-geodesic in Γ between a and b. Let y be an arbitrary
vertex on γ. We have to show d(y,Ψ−1

Γ (v)) is bounded independent of a and b.
Here is a description of our bound: Let D be a bound for the valence of Γ, N a

bound for the number of G–orbits of vertices in Γ. Let R1 = M(K,C). Assuming
Ri has been defined, we let Ri+1 be the maximum of Ri and the constant R in the
conclusion of Proposition 3.27, with the above D,N and with r = Ri + 1. We will
prove that d(y,Ψ−1

Γ (v)) is bounded above by RdimX + 1.
If ΨΓ(y) = v, there is nothing to prove, so we assume that ΨΓ(y) 6= v.
We will build a sequence of points z1, . . . , zt for some t ≤ dimX so that for each

i, the following conditions are satisfied:

(∗i)

{
d(y, zi) ≤ Ri + 1; and

∃gi ∈ G, Ci ∈Wi, so that v ∈ giICi , zi ∈ giΓCi .

We first find z1. Let [v,ΨΓ(y)] be a geodesic in the 1–skeleton of Xb from v to
ΨΓ(y). The first edge of [v,ΨΓ(y)] is dual to some hyperplane W1 of Xb.

Lemma 3.34.
d(y,Ψ−1

Γ (W1)) ≤M(K,C)

Proof. Since W1 separates v from ΨΓ(y), we know that γ must cross Ψ−1
Γ (W1)

between a and y. However, ΨΓ(γ) is a loop, so γ must also cross Ψ−1
Γ (W1) in the

segment of γ between y and b. Thus, there is a (quasi-geodesic) subsegment γ1 of
γ which contains y and which starts and finishes on Ψ−1

Γ (W1). Since M is a Morse

gauge for Ψ−1
Γ (W1), the lemma follows. �

Suppose that W1 is the chosen representative of W1, so that C1 = (W 1) ∈ W.
Suppose further that W1 = g1W1. By the definition of ΓC1

in terms of the objects
V�(C), it is straightforward to see that Ψ−1

Γ (W1) is contained in the 1–neighborhood
of g1ΓC1

in Γ. Thus, there is a vertex z1 in g1ΓC1
which is distance at most

M(K,C) + 1 from y.
We claim that z1 satisfies (∗1) for this choice of g1 and C1. The only thing we

have left to prove is that v ∈ g1IC1 . This follows immediately from the choice of
W1.
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Proposition 3.35. Suppose zi satisfies (∗i). Then either ΨΓ(zi) = v or there is
some zi+1 satisfying (∗i+1).

Proof. Suppose that ΨΓ(zi) 6= v. Choose a geodesic [v,ΨΓ(zi)] in the 1–skeleton of
the combinatorially convex subcomplex giIC1 ⊂ Xb. Let Wi+1 be the hyperplane
of Xb which is dual to the first edge of [v,ΨΓ(zi)]. Then Wi+1 separates v from
ΨΓ(zi).

Claim.
d(y,Ψ−1

Γ (Wi+1)) ≤ Ri + 1.

Proof. There are two cases.
Suppose first Wi+1 separates v from ΨΓ(y). In this case, we argue as in Lemma

3.34 that d(y,Ψ−1
Γ (Wi+1)) ≤M(K,C) ≤ Ri + 1.

Now suppose Wi+1 does not separate v from ΨΓ(y). In this case, since Wi+1

does separate v from ΨΓ(zi) we know that Wi+1 must separate ΨΓ(y) from ΨΓ(zi).
Since d(y, zi) ≤ Ri + 1, and any path from y to zi must intersect Ψ−1

Γ (Wi+1), we

must have d(y,Ψ−1
Γ (Wi+1)) ≤ Ri + 1 as required. �

Suppose that Ci = (W 1, . . . ,W i). We choose gi+1 and W i+1 so that Ci+1 =
(W 1, . . . ,W i,W i+1) ∈ W and gi+1(Ci) = giCi and gi+1(W i+1) = Wi+1. The
hyperplane W i+1 is uniquely determined, but gi+1 is only determined up to multi-
plication by something in Stab(Ci+1).

We want to apply Proposition 3.27. Take p = y, A = gi+1ΓCi and B =
Ψ−1

Γ (Wi+1), and r = Ri + 1. The parameters D and N are the maximum va-
lence and number of G–orbits in Γ, respectively.

That gA ∩A 6= ∅ implies gA = A is contained in Proposition 3.17.
It is easy to see that if gB∩B 6= ∅, then gB = B, since a hyperplane is determined

by any edge dual to it.
Lemma 3.33 asserts that A∩B 6= ∅. By the definition of Ri+1, Proposition 3.27

implies
d(y, gi+1ΓCi ∩Ψ−1

Γ (Wi+1)) ≤ Ri+1

The intersection gi+1ΓCi ∩ Ψ−1
Γ (Wi+1) lies in the 1–neighborhood of gi+1ΓCi+1

,
so there is a point zi+1 ∈ gi+1ΓCi+1

with d(y, zi+1) ≤ Ri+1 + 1. By the choice of
Wi+1 v ∈ gi+1ICi+1

, so we have established (∗i+1) and finished the proof. �

For j > dimX, there cannot exist a point zj satisfying (∗j), since there are no
j–tuples of hyperplanes with nonempty intersection. Therefore, Proposition 3.35
asserts that for some i ≤ dimX, ΨΓ(zi) = v. We conclude that d(y,Ψ−1

Γ (v)) ≤
Ri + 1 ≤ RdimX + 1, as desired.

This completes the proof of Theorem 3.26.

3.5. If cell stabilizers are QC then hyperplane stabilizers are QC. In this
section we prove the direction (2) =⇒ (1) of Theorem A. Therefore, suppose
that G is a hyperbolic group acting cocompactly on a CAT(0) cube complex X,
and suppose that the vertex stabilizers are quasi-convex in G. In particular, these
vertex stabilizers will be finitely generated. Note that stabilizers of other cells are
intersections of vertex stabilizers, so they are also quasi-convex, and so finitely
generated.

Let W be a hyperplane in Xb. We simplify the notation set up in Section 3.3 by
writing ‘W ’ instead of the 1–tuple ‘(W )’.
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Lemma 3.36. Let v ∈ V�(W ), and let Hv,W be as in Definition 3.19. There is
a cube σ of X so that Hv,W is naturally isomorphic to a finite-index subgroup of
GJσK.

Proof. The stabilizer in G of some v ∈ V�(W ) naturally corresponds to the stabilizer
of a pair (σ0 ⊂ σ), a codimension–1 inclusion of cubes of X. But Stab(W ) ∩
Stab (ΘW (v)) is exactly the stabilizer of (σ0 ⊂ σ), which has finite-index in the
stabilizer of σ, which in turn is isomorphic to GJσK. �

By Lemma 3.36 the groups Hv,W from Definition 3.19 are finitely generated. For
each such Hv,W , let Bv be a finite generating set. For each object o in Y, choose a
finite generating set Ao for Go so that if Hv,W ≤ Go for some v,W then Bv ⊆ Ao.
Form the graphs ΓW = ΓW (BW ) and Γ = Γ(A) as described in Definitions 3.9 and
3.22.

Proposition 3.37. The graph Γ is connected and G–invariant and G acts freely
and cocompactly on Γ. The graph ΓW is connected and Stab(W )–invariant, and
Stab(W ) acts freely and cocompactly on ΓW . Moreover, ΓW ⊂ Γ.

Proof. The special cases that C = () and C = (W ) of Proposition 3.23 give the
first two sentences of the proposition. The final assertion follows quickly from the
condition that Bv ⊆ Ao. �

Given a vertex w of W ↓, let Y (w) be the (closed) 1-neighborhood in ΓW of
Ψ−1
W (w).

Lemma 3.38. The sets Y (w) are quasi-convex subsets of Γ with constants which
do not depend on w.

Proof. Since Stab(W ) acts cocompactly on W ↓, there are finitely many Stab(W )–
orbits of sets Y (w), so the uniformity of constants will follow immediately if we can
prove each Y (w) is a quasi-convex subset of Γ.

The stabilizer in Stab(W ) of Y (w) is the same as the subgroup Hw,W from
Definition 3.19. By Lemma 3.36 this is a finite index subgroup of some cell group
of the G–action on X. Thus, by hypothesis, Hw,W is a quasi-convex subgroup of
G. Since G acts properly and cocompactly on Γ, and Hw,W acts properly and
cocompactly on Y (w) ⊂ Γ, the result follows (for example, by Theorem 3.25). �

We are ready to prove the direction (2) =⇒ (1) of Theorem A, which is the
content of the following theorem. For this result, we assume Theorem A.3, which
is proved in Appendix A.

Theorem 3.39. Suppose that the hyperbolic group G acts cocompactly on the cube
complex X, and that for every vertex v of X, the stabilizer Stab(v) is quasi-convex.
Then, for every hyperplane W ⊂ X, the stabilizer Stab(W ) is a quasi-convex sub-
group of G.

Proof. As we have already remarked, quasi-convexity of vertex stabilizers implies
quasi-convexity of all cell stabilizers.

Let Γ, ΓW and the Y (w) be as discussed above. Since G acts freely and cocom-
pactly on Γ, we know that Γ is δ-hyperbolic for some δ. Let ε be a constant so that
Y (w) is ε–quasi-convex for every w (Lemma 3.38).

Since Stab(W ) acts freely and cocompactly on ΓW , in order to prove the theorem
it suffices to prove that ΓW is quasi-convex in Γ, so let p, q ∈ ΓW .
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Consider a geodesic γ in (Xb)(1) between Ψ(p) and Ψ(q). Both Ψ(p) and Ψ(q)
lie in W ↓. Since W ↓ is combinatorially convex in Xb, the geodesic γ is entirely
contained in the 1-skeleton of W ↓. The vertices w1, . . . , wn on γ correspond to
cells of X contained in W ↓. The sets Y (wi) corresponding to these cells satisfy
the hypotheses of Theorem A.3 with m = 2, c = 1, and ε the quasi-convexity
constant chosen above. Theorem A.3 then implies that Y (w1) ∪ · · · ∪ Y (wn) is
ε′–quasi-convex, for a constant ε′ depending only on ε and δ.

In particular, a Γ–geodesic between p and q lies within ε′ of Y (w1)∪· · ·∪Y (wn).
Since each of these Y (wi) is contained in ΓW , the Γ–geodesic between p and q stays
uniformly close to ΓW , as required. �

Together with Theorem 3.26, this completes the proof of Theorem A.

3.6. On generalizations of Theorem A. For a subgroup H of a hyperbolic
group G, the following three conditions are equivalent:

(a) H is strongly quasi-convex in G.
(b) H is quasi-convex in G.
(c) H is undistorted in G.

Dropping the condition that G is hyperbolic, condition (b) ceases to be well-defined,
but the conditions (a) and (c) still make sense.

One can ask for versions of Theorem A where the hypothesis of hyperbolicity is
removed and condition (b) is replaced by either condition (a) or (c).

3.6.1. Strong quasi-convexity. Replacing quasi-convexity with strong quasi-convexity
we can ask about the following conditions for a finitely generated group G acting
cocompactly on a CAT(0) cube complex:

(1S) Hyperplane stabilizers are strongly quasi-convex.
(2S) Vertex stabilizers are strongly quasi-convex.
(3S) All cell stabilizers are strongly quasi-convex.

As remarked earlier (2S)⇐⇒(3S) follows from [35, Theorem 1.2.(2)]. Theorem 3.26
states that (1S) =⇒ (2S)

The remaining implication (3S) =⇒ (1S) is false, as the example of Z2 acting
freely on a cubulated R2 shows.

3.6.2. Undistortedness. The situation when replacing quasi-convexity with quasi-
isometric embeddedness is murkier. We consider the following conditions, for a
finitely generated group G acting cocompactly on a CAT(0) cube complex X:

(1U) Hyperplane stabilizers are undistorted.
(2U) Vertex stabilizers are undistorted.
(3U) All cell stabilizers are undistorted.

If X is a tree, (1U) and (3U) each implies (2U), but not conversely. For example,
the double of a finitely generated group over a distorted group acts on a tree with
undistorted vertex stabilizers but distorted edge/hyperplane stabilizers.

We do not know the relationship between (1U) and (3U) in general, so we ask
the question.

Question 3.40. For finitely generated groups acting cocompactly on CAT(0) cube
complexes does (1U) =⇒ (3U)? Does (3U) =⇒ (1U)?



HYPERBOLIC GROUPS ACTING IMPROPERLY 25

3.7. Height of families and the proof of Corollary B. The height of a sub-
group was introduced in [16]. We need a generalization of this notion to families of
subgroups.

Definition 3.41. [Height of a family] Suppose that G is a group and H is a
collection of subgroups. The height of H is the minimum number n so that for
every tuple of distinct cosets (g0H0, g1H1, . . . , gnHn) with Hi ∈ H (and gi ∈ G),
the intersection ∩ni=0H

gi
i is finite. If there is no such n then we say the height of H

is infinite.

In case H = {H} is a single subgroup, we recover the familiar notion of the
height of a subgroup from [16].

The following result for a single subgroup is part of [16, Main Theorem]. The
proof of that result from [1] (Corollary A.40 in that paper) can be adapted in
the obvious way to prove the result for finite families. This result was proved in
the more general setting of strongly quasi-convex subgroups by Tran [35, Theorem
1.2.(3)].

Proposition 3.42. Let G be a hyperbolic group and H a finite collection of quasi-
convex subgroups of G. Then the height of H is finite.

We also use the following special case of a theorem of Charney–Crisp [9, Theorem
5.1].

Theorem 3.43. Suppose that G acts cocompactly on a cube complex X. Then X
is quasi-isometric to the space obtained from the Cayley graph of G by coning cosets
of stabilizers of vertices to points.

We now prove Corollary B. For convenience, we recall the statement.

Corollary B. Suppose that G is a hyperbolic group acting cocompactly on a CAT(0)
cube complex X with quasi-convex hyperplane stabilizers. Then

(1) X is δ–hyperbolic for some δ;
(2) there exists a k ≥ 0 so that the fixed point set of any infinite subgroup of G

intersects at most k distinct cells; and
(3) the action of G on X is acylindrical (in the sense of Bowditch [6, p. 284]).

Proof. If G is a hyperbolic group acting cocompactly on a CAT(0) cube complex,
and if the stabilizers in G of vertices in X are quasi-convex, then [7, Theorem
7.11], due to Bowditch, implies that this coned graph is δ–hyperbolic for some
δ. Theorem 3.43 then implies that the cube complex X is δ–hyperbolic for some
(possibly different) δ. Thus, we have the first statement from Corollary B.

Now we prove the statement about fixed point sets of infinite subgroups. Let
I be a collection of orbit representatives of cells in X. For i ∈ I, let Qi = {g ∈
G | gi = i}, and let Q = {Qi}i∈I . Then Q is a finite collection of quasi-convex
subgroups of G, so it has some finite height k by Proposition 3.42. If H < G is
infinite with nonempty fixed set and σ is a cell meeting the fixed point set of H,
then H < Qgi where σ = gi. Since the height of Q is k, at most k such cells appear.

In [14], Genevois studies actions of groups on hyperbolic CAT(0) cube complexes
and shows in Theorem 8.33 that, in this setting, acylindricity is equivalent to the
condition:

(G) ∃L,R, ∀x, y ∈ X(0), d(x, y) ≥ L =⇒ #(Stab(x) ∩ Stab(y)) ≤ R
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We take R to be the maximum size of a finite subgroup and L = k. Suppose
d(x, y) ≥ L. Then the union of the combinatorial geodesics joining x to y contains
finitely many (but at least k + 1) vertices. There is a finite index subgroup of
Stab(x) ∩ Stab(y) which fixes all of these vertices. This finite index subgroup
fixes more than k cells, so it is finite. This implies Stab(x) ∩ Stab(y) is finite, as
desired. �

Remark 3.44. In the context where G is a finitely generated group acting cocom-
pactly on a cube complex X with strongly quasi-convex hyperplane stabilizers, the
same proof of conclusion (2) works as written, replacing the reference to Proposition
3.42 with a reference to [35, Theorem 1.2.(3)].

4. Conditions for quotients to be CAT(0)

As noted in the introduction, Theorem D follows quickly from Theorem A, The-
orem F, Agol’s Theorem [1, Theorem 1.1] and Wise’s Quasi-convex Hierarchy The-
orem [36, Theorem 13.3]. Thus, other than Theorem A.3 in Appendix A (which
is independent of everything else in this paper), it remains to prove Theorem F.
Therefore, we are interested in conditions on a group G acting on a CAT(0) cube
complex X and a normal subgroup K EG which ensure that the quotient K

∖
X is

a CAT(0) cube complex. In this section we develop criteria in terms of complexes
of groups to ensure this. In the next section, we translate these conditions into
algebraic conditions on K EG.

Three conditions need to be ensured in order for the complex X = K
∖
X to be

a CAT(0) cube complex:

(1) X must be simply-connected;
(2) X must be a cube complex (rather than a complex made out of cells which

are quotients of cubes); and
(3) X must be non-positively curved.

We investigate these three properties in turn.

4.1. Ensuring the quotient is simply-connected. First, we give a sufficient
condition for K

∖
X to be simply-connected.

Since X is a finite dimensional cube complex, it has finitely many shapes, and
we can use the following application of a theorem of Armstrong:

Theorem 4.1. Let X be a simply connected metric polyhedral complex with finitely
many shapes, and let K be a group of isometries of X respecting the polyhedral
structure, generated by elements with fixed points. Then K

∖
X is simply connected.

Proof. (Sketch) A theorem of Armstrong, [4, Theorem 3], shows that K
∖
X is sim-

ply connected with the CW topology. We have to show it is still simply connected
with the metric topology.

Because X has finitely many shapes there is an equivariant triangulation T
and an ε > 0 so that for every finite subcomplex K, the ε–neighborhood of K
deformation retracts to K. If f : S1 → X is any loop, then a compactness argument
shows it lies in an ε–neighborhood of some such finite complex. We can then
homotope f to have image in K and apply the simple connectedness of K

∖
X with

the CW topology. �
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We remark that the hypothesis of finitely many shapes is necessary even when
X is CAT(0) as the following example shows:

Example 4.2. For n ∈ {2, 3, . . .}, let Dn be the Euclidean cone of radius 1 on a
loop σn of length 2π

n2 . For each n mark a point on σn. Let Y be obtained from
⋃
Dn

by identifying the marked points. Unwrapping all the cones to Euclidean discs gives

a tree of Euclidean discs of radius 1. We call this CAT(0) space Ỹ . There is a

discrete group of isometries Γ = 〈γ2, γ3, . . .〉 acting on Ỹ with quotient Y , so that
each γn fixes the center of some disc and rotates it by an angle of 2π

n2 . Nonetheless
Y is not simply connected, as the infinite concatenation of the loops σn has finite
length, but cannot be contracted to a point.

4.2. Ensuring the quotient is a cube complex. We now turn to the question
of when K

∖
X is a cube complex.

In order that the quotient Z = K
∖
X be a cube complex, there needs to be no

element of K which fixes a cell of X set-wise but not point-wise.
Suppose that σ is a cube of X. The stabilizer Gσ has a finite-index subgroup

Qσ consisting of those elements which fix σ pointwise. Let {σ1, . . . , σk} be a set of
representatives of G–orbits of cubes in X. The following result is straightforward.

Proposition 4.3. Suppose that G acts cocompactly on the cube complex X and
that K is a normal subgroup of G so that for each i we have Gσi ∩K ≤ Qσi . Then
the quotient K

∖
X is a cube complex and the links of vertices in K

∖
X inherit a

cellular structure from the simplicial structure of cells in X.

4.3. Ensuring the quotient is nonpositively curved. The most complicated
condition to ensure is that K

∖
X is nonpositively curved.

Throughout this subsection we suppose that X is a CAT(0) cube complex and
that X is its idealization (see Definition 2.2). We suppose further that G is a
group acting cocompactly on this cube complex. The induced action of G on X
has quotient a scwol Y. Making choices as in Definition 2.8, we obtain a complex
of groups G(Y), with associated category CG(Y). Choosing a vertex v0 ∈ Y, there
is then an identification of G with π1(CG(Y), v0). Moreover, we choose a normal
subgroup K EG so that K

∖
X is a cube complex. 4

In Subsection 4.2 we discuss how to find subgroups K so that K
∖
X is a cube

complex, but for this section we just assume that this is the case.
Let CK be the cover of the category CG(Y) corresponding to the subgroup K.

Observe that CG(Y)–loops lift to CK if and only if they represent elements of
K. (Basepoints are mostly omitted in this section, since we deal with a normal
subgroup K.)

Standing Assumption 4.4. Through this section we write CG(Y)–paths as a
concatenation of group arrows and scwol arrows (which need not alternate between
group arrows and scwol arrows). Thus in a list of arrows such as g1·e1·e2·g2·..., each
gi is an element of a local group Gv and represents the edge (g, 1v)

+, corresponding
to the group arrow (g, 1v). The ei represent a±i for a scwol arrow (ai, 1), and
we blur the distinction between the scwol arrow (ai, 1) in CG(Y) and the Y-arrow
ai, and also between the CG(Y)–path (1, ai)

± and the Y–edge a±i . We implicitly

4We remark that we do not make any further assumptions than these about G and X in this
subsection. This may be an important observation for future applications.



28 D. GROVES AND J.F. MANNING

assume that each concatenation we write defines a path, which often forces the group
arrows labelled gi to be elements of particular local groups. Whenever we consider
a CG(Y)–path of length 1 consisting of a single group arrow we are either explicit
about the local group or else it is clear from the context.

In case we have a group arrow of the form (1, 1v), we often implicitly (or explic-
itly) omit this arrow from our path.

Theorem 4.5. (Gromov’s Cubical Link condition, [8, Theorem II.5.20]) The cube
complex complex Z is a non-positively curved cube complex if and only if for each
vertex v ∈ Z the link of v is flag.

In this section, we provide a set of conditions on the subgroup K which imply
the link condition for Z.

The link of a cube σ in a cube complex has a natural cellulation by spherical
simplices, one coming from each inclusion of σ into a higher-dimensional cube. In
particular lk(σ) is a ∆–complex [21, Chapter 2.1] (though it may not be simplicial).

We record two elementary observations:

Lemma 4.6. Let v be a vertex of a cube complex, and let L = lk(v). Then L
is simplicial if and only if for every cell σ containing v, the 1–skeleton of lk(σ)
contains no immersed loop of length 1 or 2.

Proof. If L fails to be simplicial, there is either a non-embedded simplex, or a pair
of simplices which intersect in a set which is not a face of both. If a simplex is
non-embedded, we obtain a loop of length 1 in L. If two embedded simplices τ1
and τ2 of L intersect in a set which is not a single face, let F1 and F2 be different
maximal faces in the intersection, and let f = F1 ∩ F2. For i ∈ {1, 2}, let vi be a
vertex in Fi \ f . Then the simplices spanned by v1 ∪ f and v2 ∪ f correspond to
points in lk(f) which lie on an immersed loop of length 2. But f corresponds to
some cube containing σ, and lk(f) ⊂ L is isomorphic to the link of that cube. �

Lemma 4.7. Let v be a vertex of a cube complex, and suppose L = lk(v) is sim-
plicial. Then L is a flag complex if and only if for every cell σ containing v, every
loop of length 3 in the 1–skeleton of lk(σ) is filled by a 2–cell.

Proof. If σ is a cube and φ is a cube with σ as a face, of dimension one higher, then
φ corresponds to a vertex f of the link L of σ. The link of φ is isomorphic to the
link in L of f . The result now follows from [8, Remark II.5.16.(4)]. �

Therefore, in order to ensure Z is nonpositively curved, for each cell σ in Z we
must rule out loops of length 1 and 2 in lk(σ) and also ensure that any loop of
length 3 in lk(σ) is filled by a 2–cell. We first explain how we translate between
1–cells in links in Z and CG(Y)–paths. Then we develop the required conditions to
rule out loops, finally dealing with loops of length 3 which must be filled by 2–cells.

4.3.1. CG(Y)–paths associated to 1–cells in lk(σ). Below we choose, for each cube
σ in Z and each 1–cell α in the link of σ, a CG(Y)–path pJαK which is the label
of an unscwolification of the idealization of α. As indicated by the notation, this
label is the same for two such 1–cells in the same G–orbit. (In fact we will choose
these paths for slightly more general objects than 1–cells in links of cubes.)

First fix a cube σ of Z. The second barycentric subdivision of the link of σ
embeds naturally in the geometric realization of Z. The vertices of the image of
lk(σ) are precisely the length ≥ 2 chains of cubes whose minimal element is σ.
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A 1–cell α in lk(σ) corresponds to a triple of cubes ε1, ε2, φ in Z so that

dim(σ) = dim(εi)− 1 = dim(φ)− 2,

with ε1, ε2 ⊂ φ and ε1 ∩ ε2 = σ.
In particular, an oriented 1–cell α of lk(σ) has idealization a Z–path of length

4, made up of arrows

(1) (σ ⊂ ε1)←−(σ ⊂ ε1 ⊂ φ)−→(σ ⊂ φ)←−(σ ⊂ ε2 ⊂ φ)−→(σ ⊂ ε2).

In what follows, we want a slightly more general situation, where ε1, ε2, φ are
cubes in Z with ε1, ε2 codimension–1 sub-cubes of φ, and γ is a chain of cubes in Z
so that each element of γ is contained in each of ε1, ε2, φ. We can naturally extend
γ to chains which we denote (γ ⊂ ε1), (γ ⊂ ε2), (γ ⊂ φ), and (γ ⊂ εi ⊂ φ), and this
triple of cubes correspond to a 1–cell in an ‘iterated link’ (a link of a cell in a link,
etc.), and also has idealization a Z–path of length 4 as follows:

(2) (γ ⊂ ε1)←−(γ ⊂ ε1 ⊂ φ)−→(γ ⊂ φ)←−(γ ⊂ ε2 ⊂ φ)−→(γ ⊂ ε2).

The Z–path (2) may not embed in Y. There are two ways this could happen.
The first is that there is an element of Stab(γ) which sends ε1 to ε2, but no such
element fixes φ. In this case, the image in Y is a non-backtracking loop. The second
possibility is that there is an element g ∈ G sending each of γ and φ to itself, but
exchanging ε1 and ε2. If there is such a g, the idealization of the 1–cell α backtracks
in Y, forming a ‘half-edge’.

Let yJαK = a+
1 ·a

−
2 ·a

+
3 ·a

−
4 be the Y–path which is the image of the Z–path above.

Let ν be the projection of (γ ⊂ φ) in Y, and µi be the projection of (γ ⊂ εi ⊂ φ).
Let ξi be the projections of (γ ⊂ εi). Then we have the injective homomorphisms

ψa2 : Gµ1 → Gν ,

and

ψa3 : Gµ2 → Gν .

The images of ψa2 and ψa3 are equal. The projections of all the data associated
to α depend only on the orbit of α under the stabilizer of σ. We shall denote this
orbit by JαK, and denote the common image of ψa2 and ψa3 in Gν by G+

ν . Note
that G+

ν either has index 2 in Gν (in case there is a g fixing φ and exchanging ε1
with ε2) or else G+

ν = Gν (if there is no such g). In case G+
ν has index 2 in Gν ,

we fix a choice of gν ∈ Gν r G+
ν . We make this choice once and for all for each

orbit of (γ, ε1, ε2, φ), so that the choice depends only on the orbit and not on the
representative.

In the sequel, we refer to the vertex groups by Gi(JαK) (for Gξ1) and Gt(JαK) (for

Gξ2). We further define “edge-inclusions” ψJαK : G+
ν → Gt(JαK) and ψJαK : G+

ν →
Gi(JαK) by

ψJαK = ψa4 ◦ ψ−1
a3 , and ψJαK = ψa1 ◦ ψ−1

a2 .

Let EJαK denote the image of ψJαK in Gt(JαK), and EJαK denote the image of ψJαK
in Gi(JαK).

Definition 4.8. In case G+
ν 6= Gν , associate to α the CG(Y)–path

pα = a+
1 · a

−
2 · gν · a

+
3 · a

−
4 ,
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where gν ∈ Gν rG+
ν is the element fixed above. Note that in this case a2 = a3 and

a1 = a4. In case G+
ν = Gν let

pα = a+
1 · a

−
2 · a

+
3 · a

−
4 .

In either case some lift of pα to CK is an unscwolification of the idealization of α.
The CG(Y)–path pα depends only on JαK; if there is a g with gσ = σ and

gα′ = α, then pα′ = pα. Therefore, we have a well-defined CG(Y)–path pJαK. By

slight abuse of notation, we define JαK = JαK.

Lemma 4.9. Suppose that G+
ν = Gν . Then any CG(Y)–path

g0 · a+
1 · g1 · a−2 · g2 · a+

3 · g3 · a−4 · g4

is homotopic to a CG(Y)–path of the form

g′0 · pJαK · g′1.

Suppose that G+
ν 6= Gν . Then any CG(Y)–path

g0 · a+
1 · g1 · a−2 · g2 · a+

3 · g3 · a−4 · g4

so that g2 6∈ EJαK is homotopic to a CG(Y)–path of the form

g′0 · pJαK · g′1.

In both cases, the scwolification of the path is fixed during the homotopy. More-
over any lift of the homotopy to a cover of CG(Y) gives a sequence of paths with
constant scwolification.

Remark 4.10. We remark that in case G+
ν 6= Gν the paths considered in the

second half of the above statement are exactly those CG(Y)–paths traversing yJαK
which lift and scwolify (using Θ) to non-backtracking paths in X (see the discussion
at the end of Section 2.5). As Z = K

∖
X is a cube complex, these CG(Y)–paths

also lift and scwolify (using ΘK) to non-backtracking paths in Z.

Notation 4.11. We fix some notation in order to study paths in Z and also Y–
paths and CG(Y)–paths. As above, we use J.K to denote a G-orbit in Z, which
corresponds to its image in Y under the projection π : Z → Y.

Let pJαK be one of the CG(Y)–paths fixed in Definition 4.8, corresponding to
a 1–cell α in some link (or iterated link) of a cube of Z. The CG(Y)–path pJαK
has an underlying Y–path, which we denote by yJαK. Define t(JαK) = t(yJαK) and
i(JαK) = i(yJαK). This is so we can denote the corresponding local groups as Gi(JαK)
and Gt(JαK).

We will also need to refer to the subgroups EJαK < Gt(JαK) and EJαK < Gi(JαK)

defined just before Definition 4.8. Each of these subgroups can be thought of as the
pointwise stabilizer of some translate of a lift of α to X.

4.3.2. Loops in lk(σ). We are now ready to formulate the conditions on K which
characterize whether or not K

∖
X is non-positively curved. We use Lemmas 4.6

and 4.7 repeatedly.
Recall that we have fixed a K C G so that Z = K

∖
X is a cube complex. We

also fix a cube σ of Z. If α is a 1–cell in lk(σ), there is a corresponding Z–path of
length 4, and we sometimes conflate the two.

We next give an algebraic characterization of loops of length 1 in lk(σ).
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Lemma 4.12. Let α be a 1–cell in lk(σ). The endpoints of α are equal if and only
if there is a CG(Y)–loop of the form pJαK ·g that represents a conjugacy class in K.

Proof. Thinking of Z as the geometric realization of Z, the 1–cell α is the realization
of a Z–path qα of length 4, which projects to a Y–path a+

1 · a
−
2 · a

+
3 · a

−
4 . Let q̂α be

an unscwolification of qα in CK , which we may choose to have label

(3) a+
1 · a

−
2 · g1 · a+

3 · a
−
4 ,

for some group arrow g1.
Suppose first that the endpoints of α coincide. Then the path (3) has endpoints

separated by a group arrow, and so there is a CK–loop with label

a+
1 · a

−
2 · g1 · a+

3 · a
−
4 · g2.

Lemma 4.9 implies that this loop is homotopic to a loop with label pJαK · g for some
g.

Conversely, suppose a conjugacy class in K is represented by a CG(Y)–loop of
the form pJαK ·g. Then pJαK ·g lifts to a loop in CK whose scwolification is a translate
of qα by some element of G. In particular, qα must be a loop, and so the endpoints
of α coincide. �

Definition 4.13. If v is a vertex of Y, let Kv CGv be K ∩Gv.
Definition 4.14. A CG(Y)–path p is K–non-backtracking if for some (equivalently
any) lift p̂ to CK , the scwolification ΘK(p̂) is non-backtracking. A CG(Y)–loop can
be thought of as a path starting at any of its vertices. If all these paths are K–
non-backtracking, we say that the loop is K–non-backtracking.

Lemma 4.15. A CG(Y)–path g0 · pJα1K · g1 · pJα2K · . . . · gk−1 · pJαkK · gk is K–
non-backtracking if and only if the first of the following two conditions holds. A
CG(Y)–loop with such a label is K–non-backtracking if and only if both conditions
hold.

(1) For i ∈ {1, . . . , k − 1}, if Jαi+1K = JαiK then gi 6∈ EJαiKKt(JαiK) ⊂ Gt(JαiK);
and

(2) If Jα1K = JαkK then gkg0 6∈ EJαkKKt(JαkK) ⊂ Gt(JαkK).

The following result algebraically characterizes immersed loops of length 2 in
lk(σ).

Lemma 4.16. Let p be a path in lk(σ) which is a concatenation of two 1–cells, α
and β. The following are equivalent:

(1) There is a path p′ = α′.β′ in lk(σ) with Jα′K = JαK and Jβ′K = JβK so that
p′ is an immersed loop.

(2) There is a K–non-backtracking CG(Y)–loop pJαK ·g1 ·pJβK ·g2 that represents
a conjugacy class in K.

Moreover, in case these conditions hold, the path p′ can be chosen to be the sc-
wolification of a lift of pJαK · g1 · pJβK · g2 (and conversely pJαK · g1 · pJβK · g2 is the
CG(Y)–path which labels the unscwolification of p′).

Proof. Suppose that there is a immersed loop p′ = α′.β′. The idealization of p′ is a
scwol-path qp′ of length 8 in Z, labeled by a Y–path a+

1 ·a
−
2 ·a

+
3 ·a

−
4 · b

+
1 · b

−
2 · b

+
3 · b

−
4

as discussed above. Using Lemma 4.9, we can choose an unscwolification q̂p′ of qp′

in CY with label
pJαK · g1 · pJβK,
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where g1 is a group arrow. But the unscwolification q̂p′ has endpoints separated
by a group arrow g2, so there is a loop labeled pJαK · g1 · pJβK · g2 as desired. It is
K–non-backtracking since its scwolification is the path qp′ .

Conversely, suppose that there is a K–non-backtracking CG(Y)–loop

pJαK · g1 · pJβK · g2,

which represents an element of K. Then pJαK ·g1 ·pJβK ·g2 lifts to a loop in CK . The
scwolification of this loop gives a path p′ as in condition (1). �

The following is elementary.

Lemma 4.17. Let Q be a complex so that there are no edge-loops of length 1 or 2.
Any edge-loop in Q of length 3 is non-backtracking.

The utility of Lemma 4.17 is that once we have found conditions to ensure that
links in K

∖
X have no edge-loops of length 1 or 2 then edge-loops of length 3 are

automatically non-backtracking.
Given Lemma 4.17, the following is proved in the same way as Lemma 4.16.

Lemma 4.18. Suppose that lk(σ) is simplicial, and suppose that p is a path in lk(σ)
which is a concatenation of three 1–cells, α, β and γ. The following are equivalent:

(1) There is a path p′ = α′.β′.γ′ in lk(σ) so that Jα′K = JαK, Jβ′K = JβK and
Jγ′K = JγK, and p′ is an immersed loop.

(2) There is a CG(Y)–loop of the form pJαK ·g1 ·pJβK ·g2 ·pJγK ·g3 that represents
a conjugacy class in K.

Moreover, in case these conditions hold, the path p′ can be chosen to be the scwolifi-
cation of a lift of pJαK ·g1 ·pJβK ·g2 ·pJγK ·g3 (and conversely pJαK ·g1 ·pJβK ·g2 ·pJγK ·g3

is the CG(Y)–path which labels the unscwolification of p′).

If X has dimension greater than 2, there are certainly some σ so that there are
loops of length 3 in lk(σ). This introduces some subtleties, which we discuss in the
next subsection.

4.3.3. Loops of length 3 filled by 2–cells. The phenomenon we are concerned with
in this section is illustrated by the following example.

Example 4.19. Let Y be a single 2–simplex, and consider the complex of groups
G(Y) so that Gv ∼= Z for each vertex v, and all the other local groups are trivial.
Let x, y, z ∈ π1(G(Y)) generate the three vertex groups. The universal cover X of
G(Y) is an infinite valence “tree of triangles”. Let K = 〈〈x3, y3, z3, xyz〉〉. Then

K
∖
X can be realized as a subset of the Euclidean plane, consisting of every other

triangle of a tessellation by equilateral triangles. Moreover, if αβγ is the path in
the 1–skeleton of Y labeling the boundary of Y, there are paths in K

∖
X projecting

to αβγ, but which are not filled by a 2–cell in K
∖
X . The issue here, as we will

see, is that xyz ∈ K is not an element of KxKyKz, where Kx = K ∩ 〈x〉, and so
on.

Of course X is not a cube complex, but it can be realized as the link of a vertex
of a cube complex, covering a complex of groups in which G(Y) is embedded.

Definition 4.20. Let σ be a cube of Z, and let τ be a 2–cell in lk(σ). Then ∂τ
is a loop composed of three oriented 1–cells α.β.γ. These 1–cells are associated
to CG(Y)–paths pJαK, pJβK, pJγK as in Definition 4.8. Consider a CG(Y)–path of
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the form q = pJαK · g · pJβK. Let q̂ be a lift to CK . The realization of ΘK(q̂) is a
concatenation of two 1–cells α′.β′. We say that q K–bounds a (τ, α)–corner if there
is a cube σ′, a 2–cell τ ′ in lk(σ′), and an h ∈ G so that σ′ = hσ, τ ′ = hτ , α′ = hα
and β′ = hβ. If there is some (τ, α) for which the path q K–bounds a (τ, α)–corner,
we may just say q K–bounds a corner.

In case there exists a path q as above which K–bounds a (τ, α)–corner, there
are cubes ε, φα, φβ and ψ, all containing σ, so that ε ⊂ φα, φβ ⊂ ψ, and dim(ψ) =
dim(φα) + 1 = dim(φβ) + 1 = dim(ε) + 2 = dim(σ) + 3. There is a copy of the link
of ε contained in the link of σ. The cubes ε, φα, φβ and ψ determine an oriented
1–cell ζ in this copy of the link of ε. Its idealization is shown in Figure 1. The

σ

ε

(σ⊂ε)

(σ ⊂ φα) (σ ⊂ φβ)

(σ ⊂ ε)

(σ ⊂ ε ⊂ φα)

(σ ⊂ φγ)

(σ ⊂ ε ⊂ φβ)

aα aβ

Figure 1. A part of Z representing part of the link of σ, con-
taining the idealization of the 1–cell ζ in green. Directions of most
arrows have been omitted.

idealization of ζ begins at the object (σ ⊂ ε ⊂ φα) and ends at (σ ⊂ ε ⊂ φα). Let
aα be the arrow pointing from (σ ⊂ ε ⊂ φα) to (σ ⊂ ε), and let aβ be the arrow
pointing from (σ ⊂ ε ⊂ φβ) to (σ ⊂ ε). These arrows project to arrows JaαK and
JaβK in Y, and the path pJζK (defined as in Definition 4.8) travels from i(JaαK) to
i(JaβK).

Lemma 4.21. The CG(Y)–loop

JaαK+ · pJζK · JaβK−,

(which is based at Jσ ⊂ εK) represents an element of GJσ⊂εK.

Proof. All the chains which occur in this proof have the same minimal element σ,
so we omit the prefix ‘σ ⊂’ from all chains until the end of the proof of the Lemma.
We therefore have a diagram in link(σ) in the scwol Z as follows:
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(ε)

(ε ⊂ φα)

aα

33

(ε ⊂ φβ)

aβ

kk

(ε ⊂ φα ⊂ ψ)

a1

gg

a2

&&

b1

@@

(ε ⊂ φβ ⊂ ψ)

a3xx

a4

77b3

^^

(ε ⊂ ψ)

b2

OO

We have the following identities of morphisms in the category Z: aαa1 = b1 =
b2a2 and aβa4 = b3 = b2a3. The path in the statement of the lemma is equal to:

JaαK+ · Ja1K+ · Ja2K− · g(ε⊂ψ) · Ja3K+ · Ja4K− · JaβK−,
where g(ε⊂ψ) is the element of GJ(ε⊂ψ)K chosen for the path pζ as in Definition 4.8.

Define the following elements of GJεK:

h1 = z (JaαK, Ja1K) z (Jb2K, Ja2K)
−1
,

h2 = h1ψJb2K(g(ε⊂ψ)),

h3 = h2z (Jb2K, Ja3K) z (JaβK, Ja4K)
−1
,

where the z(JaK, JbK) are the twisting elements determined by the complex of groups
structure on G(Y).

We now have the following sequence of elementary homotopies of CG(Y)–paths
(all of which consist of applying the moves in Definition 2.4, and the rule of arrow
composition in CG(Y) from Definition 2.12).

JaαK+ · pJζK · JaβK− ' JaαK+ · Ja1K+ · Ja2K− · g(ε⊂ψ) · Ja3K+ · Ja4K− · JaβK−

' z(JaαK, Ja1K) · Jb1K+ · Ja2K− · g(ε⊂ψ) · Ja3K+ · Ja4K− · JaβK−

' z(JaαK,Ja1K)z(Jb2K,Ja2K)−1·Jb2K+·Ja2K+·Ja2K−·g(ε⊂ψ)·Ja3K+·Ja4K−·JaβK−

' h1 · Jb2K+ · g(ε⊂ψ) · Ja3K+ · Ja4K− · JaβK−

' h1 · ψJb2K(g(ε⊂ψ)) · Jb2K+ · Ja3K+ · Ja4K− · JaβK−

' h2z(Jb2K, Ja3K) · Jb3K+ · Ja4K− · JaβK−

' h2z(Jb2K, Ja3K)z(JaβK, Ja4K)−1 · JaβK+ · Ja4K+ · Ja4K− · JaβK−

' h3 · JaβK+ · JaβK−

' h3

This proves the result. �

Notation 4.22. The element of GJεK represented by JaαK+ · pJζK · JaβK− is denoted
by gτ,α.

Lemma 4.23. A path pJαK · g · pJβK K–bounds a (τ, α)–corner if and only if there
exists a CG(Y)–loop

(4) JaαK+ · g1 · pJζK · g2 · JaβK− · g−1
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which represents an element of K.

Proof. First suppose that there is a CG(Y)–loop of the form (4) representing an
element of K.

Then the following two CG(Y)–paths differ by an element of K:

pJαK · g · pJβK,

and

pJαK · JaαK+ · g1 · pJζK · g2 · JaβK− · g−1 · g · pJβK.

Thus they together form a loop which lifts to CK .
This second path is homotopic to a CG(Y)–path whose scwolification avoids

the vertex t(JαK) after pJαK but instead travels across the first three edges of pJαK,
traverses pJζK, and then travels across the final three edges of pJβK. The homotopy
lifts to CK , and the image in Z of this homotopy under the scwolification ΘK shows
that there is a 2–cell τ ′ between the edges α′ and β′ which are the images of the
lifts of pJαK and pJβK respectively. This shows that the path pJαK · g · pJβK K–bounds
a (τ, α)–corner.

Now suppose that the CG(Y)–path q = pJαK · g · pJβK K–bounds a (τ, α)–corner.
Lift to a CK–path q̂ and consider the scwolification ΘK(q̂) in Z. As in Definition
4.20, the realization of q̂ is the concatenation of two 1–cells α′, β′ in lk(σ′) for some
cube σ′ in the orbit of σ. Moreover, there is a 2–cell τ ′ with α′, β′ in the boundary
of τ ′ and an element h of G so that σ′ = hσ, τ ′ = hτ , α′ = hα and β′ = hβ. Let
v′ be the vertex of lk(σ′) where α′ and β′ meet.

Consider the loop q0 = JaαK+ · pJζK · JaβK− as in Lemma 4.21. This represents an
element of Gt(JαK), and there is a lift q̂0 of q0 to CK so that q0 = ΘK(q̂0) is a loop
based at v′ and traveling across the corner of τ ′ from α′ to β′. The paths q0 and q
have lifts to CK forming a sub-diagram:

·

·

�

·

·
·
·
·

·

�

·

·

g ##

��

??
��

aα

??
aβ

__

��
__

��

·
· � ·

·
q̂0
FF

q̂ ?? ee
-- qq

99

?? __

The circled dots represent either single objects or pairs of objects separated by
a group arrow, depending on whether the paths pJxK have length four or five for
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x ∈ {α, β, ζ}. The scwolification of this diagram in Z looks like this:

·

·

·

·

··

·

·

·

·��

?? ��

aα

??
aβ

__

�� __

��

· · ·
__

)) uu

??

The edges which scwolify to aα in q̂ and q̂0 have sources connected by a group
arrow labeled by some g1. Similarly the edges which scwolify to aβ have sources
connected by group arrow with some label g2. We thus obtain a loop in CK of the
form (4). �

Given the criterion from Lemma 4.23, the following result is straightforward.
Recall the definition of the element gτ,α from Notation 4.22.

Proposition 4.24. Suppose that τ is a 2–cell in lk(σ) and that the boundary of τ
is α.β.γ. For any g ∈ GtJαK the CG(Y)–path pJαK ·g ·pJβ′K K–bounds a (τ, α)–corner
if and only if

(1) Jβ′K = JβK; and
(2) g ∈ EJαKgτ,αEJβK.Kt(JαK)

Proof. Recall from Notation 4.22 that gτ,α is the element of GtJαK represented by
the CG(Y)–loop

JaαK+ · pJγK · JaβK−.
Suppose that pJαK · g · pJβK K–bounds a (τ, α)–corner. Then consider the path

JaαK+ · g1 · pJγK · g2 · JaβK− · g−1

from Lemma 4.23 which represents an element of K.
We have homotopies

JaαK+ · g1 · pJγK · g2 · JaβK− · g−1 ' ψJaαK(g1) · JaαK+ · pJγK · JaβK− ·
(
ψJaβK(g2)g−1

)
' ψJaαK(g1) · gτ,α ·

(
ψJaβK(g2)g−1

)
' ψJaαK(g1)gτ,αψJaβK(g2)g−1.

Since ψJaαK(g1) ∈ EJαK, ψJaβK(g2) ∈ EJβK and the whole expression above is an
element of K ∩GJvK = Kt(JαK), we have

g ∈ EJαKgτ,αEJβKKt(JαK),

as required.
In order to prove the other direction, this computation may be performed in

reverse. �

Lemma 4.25. Suppose that lk(σ) is simplicial and contains 1–cells α, β, and γ.
Let

q = pJαK · g1 · pJβK · g2 · pJγK · g3
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be a CG(Y)–loop which represents an element of K. Suppose q ⊂ lk(σ) is the
realization of the scwolification of some lift of q to CK .

If any one of pJαK · g1 · pJβK, pJβK · g2 · pJγK or pJγK · g3 · pJαK K–bounds a corner,
then q bounds a 2–cell in lk(σ).

Proof. Note that since q represents an element of K, any lift to CK is a loop, and
so the realization q is also a loop. Since lk(σ) is simplicial, this loop is embedded
of length 3 in lk(σ) by Lemma 4.17.

Think of q as given by a cyclic word in the arrows of CG(Y), and suppose
that one of the three given subpaths of q K–bounds a corner. By relabelling and
cyclically rotating we can assume it is the subpath p = pJαK · g1 · pJβK, so there is
some 2–cell τ and p K–bounds a (τ, α)–corner. It follows that some translate τ ′

of τ in lk(σ) has boundary given by a path α′.β′.γ′, where α′.β′ are the first two
1–cells of the path q. If the third 1–cell of ∂τ ′ is not the third 1–cell of q, we obtain
1–cells in lk(σ) with the same endpoints, contradicting the assumption that lk(σ)
is simplicial. So q bounds the 2–cell τ ′. �

Since there are finitely many Stab(σ)–orbits of 2–cell in lk(σ), we obtain the
following.

Proposition 4.26. Suppose that lk(σ) is simplicial. There are finitely many 2–
cells τi in lk(σ) (with boundary αi.βi.γi) so that lk(σ) is flag if and only if, for
every CG(Y)-path

(∗) pJαK · g1 · pJβK · g2 · pJγK · g3

which represents an element of K, there exists an i so that

(1) JαK = JαiK, JβK = JβiK and JγK = JγiK;
(2) g1 ∈ EJαiKgτi,αiEJβiK

Kt(JαiK);

(3) g2 ∈ EJβiKgτi,βiEJγiK
Kt(JβiK); and

(4) g3 ∈ EJγiKgτi,γiEJaiK
Kt(JγiK);

Proof. Choose the 2–cells τi to be representatives of the Stab(σ)–orbits of 2–cells
(together with a fixed vertex to label the boundary – so that a single orbit may
appear up to three times in the list).

Suppose first that the condition about paths of form (∗) representing elements
of K is satisfied, and suppose that p is an edge-loop of length 2 in lk(σ) which
is labelled by 1–cells α′, β′, γ′, in order. By Lemma 4.18 there exists a CG(Y)–
path λ of the form (∗) which is the label of an unscwolification of p. Because of our
hypothesis, there exists an i so that conditions (1)–(4) are satisfied. By Proposition
4.24 the CG(Y)–path λ K–bounds a corner at each of its three corners, and so by
Lemma 4.25 the path p bounds a 2–cell, as required.

Conversely, suppose that every edge-loop of length 3 in lk(σ) bounds a 2–cell,
and consider a CG(Y)–path λ of the form (∗) which represents an element of K.
By Lemma 4.18 the scwolification p of λ is an immersed edge-path of length 3,
which hence must bound a 2–cell, τ say. Suppose that τi is the representative in
the Stab(σ)–orbit of the 2–cell τ , so condition (1) is satisfied. According to Lemma
4.23, applied to all three corners of this 2–cell, the path λ satisfies conditions (2)–
(4). This finishes the proof. �
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To summarize, Lemmas 4.12, 4.16, 4.18, and Proposition 4.26 give descriptions of
various types of CG(Y)–paths so that the cube complex Z = K

∖
X is nonpositively

curved if and only if no such path lifts to CK .

5. Algebraic translation

In this section, we continue to work in the context of a group G acting cocom-
pactly on a CAT(0) cube complex X. The induced action on the associated scwol
X has quotient scwol Y, the underlying scwol for a complex of groups structure
G(Y) on G. We let Q(G) be the set of cube stabilizers for G y X; equivalently
Q(G) is the set of conjugates of the local groups for the complex of groups G(Y).

We translate the conditions from the previous section into algebraic statements
about elements of G and of Q(G), with an eye toward finding conditions on K CG
so that K

∖
X is non-positively curved. In Section 6 we use hyperbolic Dehn filling

to find K which satisfy the conditions, under certain hyperbolicity assumptions on
G and Q(G).

We fix a basepoint v0 for Y and an isomorphism π1(CG(Y), v0) ∼= G as in Section
2. The scwolification functor

Θ: C̃G(Y)→ X

is G–equivariant. Recall also that the objects of C̃G(Y) are homotopy classes of
paths starting at v0.

Fix also a maximal (undirected) tree T in Y. For each object v of Y which
represents an orbit of cubes in X, let cv be the unique Y–path in T from v0 to v. By
using scwol arrows, we consider cv also to be a CG(Y)–path in the natural way. For
an object v of Y which represents a chain of cubes of length longer than 1, we define
a Y–path cv from v0 to v as follows: If v is represented by (σ1 ⊂ σ2 ⊂ · · · ⊂ σk)
(a nested chain of cubes in X) then define cv to be the concatenation of cJσ1K
with the path consisting of the arrows (σ1 ⊂ · · · ⊂ σi) → (σ1 ⊂ · · · ⊂ σi+1), for
i = 1, 2, . . . , k − 1.

We use the paths cv to define a map from (homotopy classes rel endpoints of)
CG(Y)–paths to (homotopy classes of) CG(Y)–loops based at v0 by

p 7→ ci(p) · p · ct(p).

Given a path p, let `p =
[
ci(p) · p · ct(p)

]
∈ π1(CG(Y), v0).

The following results are all straightforward.

Lemma 5.1. For any CG(Y)–paths p, p′ so that t(p) = i(p′), we have

`p = `−1
p

`p·p′ = `p`p′ .

Lemma 5.2. Suppose that p is a CG(Y)–path starting at v0. Let [p] be the equiv-

alence class of p in C̃G(Y), and let x = Θ([p]). Then

StabG(x) =
{

[p · g · p] | g ∈ GJxK
}
.

Definition 5.3. Given an object v of Y, define

Qv = {[cv · g · cv] | g ∈ Gv} .

Definition 5.3 gives an explicit identification of the local groups of the complex
of groups G(Y) with finitely many elements of Q(G).
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5.1. Algebraic formulation of the link conditions. Suppose that K E G. In
order for Z = K

∖
X to be non-positively curved, there are five conditions that need

to be ensured on links in Z. Roughly speaking, they are:

(1) No edge-loop of length 1,
(2) No edge-loop of length 2 consisting of 1–cells in different G–orbits,
(3) No edge-loop of length 2 consisting of 1–cells in the same G–orbit,
(4) No edge-loop of length 3 whose image in Y does not bound a 2–cell, and
(5) No edge-loop of length 3 which does not bound a 2–cell but whose image

in Y does bound a 2–cell.

More precisely, the “image in Y” means the image in Y of the idealization. And
we say this image p “bounds a 2–cell” if there is an unscwolification p̂ and a lift p̃

of p̂ to C̃G(Y) so that the realization of the scwolification of p̃ bounds a 2–cell in
some link of a cube in X.

If K
∖
X is a simply-connected cube complex and we ensure each of these condi-

tions, then Lemmas 4.6, 4.7 and 4.17 imply that K
∖
X is CAT(0).

In this subsection, we formulate five results which give algebraic conditions to
enforce each of these five conditions in turn. These results follow quickly from the
results in Section 4 using the translation from the beginning of this section. In each
case, since G acts cocompactly on a CAT(0) cube complex, there are finitely many
G–orbits of links and in each link finitely many G–orbits of each of the five kinds
of paths in the above list, and we can rule out each orbit behaving badly in K

∖
X

in turn.

Assumption 5.4. The group G acts cocompactly on the CAT(0) cube complex X,
and Q(G) is the collection of cell stabilizers of the action.

Terminology 5.5. Under Assumption 5.4, a normal subgroup KEG is co-cubical
if K

∖
X is a cube complex.

The following is a straightforward translation of Lemma 4.12. We spell out the
proof since we use similar techniques for other more complicated results later in the
section.

Theorem 5.6. Under Assumption 5.4 there exists a finite set F1 ⊂ Q(G) ×G so
that for each (Q, p) ∈ F1 we have p 6∈ Q and so that if (i) K E G is co-cubical;
and (ii) for each (Q, p) ∈ F1 we have p 6∈ Q.K, then no link in K

∖
X contains an

edge-loop of length 1.

Proof. Up to the action of G, there are finitely many pairs (σ̃, α̃), where σ̃ is a cube
of X and α̃ is a 1–cell in link(σ̃) whose endpoints are identified by some element of
G. For each such pair we will give a pair (Q, p) as in the statement of the theorem.

For such a pair, let (σ, α) be the image in K
∖
X . Since K is assumed to act

co-cubically, α is embedded in link(σ), except that its endpoints may have been
identified, making it a loop. According to Lemma 4.12, α is a loop if and only if
there is a CG(Y)–loop of the form pJαK.g that represents a conjugacy class in K.
In particular, this condition only depends on the orbit JαK and not on α itself. We
associate to α the element p = `pJαK and the subgroup Q = Qt(JαK), as described in
the preamble to this section.

Since X itself is a CAT(0) cube complex, the 1–cell α̃ is not a loop. Applying
Lemma 4.12 in case K = {1} we see that p 6∈ Q. On the other hand, to say that
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p 6∈ Q.K is the same as saying there is no CG(Y)–loop of the form pJαK.g which
represents an element of K (since in such a CG(Y)–loop the element g must be in
the local group Gt(JαK)). This proves the result. �

The next result is an application of Lemma 4.16 in case of edge-paths of length
2 consisting of 1–cells in different G–orbits (since then the K–non-backtracking
condition is vacuous).

Theorem 5.7. Under Assumption 5.4 there exists a finite set F2 ⊂ Q(G)2 × G2

so that for each (Q1, Q2, p1, p2) ∈ F2 we have

1 6∈ p1Q1p2Q2,

and so that if (i) K E G is co-cubical; and (ii) for each (Q1, Q2, p1, p2) ∈ F2 we
have

K ∩ p1Q2p2Q2 = ∅
then every edge-loop of length 2 in a link in K

∖
X consists of 1–cells in the same

G–orbit.

Proof. The proof is similar to the proof of Theorem 5.6 above. Lemma 4.16 implies
that it is enough to verify that no link in a cube of K

∖
X contains a pair of 1–cells

α and β in distinct G–orbits JαK, JβK so that there is a CG(Y)–loop pJαK ·g1 ·pJβK ·g2

representing an element of K.
There are finitely many pairs of such orbits, and to each such pair we can asso-

ciate the elements p1 = `pJαK , p2 = `pJβK , Q1 = Qt(JαK), Q2 = Qt(JβK).

Since X is a CAT(0) cube complex, there are no non-backtracking edge-loops
of length 2 in any links in X, so applying Lemma 4.16 with K = {1} we see that
1 6∈ p1Q1p2Q2. The result now follows from Lemma 4.16 with our choice of K. �

For edge-paths of length 2 consisting of 1–cells in the same G–orbit, the condition
is slightly more complicated, as K–backtracking edge-paths are possible.

Theorem 5.8. Under Assumption 5.4 there exists a finite set F3 ⊂ Q(G)2 × G2

so that for each (Q1, Q2, p1, p2) ∈ F3 we have

(5) 1 6∈ p1 (Q1 rQp22 ) p2 (Q2 rQp11 ) ,

and so that if (i) K EG is co-cubical; (ii) no link in K
∖
X contains an edge-loop

of length 1; and (iii) for every (Q1, Q2, p1, p2) ∈ F3 we have

(6) K ∩ p1 (Q1 r (Qp22 (K ∩Q1))) p2 (Q2 r (Qp11 (K ∩Q2))) = ∅

then no link in K
∖
X contains an immersed edge-loop of length 2 consisting of

1–cells in the same orbit.

Proof. Because of assumptions (i) and (ii) we only need to be concerned with the
following situation: There is some cube σ̃ of X and some 1–cell α̃ in its link so that
the following hold.

(1) There is some g ∈ G so that g fixes t(α̃) but not α̃.
(2) There is some h ∈ G so that h(i(α̃)) = i(gα̃) but h−1gα̃ 6= α̃.

There are finitely many orbits of pairs (σ̃, α̃) of this type. For each orbit we pick
a representative, and describe an element of Q(G)2 × G2 as in the theorem. If
Equation (6) is satisfied for this element, then K

∖
X will contain no immersed

edge-loop of length 2 consisting of 1–cells in the orbit of α̃.
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We apply Lemma 4.16 to a path of length 2 of the form α.α′ where α is the image
of α̃ in K

∖
X and α′ is the (oppositely oriented) image of a translate of α̃ by an

element of the stabilizer of σ̃. Any immersed loop of the type we are trying to rule
out gives rise to a K–nonbacktracking CG(Y)–loop pJαK · g1 ·pJαK · g2 representing a

conjugacy class in K. We let p1 = lpJαK , p2 = lpJαK
, Q1 = Qt(JαK) and Q2 = Qi(JαK).

Using Lemma 4.15, the loop pJαK · g1 · pJαK · g2 is K–nonbacktracking if and only if

g1 /∈ EJαKKt(JαK) and g2 /∈ EJαKKi(JαK). The subgroup of Q1 corresponding to EJαK
is equal to Q1 ∩ Qp22 , and the subgroup of Q2 corresponding to EJαK is Q2 ∩ Qp11 .

Thus an element p1q1p2q2 of p1Q1p2Q2 comes from a K–nonbacktracking CG(Y)–
loop if and only if q1 /∈ Qp22 (K∩Q1) and q2 /∈ Qp11 (K∩Q2). Applying Lemmas 4.15

and 4.16 in case K = {1} and K
∖
X = X is CAT(0), we see that our tuple satisfies

Equation (5). For an arbitrary K we see that when Equation (6) is satisfied, there
is no immersed edge-loop of length 2 in a link in K

∖
X consisting of images of

translates of α̃. �

In order to apply Lemma 4.17, in each of the following two results we make the
extra assumption that K is so that no link in K

∖
X contains an edge-loop of length

1 or 2. The following result is a translation of Lemma 4.18.

Theorem 5.9. Under Assumption 5.4 there exists a finite set F4 ⊂ Q(G)3 × G3

so that for each (Q1, Q2, Q3, p1, p2, p3) ∈ F4 we have

1 6∈ p1Q1p2Q2p3Q3

and so that if (i) K EG is co-cubical; (ii) no link in K
∖
X contains an edge-loop

of length 1 or 2; and (iii) for all (Q1, Q2, Q3, p1, p2, p3) ∈ F4 we have

K ∩ p1Q1p2Q2p3Q3 = ∅
then every edge-loop of length 3 in a link of K

∖
X has image in Y which bounds a

2–cell.

Proof. Condition (ii) and Lemma 4.17 imply that it suffices to consider immersed
loops of length 3 in links in K

∖
X . For each choice of triple of G–orbits JαK, JβK, JγK

of 1–cells in links in X whose image in Y forms a loop, but whose image does not
bound a 2–cell in Y (in the sense described at the beginning of this subsection),
we proceed as follows. We associate the elements p1 = lpJαK, p2 = lpJβK , p3 = lpJγK ,
Q1 = Qt(JαK), Q2 = Qt(JβK), and Q3 = Qt(JγK).

Since X is a CAT(0) cube complex, we can apply Lemma 4.18 to see that

1 6∈ p1Q1p2Q2p3Q3.

Now let K E G be co-cubical, and satisfy conditions (i)–(iii) from the statement.
Condition (iii) implies that condition (2) from Lemma 4.18 does not hold, and by
that lemma there is no immersed loop of length 3 in a link in K

∖
X whose image

in Y is JαK, JβK, JγK.
Since there are finitely many such triples JαK, JβK, JγK, the theorem follows. �

Finally, we deal with edge-loops of length 3 in links in K
∖
X whose image in Y

does bound a 2-cell.

Terminology 5.10. Suppose that A = (Q1, Q2, Q3, p1, p2, p3, h1, h2, h3) ∈ Q(G)3×
G6. With indices read mod 3, let

A−i = Q
pi−1

i−1 ∩Qi,
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and let
A+
i = Qi ∩Qpi+1

i+1 .

Furthermore, let
Bi = A−i hiA

+
i .

Using this terminology, we have the following translation of Proposition 4.26.

Theorem 5.11. Under Assumption 5.4 there exists a finite set F5 ⊆ Q(G)3 ×G6

so that for each A = (Q1, Q2, Q3, p1, p2, p3, h1, h2, h3) we have

1 6∈ p1 (Q1 rB1) p2 (Q2 rB2) p3 (Q3 rB3)

and so that if (i) K EG is co-cubical; (ii) no link in K
∖
X contains an edge-loop

of length 1 or 2; and (iii) for all (Q1, Q2, Q3, p1, p2, p3, h1, h2, h3) ∈ F5 we have

K ∩ p1 (Q1 rB1 (K ∩Q1)) p2 (Q2 rB2 (K ∩Q2)) p3 (Q3 rB3 (K ∩Q3)) = ∅
then no link in K

∖
X contains an edge-loop of length 3 which does not bound a

2-cell but whose image in Y bounds a 2–cell.

Proof. For each choice of triple of orbits JαK, JβK, JγK whose image in Y bounds a
2-cell (in the sense described at the beginning of this subsection), we proceed as
follows. Without loss of generality we choose representatives α, β, γ of these orbits
so that there is a 2–cell τ with boundary α · β · γ. We associate the elements
p1 = `pJαK , p2 = `pJβK , p3 = `pJγK , Q1 = Qt(JαK), Q2 = Qt(JβK), Q3 = Qt(JγK), and

h1 = [ct(JαK) · gτ,α · ct(JαK)], h2 = [ct(JβK) · gτ,β · ct(JβK)], h3 = [ct(JγK) · gτ,γ · ct(JγK)].
Once again, since X is a CAT(0) cube complex, we can apply Proposition 4.26

to see that
1 6∈ p1 (Q1 rB1) p2 (Q2 rB2) p3 (Q3 rB3) .

When the conditions g1 ∈ EJαiKgτi,αiEJβKKt(JαiK), etc. from the statement of

Proposition 4.26 are translated into statements about the group G we get exactly
g1 ∈ B1 (K ∩Q1), etc., which gives the statement in the conclusion of the result.

Since there are finitely many such triples JαK, JβK, JγK, the theorem follows. �

6. Dehn filling

In this section we prove some results about group-theoretic Dehn filling. The-
orem 6.4 gives a ‘weak separability’ of certain multi-cosets, and generalizations of
multi-cosets, and is used to find subgroups K which satisfy the conditions from
Theorems 5.6–5.11. Theorem 6.4 may be of independent interest, and we expect
it to have applications beyond the scope of this paper. The second main result of
this section is Theorem 6.8, from which Theorem F from the introduction follows
quickly by induction.

6.1. Dehn fillings. Let (G,P) be a group pair, and let N = {NP CP | P ∈ P} be
a choice of normal subgroups of the peripheral groups. The collection N determines
a (Dehn) filling (G,P) of (G,P), where G = G/K for K the normal closure of

⋃
N ,

and P equal to the collection of images of elements of P in G. The elements of N
are called filling kernels. We sometimes write such a filling using the notation

π : (G,P)→ (G,P),

omitting mention of the particular filling kernels.
If NP <̇ P (i.e. NP is finite index in P ) for all P ∈ P, we say that the filling is

peripherally finite. If H < G and for all g ∈ G, |H∩P g| =∞ implies Ng
P ⊆ H, then
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the filling is an H–filling. If H is a family of subgroups, the filling is an H–filling
whenever it is an H–filling for every H ∈ H.

A property P holds for all sufficiently long fillings of (G,P) if there is a finite
set S ⊆

⋃
P \ {1} so that P holds whenever (

⋃
N ) ∩ S = ∅. It is frequently useful

to restrict attention to specific types of fillings (peripherally finite, H–fillings, etc.).
If A is a property of fillings we say that P holds for all sufficiently long A–fillings
if, for all sufficiently long fillings, either P holds or A does not hold.

6.2. Relatively hyperbolic group pairs. We refer the reader to [18] for a back-
ground on relatively hyperbolic groups. In that paper, given a group pair (G,P)
(consisting of finitely generated groups) a space called the cusped space is built,
which is δ–hyperbolic (for some δ) if and only if (G,P) is relatively hyperbolic. See
[18, Section 3] for the construction and basic geometry of the cusped space. The
following result is essentially contained in [7, Theorem 7.11].

Theorem 6.1. Suppose that G is a hyperbolic group and that P is a finite collection
of subgroups of G. Then (G,P) is relatively hyperbolic if and only if P is an almost
malnormal family of quasi-convex subgroups.

Recall that P = {P1, . . . , Pn} is almost malnormal if whenever Pi∩P gj is infinite,
we have i = j and g ∈ Pi.

We can use the notion of height (see Definition 3.41) to measure how far away a
family of subgroups is from being almost malnormal.

We now define the induced peripheral structure on G associated to a finite col-
lection of quasi-convex subgroups of a hyperbolic group, in analogy with the con-
struction from [2, Section 3.1].

Definition 6.2. Suppose that G is a hyperbolic group and H is a finite collection
of quasi-convex subgroups of G. The peripheral structure on G induced by H is
obtained as follows:

Start by taking the collection of minimal infinite subgroups of the form H1 ∩
Hg2

2 ∩ . . .∩Hgk where the Hi are in H and the cosets {H1, g2H2, . . . , gkHk} are all
distinct. Replace each element in this collection by its commensurator in G, and
then choose one from each G–conjugacy class. The resulting collection P is the
induced peripheral structure.

If H ∈ H then the induced peripheral structure on H with respect to H is a choice
of H-conjugacy representatives of intersections with H of G–conjugates of elements
of P.

We remark that the fact that there is a bound on the number k of giHi as above
follows from Proposition 3.42.

The following can be proved in the same way as [2, Proposition 3.12].

Lemma 6.3. Suppose that G is hyperbolic and H is a finite collection of quasi-
convex subgroups of G.

(1) The induced peripheral structure P is a finite collection of groups. The pair
(G,P) is relatively hyperbolic.

(2) If H ∈ H then the induced peripheral structure D of H with respect to H is
finite. The pair (H,D) is relatively hyperbolic.

(3) For any H ∈ H, the pair (H,D) is full relatively quasi-convex in (G,P).
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The definition we use for relatively quasi-convex is that from [2]. In [28, Appen-
dix A] it is proved that this is the same notion as the various notions defined in
[23]. A subgroup H is full if whenever P is a parabolic subgroup so that H ∩ P is
infinite we have H ∩ P <̇P .

6.3. The appropriate meta-condition. The goal of this subsection is to prove
Theorem 6.4 below. The special case that n = 1 and S1 = ∅ is [2, Proposition
4.5], which is about keeping elements out of full quasi-convex subgroups when
performing long Dehn fillings. Here we generalize to multi-cosets of full quasi-
convex subgroups, possibly with some elements deleted. Although the present
result is more general, our proof is simpler, using the more appealing “Greendlinger
Lemma”–type Theorem 6.6 below in place of the somewhat technical [2, Lemmas
4.1 and 4.2].5

Theorem 6.4. Let (G,P) be relatively hyperbolic, and let Q be a collection of full
relatively quasi-convex subgroups. For 1 ≤ i ≤ n, let pi ∈ G, Qi ∈ Q and Si ⊆ Qi
be chosen to satisfy:

(7) 1 /∈ p1(Q1 \ S1) · · · pn(Qn \ Sn)

Then for sufficiently long Q–fillings G→ G/K, the kernel K contains no element
of the form

(8) p1t1 · · · pntn
where ti ∈ Qi \ ((K ∩Qi)Si).

The five conditions in the conclusions of Theorems 5.6 – 5.11 each fall into the
scheme of the conditions in Theorem 6.4. Therefore, we may apply Theorem 6.4
to obtain the following result. We remark that the following result is stated in the
generality of relatively hyperbolic groups acting cocompactly on cube complexes
with full relatively quasi-convex subgroups. This is greater generality than is strictly
required for the proof of Theorem F. However, we believe that this extra generality
will be of use in future work, and should be of independent interest.

Corollary 6.5. Suppose that (G,P) is relatively hyperbolic and that G acts co-
compactly on the CAT(0) cube complex X. Suppose every parabolic element of G
fixes some point of X, and that cell stabilizers are full relatively quasi-convex. Let
σ1, . . . , σk be representatives of the G–orbits of cubes of X. For each i let Qi be the
finite index subgroup of Stab(σi) consisting of elements which fix σi pointwise. Let
Q = {Q1, . . . , Qk}.

For sufficiently long Q–fillings

G→ G = G(N1, . . . , Nm)

of (G,P), with kernel K, the quotient K
∖
X is a CAT(0) cube complex.

Proof. The kernels of Dehn fillings are always generated by parabolic elements,
and the parabolic elements act elliptically by assumption. Thus the kernel of any
Dehn filling is generated by elliptic elements, so K

∖
X is simply-connected by

Theorem 4.1. For sufficiently long Q–fillings the fact that Gσi ∩ K ≤ Qi follows
from [2, Proposition 4.4], so by Proposition 4.3 for such fillings K

∖
X is a cube

5Using such a Greendlinger Lemma in place of the results of [2] was suggested to us by Alessan-
dro Sisto while we were collaborating on [17].
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complex. Therefore, we may assume that the subgroup K is co-cubical (in the
sense of Terminology 5.5).

It remains to show that for sufficiently long Q–fillings K
∖
X is non-positively

curved. It follows from Theorems 5.6–5.8 and 6.4 that for sufficiently long Q–fillings
each link of each cell in K

∖
X is simplicial. Thus it follows from Theorem 5.9, 5.11

and 6.4 that for sufficiently long Q–fillings, each link of each cell in K
∖
X is also

flag, which means that K
∖
X is non-positively curved by Theorem 4.5. �

To prove Theorem 6.4, we use the following “Greendlinger Lemma” (cf. [17,
Lemma 2.41]):

Theorem 6.6. Let C1, C2 > 0. Suppose that (G,P) is relatively hyperbolic, with
cusped space X. For all sufficiently long fillings G→ G/K, and any geodesic γ in
X joining 1 to g ∈ K \ {1}, there is a horoball A so that

(1) γ penetrates A to depth at least C1, and
(2) there is an element k of K stabilizing A, so that, for two points a, b in A

and lying on γ at depth at least C1, d(a, kb) < d(a, b) − C2 (in particular
d(1, kg) < d(1, g)− C2).

Proof. Let δ > 0 be such that X is δ–hyperbolic, and so are the cusped spaces for
sufficiently long fillings (that there exists such a δ is [2, Proposition 2.3]). We only
consider such fillings, without further mention of this assumption.

Now choose L, ε so that every L–local (1, C2)–quasi-geodesic lies within an ε–
neighborhood of any geodesic with the same endpoints. (Such L, ε only depend on
δ and C2. See [11, Ch. 3].)

Now choose a filling long enough so that every (2L + C1 + 2ε)–ball centered
on the Cayley graph embeds in the quotient cusped space. Let K be the kernel
of the filling, and choose g ∈ K \ {1}. Let γ be a geodesic from 1 to g; let γ
be the projection to the cusped space X/K for G/K. Within an (L + C1 + 2ε)–
neighborhood of the Cayley graph, γ is an L–local geodesic. But γ cannot be an
L–local (1, C2)–quasi-geodesic everywhere, since it is a loop with diameter larger
than ε.

In particular, there is a subsegment σ of γ of length l ≤ L so that the endpoints
a and b of σ are less than l − C2 apart. This subsegment σ must moreover lie in
the image of a single horoball.

The corresponding points a and b on γ lie at depth at least C1 in a horoball A
of X. Since d(a, b) < l − C2, there is some element k ∈ K stabilizing A so that
d(a, kb) < l − C2, as desired. �

The following result follows immediately from [28, A.6].

Lemma 6.7. Suppose that (G,P) is relatively hyperbolic with cusped space X and
that (H,D) ≤ (G,P) is a full relatively quasi-convex subgroup. There exists a
constant κ satisfying the following:

Suppose that g ∈ G and that x1, x2 ∈ gH. Suppose that γ is a geodesic in X
between x1 and x2. Further, suppose that aP (for a ∈ G and P ∈ P) is a coset so
that γ intersects the horoball corresponding to aP to depth at least κ. Then P is
infinite and P a ∩Hg has finite-index in P a.

Proof of Theorem 6.4. Let X be the cusped space associated to (G,P) and suppose
that X is δ–hyperbolic. Let C2 be any positive number, and let C1 = max{|pi|, κ}+
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2(n + 100)δ, where κ is the constant from Lemma 6.7 above. Suppose that K is
the kernel of a filling which is long enough to satisfy the conclusion of Theorem 6.6
with these constants.

In order to obtain a contradiction, suppose that there is an element g ∈ K which
is of the form

g = p1t1 · · · pntn,
where ti ∈ Qi \ ((K ∩Qi)Si), and suppose that g is chosen so that dX(1, g) is
minimal amongst all such choices.

Since for each i we have Qi \ ((K ∩Qi)Si) ⊆ Qi \ Si, the assumption of the
theorem implies that g 6= 1. We can represent the equation g = p1t1 · · · tnpn by a
geodesic (2n + 1)–gon in X, joining the appropriate elements of the Cayley graph
in turn by X–geodesics. Let γ be the geodesic for g, ρi the geodesic for pi and τi
the geodesic for ti.

Since g ∈ K \ {1}, by Theorem 6.6 there exist a horoball A in X, an element
k ∈ K stabilizing A, and points a, b on γ at depth at least C1 so that k stabilizes A
and d(a, kb) < d(a, b)− C2. In particular, we have d(x, kgx) < d(x, gx)− C2. The
geodesic (2n+ 1)–gon is (2n− 1)δ–thin, so b lies within distance (2n− 1)δ of some
side other than γ. The paths ρi do not go deeply enough into any horoballs to be
this close to b, so b lies within (2n− 1)δ of some point b′ on some τi. By the choice
of C1, b′ lies at depth at least κ in A.

Write A = aP for some P ∈ P. Note that τi is a geodesic between two points in
the coset p1t1 · · · piQi. By Lemma 6.7, P a ∩Qp1t1···pii has finite-index in P a. Since

the filling is a Q–filling, we have that k ∈ Qp1t1···pii .

Let k′ = k(p1t1···pi)−1

, and let t′i = k′ti. Then k′ ∈ K ∩Qi.
Note that kg = p1t1 · · · pi(k′ti)pi+1 · · · pntn. Since ti 6∈ (K ∩ Qi)Si, we have

that t′i 6∈ (K ∩Qi)Si. Therefore, the element kg is another element of the required
form, contradicting the choice of g as the shortest such. This completes the proof
of Theorem 6.4. �
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6.4. Dehn fillings which induce CAT(0) quotient cube complexes.

Theorem 6.8. Suppose that the hyperbolic group G acts cocompactly on the CAT(0)
cube complex X, and that cell stabilizers are virtually special and quasi-convex. Let
σ1, . . . , σk be representatives of the G–orbits of cubes of X, and for each i let Qi be
the finite-index subgroup of Stab(σi) consisting of elements which fix σi pointwise.
Let Q = {Q1, . . . , Qk}, and let P be the peripheral structure on G induced by Q, as
in Definition 6.2.

If some element of Q is infinite, then there exists a Dehn filling

G� G = G(N1, . . . , Nm)

of (G,P), with kernel KP so that

(1) G is hyperbolic;
(2) Q consists of virtually special quasi-convex subgroups of G.
(3) KP is generated by elements in cell stabilizers.
(4) For each i, we have KP ∩ Stab(σi) ≤ Qi;
(5) height(Q) < height(Q).
(6) KP

∖
X is a CAT(0) cube complex;

Proof. Let G,X,Q and P be as in the statement of the theorem. By Lemma 6.3,
(G,P) is relatively hyperbolic. Moreover, for each Q ∈ Q, the induced structure
DQ on Q makes (Q,DQ) relatively hyperbolic, and Q is full relatively quasi-convex
in (G,P). Note that the assumption that some element of Q is infinite implies (by
the definition of P) that some element of P is infinite.

Property (1) holds for sufficiently long peripherally finite fillings of (G,P) by
the basic result of relatively hyperbolic Dehn fillings [31, Theorem 1.1]. We always
assume that we have taken a filling so that G is hyperbolic.

We remark that, because each element of Q is finite-index in a cell stabilizer,
each element of Q is hyperbolic and virtually special. Moreover, since each element
of P has a finite-index subgroup which is a quasi-convex subgroup of some element
of Q by construction, each element of P is also hyperbolic and virtually special. In
particular, each element of P is residually finite. We choose particular fillings with
Ni <̇ Pi, and residual finiteness guarantees the existence of the fillings that we seek.

We now explain how to ensure the properties of the conclusion of the result.
Suppose that Q ∈ Q. Since P is the peripheral structure induced by Q, we can

choose finite-index subgroups of elements of P which induce Q–fillings, and any
such filling G of G naturally induces a filling Q of Q. By the Malnormal Special
Quotient Theorem [36, Theorem 12.3] (see also [3, Corollary 2.8]) for each Pi ∈ P
there is a subgroup Ṗi(Q) ĊPi so that if each filling kernel Ni satisfies Ni ≤ Ṗi(Q)

then the induced filling Q is virtually special (and hyperbolic). Let Ṗi be the

intersection of the Ṗi(Q) for all Q ∈ Q. Thus, if we choose filling kernels Ni ≤ Ṗi
then each of the induced fillings of each element of Q is virtually special. By [19,
Proposition 4.6], the natural map from Q to G is injective for all sufficiently long
fillings.6 If we choose a sufficiently long peripherally finite filling of (G,P) with

Ni ≤ Ṗi then [19, Proposition 4.5] implies that each Q is quasi-convex in G. This
ensures Property (2).

6[19, Lemma 3.5] ensures that sufficiently long Q–fillings are sufficiently wide, in the terminol-
ogy of that paper.
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For the remaining properties, we show that they hold for sufficiently long pe-
ripherally finite Q–fillings of (G,P). Therefore, to ensure that all of the properties

hold, it suffices to take a sufficiently long Q–filling with each Ni <̇ Ṗi.
Property (3) holds automatically for any Q–filling, since KP is generated by

conjugates of elements in Q, and each such conjugate lies in a cell stabilizer.
We now explain how to ensure each of the remaining properties in turn for

sufficiently long Q–fillings.
For property (4), suppose that Fi t{1} is a set of coset representatives for Qi in

Stab(σi). To ensure that (4) holds, it suffices to keep (the image of) each element
of Fi out of the image of Stab(σi) in G. This is true for sufficiently long Q–fillings
by [1, Theorem A.43.4], because Qi has finite index in Stab(σi).

Property (5) holds for sufficiently long peripherally finite Q–fillings of (G,P) by
an entirely analogous argument to that of [1, Theorem A.47].

Finally, Property (6) holds for sufficiently long Q–fillings by Corollary 6.5. �

The group G as above acts isometrically on X = KP
∖
X with quotient naturally

isomorphic (as a topological space, but not as a complex of groups) to G
∖
X .

Therefore, if the action of G on X is not proper, we can apply Theorem 6.8 to
this action, to obtain a further quotient. By induction on height, we obtain the
following result from the introduction.

Theorem F. Suppose that the hyperbolic group G acts cocompactly on a CAT(0)
cube complex X and that cell stabilizers are virtually special and quasi-convex.
There exists a quotient G = G/K so that

(1) The quotient K
∖
X is a CAT(0) cube complex;

(2) The group G is hyperbolic; and
(3) The action of G on K

∖
X is proper (and cocompact).

Appendix A. A quasi-convexity criterion

In this appendix, we give a criterion (Theorem A.3) for a possibly infinite union
of quasi-convex sets in a hyperbolic space to be quasi-convex. This criterion is
used in the forward direction of Theorem A: quasi-convex cell stabilizers imply
quasi-convex hyperplane stabilizers. This criterion may be of independent interest.

Since any subset is a union of points, clearly some assumptions are needed.
We begin with a basic lemma about finite unions of quasi-convex subsets.

Lemma A.1. Suppose that Y is δ–hyperbolic, and P ⊂ Y is a union of k ε–quasi-
convex subsets P1, . . . , Pk so that Pi∩Pi+1 6= ∅ for each i. Then P is ρ–quasi-convex
where

ρ = δ(log2(k) + 1) + ε.

Proof. Consider a pair of points x ∈ Pr, y ∈ Ps. Without loss of generality, assume
that r < s (the case r = s being straightforward).

Now choose a sequence of points pi ∈ Pi ∩Pi+1 for r ≤ i < s, let σ be a geodesic
between x and y and let u be a point on σ. Our task is to bound the distance from
u to P .

Consider the broken geodesic γ = [x, pr, pr+1, . . . , ps−1, y]. Since the Pi are
ε–quasi-convex, γ is contained in an ε–neighborhood of Pr ∪ . . . ∪ Ps ⊂ P .

Consider the geodesic polygon with one side the geodesic σ = [x, y] and the
other sides the geodesics forming γ. Let r0 = b r+s2 c, and consider the geodesic
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triangle σ, [x, pr0 ], [pr0 , y]. By δ–hyperbolicity, u lies within δ of one of [x, pr0 ] and
[pr0 , y]. Suppose it is [x, pr0 ] (the other case being entirely similar), and suppose
that u1 ∈ [x, pr0 ] is within δ of u.

Now let r1 = b r+r02 c and consider the geodesic triangle [x, pr1 ], [pr1 , pr0 ], [pr0 , x].
By δ–hyperbolicity, u1 is within δ of one of [x, pr1 ], [pr1 , pr0 ], so there is u2 on one
of these sides within δ of u1 and within 2δ of u.

We proceed in this manner, in each case making the interval of indices half as
long. After t steps of this argument we find a point ut which is within within tδ of
u.

After at most d = log2(k) + 1 steps, we have a geodesic triangle where two sides
are [pl, pl+1], [pl+1, pl+2] (or maybe one endpoint x or y), and we have ud within dδ
of u, but also within ε of P . This proves the lemma. �

The following straightforward instance of “linear-beats-log” is tailored for use in
the proof of Theorem A.3.

Lemma A.2. Fix δ, ε > 0, and let g(x) = δ (log2(x+ 1) + 1) + ε. For any m > 0
and c ≥ 0 there exists a natural number Rm,ε,δ so that for all R0 > Rm,ε,δ, we have

g(R0) <
1

200
m

(
1

4
R0 −

2g(R0) + 1

m
− 3c

)
.

The next result states that under appropriate hypotheses, the union of an ar-
bitrary number of quasi-convex subsets is itself quasi-convex, with constant not
depending on the number of such subsets.

Theorem A.3. Suppose that Υ is a δ–hyperbolic space and that m, ε > 0 and c ≥ 0
are real numbers. There exists a constant ε′ so that for any (finite or countably
infinite) collection of subsets {Xi}Λi=1 of Υ for which

(1) Each Xi is ε–quasi-convex;
(2) For each i we have Xi ∩Xi+1 6= ∅; and
(3) For any i, j, if x ∈ Xi and y ∈ Xj we have d(x, y) ≥ m (|i− j| − c),

the set X = ∪Xi is ε′–quasi-convex.

Proof. Let g(x) = δ (log2(x+ 1) + 1) + ε, and let R = Rm,ε,δ be the number from
Lemma A.2. Without loss of generality we may assume that R ≥ 1.

If Λ ≤ 100R then Lemma A.1 implies X is ρ-quasi-convex with

ρ = δ (log2(100R) + 1) + ε = g(100R− 1).

On the other hand, suppose that Λ > 100R and fix u, v ∈ X. Let j, k be so that
u ∈ Xj , v ∈ Xk and without loss of generality suppose that j ≤ k. It suffices to show
that any geodesic [u, v] stays uniformly close to Xj∪· · ·∪Xk. If |k−j| ≤ 100R then
this follows from Lemma A.1, so suppose that |k−j| > 100R. Let Y = Xj∪· · ·∪Xk.

Our strategy is to build a path between u and v which is (i) uniformly quasi-
geodesic; and (ii) stays uniformly close to Y . The theorem then follows by quasi-
geodesic stability. Choose a sequence of indices t0 = j, t1, . . . , ts−1, ts = k so that
for each 0 ≤ r ≤ s− 2 we have

tr+1 − tr = 100R,

and
ts − ts−1 ∈ Z ∩ [100R, . . . , 200R] .

Moreover, for each 0 ≤ r ≤ s choose some ur ∈ Xtr . We require u0 = u and us = v.



50 D. GROVES AND J.F. MANNING

For r ∈ {0, . . . , s− 1}, let γr be a geodesic between ur and ur+1. Let

K = g(200R) = δ(log2(200R+ 1) + 1) + ε.

Since we assume R ≥ 1 we know that K > δ.
Since we know that for each r ∈ {0, . . . , s − 1} we have tr+1 − tr ≤ 200R we

know that the set

Yr =

tr+1⋃
k=tr

Xk,

is K–quasi-convex, by Lemma A.1. In particular the geodesic γr lies in a K–
neighborhood of Yr.

For each r ∈ {0, . . . , s − 1} and each x ∈ γr, let πr(x) denote the set of closest
points on Yr to x. Furthermore, let Ir(x) be the set of indices l so that πr(x)∩Xl 6=
∅.

Claim A.3.1. For any v ∈ {tr, . . . , tr+1} there exists xv ∈ γr so that

dN (v, Ir(xv)) ≤
1

2

(
2K + 1

m
+ c

)
.

Proof of Claim A.3.1. For any y ∈ πr(x) we have d(x, y) ≤ K. Now, if x and x′

are adjacent vertices and y ∈ πr(x) with y ∈ Xk and z ∈ πr(x′) with z ∈ Xl then
m(|k − l|−c) ≤ d(y, z) ≤ d(y, x)+d(x, x′)+d(x′, z) ≤ 2K+1, so |k− l| ≤ 2K+1

m +c.
The claim now follows immediately from the fact that tr ∈ Ir(ur) and tr+1 ∈

Ir(ur+1), letting x and x′ run over adjacent pairs of vertices in γr. This finishes
the proof of Claim A.3.1. �

Suppose 0 ≤ r ≤ s− 1. Using Claim A.3.1, we can choose a point xr ∈ γr and a
point yr ∈ πr(xr) so that yr ∈ Xkr and

(†)
∣∣∣∣kr − tr + tr+1

2

∣∣∣∣ ≤ 2K + 1

2m
+ c.

Now, for each r ∈ {1, . . . , s − 1}, let σr be a geodesic between yr−1 and yr.
Further, let σ0 be a geodesic from u to y0 and let σs be a geodesic from ys−1 to
v (note that there is no point ys). See Figure 2. We bound the Gromov product

u0 = u

u1

y1σ0

σ1

γ0

γ1

y0

x1

v = us

us−1

γs−1

σs−1

σs

ys−2

xs−2

ys−1

xs−1
x0 · · ·

u2

Figure 2. The σi forming a broken geodesic.

between σt and σt+1 for each t. (There is no reason to expect such a bound on the
Gromov product between γr and γr+1.)

Though we have no control on the lengths of the segments σ0 and σs, the lengths
of the other segments can be bounded below:

Claim A.3.2. Suppose 0 < r < s. The length of σr is at least 200K.
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Proof. By the choice of the index kr in Equation (†) we have

kr − kr−1 ≥ tr+1 − tr−1

2
− 2K + 1

m
− 2c

= 100R− 2K + 1

m
− 2c

> 50R− 2K + 1

m
− 2c

(the equality follows from the choice of tr).
Below, we apply Lemma A.2 with R0 = 200R, noting that K = g(200R), where

g is the function from that lemma. We have

|σr| = dG(yr−1, yr)

≥ m(kr − kr−1 − c)

> m

(
50R− 2K + 1

m
− 3c

)
≥ 200K

The second inequality above follows from the fact that yi ∈ Xki so such points
are at least distance m(kr − kr−1 − c) apart. The final inequality follows from the
promised use of Lemma A.2. This completes the proof of Claim A.3.2. �

Claim A.3.3. Let 0 ≤ r ≤ s− 1. The Gromov product of σr and σr+1 is at most
8K.

Proof. We first handle the case that 0 < r < s− 1.
For i ∈ {r, r+ 1}, the path σi is one side of a pentagon. The other sides are (A)

two sides of length at most K at either end of σi, and (B) two ‘halves’ of adjacent
geodesics: the second ‘half’ of γi−1 and the first ‘half’ of γi, joined at ui. See Figure
3.

γr−1

γr+1

σr

σr+1

ur

ur+1

xr

yryr−1

yr+1

xr−1

xr+1

γr

z z′

Figure 3. Computing the Gromov product of σr and σr+1.

By Claim A.3.2 the geodesics σr and σr+1 have length at least 200K. Let z be
the point on σr at distance exactly 8K from yr.
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Since geodesic pentagons are 3δ–slim, we know that z must be distance at most
3δ from some point on one of the other four sides. However, it cannot be within
distance 3δ of the geodesic between xr and yr since that geodesic has length at most
K. Similarly, since |σr| ≥ 200K, z cannot be within 3δ of the geodesic between xr−1

and yr−1. We claim that z also cannot be within 3δ of the part of γr−1 contained
in the pentagon.

Indeed, suppose w ∈ γr−1, and choose iw ∈ Ir−1(w) ⊂ [tr−1, tr]. There is a point
w′ of πr−1(w) in Xiw ; thus d(w,w′) ≤ K. The point xr is likewise within K of
some Xkr where kr satisfies the inequality (†). This implies that

|kr − iw| ≥
tr+1 − tr

2
− 2K + 1

2m
− c,

and so

d(xr, w) ≥ m

(
tr+1 − tr

2
− 2K + 1

2m
− 2c

)
− 2K

≥ m

(
50R− 2K + 1

m
− 3c

)
− 2K

≥ 198K,

using Lemma A.2 again. But this contradicts d(xr, w) ≤ d(xr, z) + d(z, w) ≤
9K + 3δ ≤ 12K.

We have shown that there is some point w on γr between ur and xr within 3δ
of z. Note that d(xr, w) ≥ d(yr, z)−K − 3δ ≥ 4K, since K ≥ δ.

Now consider the pentagon formed with σr+1 on one side, and the point z′ on
σr+1 which is distance exactly 8K from yr. An entirely analogous argument to the
above shows that there is some w′ between xr and ur+1 on γr so that d(z′, w′) ≤ 3δ,
and d(xr, w

′) ≥ 4K. Since γr is geodesic, we have

d(w,w′) = d(w, xr) + d(xr, w) ≥ 8K.

It follows that d(z, z′) ≥ 8K − 6δ ≥ 2K > δ. It follows that the Gromov product
(yr−1, yr+1)yr is strictly less than d(z, yr) = d(z′, yr) = 8K, whenever 0 < r < s.

The cases r = 0 and r = s − 1 are symmetric, so it suffices to handle the case
r = 0. See Figure 4. We are trying to show that (u, y1)y0 ≤ 8K, so we may suppose

γ0

σ0
σ1

u1

u2

x1

y1

γ1

u

y0

x0

Figure 4. Computing the Gromov product of σ0 and σ1.

without loss of generality that d(y0, u) > 8K. Thus there is a point z on σ0 at
distance exactly 8K from y0. Since d(x0, y0) ≤ K, this point is within δ of a point
w on γ0 between u and x0.



HYPERBOLIC GROUPS ACTING IMPROPERLY 53

For the point z′ on σ1 at distance 8K from y0, we argue as before. We are again
able to deduce that d(z, z′) > δ, and so (u, y1)y0 ≤ 8K. �

Thus, we have a collection of arcs σi which form a broken geodesic between u
and v with segments of length at least 200K (except possibly the first and last)
and all Gromov product at most 8K at the corners. Thus the union of the σi
forms a global quasi-geodesic with uniformly bounded parameters. However, each
σi lies within a (3δ + K)–neighborhood of the union of the γi, which in turn lie
in a K–neighborhood of the union of the Xi. As explained above, this suffices to
prove that the union of the Xi is ε′–quasi-convex with the constant ε′ depending
on the quantities δ, m, and ε, but not on the number of the Xi, as required. This
completes the proof of Theorem A.3. �
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