Math 313 - Analysis I Spring 2009

HOMEWORK #10
SOLUTIONS

(1) Prove that the function f(z) = z3 is (Riemann) integrable on [0, 1] and

show that
! 1
/ 2dr = =,
0 4

(Without using formulae for integration that you learnt in previous calcu-
lus classes...)

n
You may use the identity > i® = 1(n* +2n3 4+ n?).
=1

Solution:
Let n € N and define the dissection

n—1

1)

The function f(z) = 2? is increasing between 0 and 1. Therefore the
supremum of the values on an interval (z;_1,;) is f(x;) = 3, and the

infimum is f(z;_1) = 23 ;. Thus we can calculate the lower and upper
sums of f with respect to D,,:
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D,=1{0,—,—,...,
n’'n n
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= (n4+2n3+n2)—n—
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A similar calculation gives
1 1 1
Dp)=-+—+—.
Ul Dn) 4 + 2n + 4n?

As n — oo we have L(f,D,) — 1 and also U(f,D,) —
follows that f is integrable on [0,1] and that

1
1
/ z3dr = ~,
0 4

1. From this it

as required.



(2)

Suppose that g(z) is a continuous function on an interval [a, b] such that
g(x) > 0 for all . Show that

/abg(x)dm > 0.

Solution

Since g(x) # 0 on [a, b] the function % is defined and continuous on [a, b].

Hence there is M > 0 so that ﬁ < M for all xz. This means that

g(z) > - >0 for all z in [a,b]. Let D = {a,b}. Then L(f,D) < [’ f.
However,

1
L(f,D) > 5716 —al >0,
so we're done.
Let f : [1,3] — R be defined by:

0 ifex <2
fl@y=< 0 ifze(2,3NnQ
1 ifze(2,3]\Q
Prove that f is not Riemann integrable.
Solution:

f is integrable on [1, 3] if and only if it is integrable on [1,2] and also on
[2,3]. Thus, it is enough to show that f is not integrable on [2, 3].

Well, for any dissection D = {2 = xy,. .., 2, = 3} of [2, 3] we have

sup{f(z) |z € (xi—1,2;)} = 1, and
inf{f(z) |z € (wi—1,2:)} = 0.
Therefore
L(f,D)=0,
and 5
/ f=o.
49
Similarly,
U(f,D)=1,
and

e

This shows that f is not integrable on [2, 3] and hence it is not integrable
on [1,3].



(4)

Define p : [0,2] — R as follows:

(2) = z, ifzx<1
PE)=N 1 ifz>1

Prove that p(z) is Riemann integrable on [0, 2] and determine
2
/ p(x)dx.
0

f is continuous so integrable on [0, 2]. We have

/ /f+/f

1
E.

On [1,2], f is identically 1, so it is easy to see that all lower and upper
sums (with respect to any dissection) are equal to 1, which means that

/12f1.

Suppose that f : [a,b] — R is (Riemann) integrable on [a, b]. Prove that
b n
b—a b—a
dr = lim —— ; .
[, sevia = 23 (e 25

Solution: Fix n € N. Consider the following dissection:

Solution:

Howie works out fol f=

Therefore, fOQf = 1%.

_ — —a 2b— — —1(b—
Dn:{a,a—i—b a+b a’a+b o (b a)’...7a+b a+(n )b a),b}
2n n 2n n 2n n

This is a partition of [a, b] into n intervals, one of length 22 one of length

b b b
ot + 2% and n — 2 of length >—¢.

n

2n’

It is more natural to define the partition without the 4% 2 2 noints, but we

want the point a + ut

is.

bn 4 to be in the interior of the it h interval, which it

Therefore, it the intervals are I ,..., I, », and
Min = ll’lf{f(QT) | T e Iz,n}
Min = sup{f(z) |z € Lin},



from which it follows that (for 1 <i < n)

Miy < f(a+ib_a

) S Mi,n~
Therefore, the terms of the lower and the upper sum of D,, match up to
give an inequality with the required sum E’_T“ Z?:l f (a + ib_T“), except
for the first and lat terms where the lengths of the intervals are wrong.
The best thing to do is note that these terms are small, and going to 0 as
n — oo. Therefore, if we prove that there is a number L so that

L= lim L(f,D,) = lim U(f,D,) (1)

n—oo n—oo

then we'll see that L = [ f and that L = lim,, ., =2 37" | f (a +i%9),
which is what we are required to prove. Thus, we are left to prove Equation
(1).
To do this, note that we know that f is integrable.
Let € > 0 be arbitrary. There is a dissection D of [a, b] so that

€

U(f,D) _'C(faD) < 5
Suppose that there are k intervals in D and let these intervals be Jq, ..., Ji.
Suppose also that

M = sup{[f(x) | = € [a,b]}.
(We’ll assume that M > 0, since otherwise there’s almost nothing to
prove.)

For any n, any given term in the sum b_Ta Z?zl f (a + zb_T“) has size at
most M b*T“.

Choose N € N so that N > %b_a) Then, if n > N we consider
U(f, Dn) - [’(fa Dn)

This has n terms in it, involving the difference between the supremum and
the infimum of f on a given interval. All but at most k of the intervals
I; », are entirely contained within some interval J,. Since the intervals J
are bigger, the difference between the supremum and infimum of f on the
interval J; can only be bigger than on the corresponding I; ,,.

The choice of n guarantees that each of the other terms in the difference
(those corresponding to intervals not entirely contained in a Js) have size
at most 5, and there are at most k of these terms. Thus, we split the
sum

u(fv Dn) - 'C(fv Dn)

into two sets of terms. The first set of terms has total size no bigger than

U(f.D) = L(f.D) < 3.



while the second set of terms has size at most

€ €

Thus, putting these together we see that

U(f,Dn) — L(f, D) <€

which proves Equation (1), and finishes the proof.



