
Math 313 - Analysis I Spring 2009

HOMEWORK #10

SOLUTIONS

(1) Prove that the function f(x) = x3 is (Riemann) integrable on [0, 1] and
show that ∫ 1

0

x3dx =
1
4
.

(Without using formulae for integration that you learnt in previous calcu-
lus classes...)

You may use the identity
n∑
i=1

i3 = 1
4 (n4 + 2n3 + n2).

Solution:

Let n ∈ N and define the dissection

Dn = {0, 1
n
,

2
n
, . . . ,

n− 1
n

, 1}.

The function f(x) = x3 is increasing between 0 and 1. Therefore the
supremum of the values on an interval (xi−1, xi) is f(xi) = x3

i , and the
infimum is f(xi−1) = x3

i−1. Thus we can calculate the lower and upper
sums of f with respect to Dn:

L(f,Dn) =
n∑
i=1

(
i− 1
n

)3.
1
n

=
1
n4

n∑
i=1

(i− 1)3

=
1

4n4
(n4 + 2n3 + n2)− n3

n4

=
1
4
− 1

2n
+

1
4n2

A similar calculation gives

U(f,Dn) =
1
4

+
1

2n
+

1
4n2

.

As n → ∞ we have L(f,Dn) → 1
4 and also U(f,Dn) → 1

4 . From this it
follows that f is integrable on [0, 1] and that∫ 1

0

x3dx =
1
4
,

as required.



(2) Suppose that g(x) is a continuous function on an interval [a, b] such that
g(x) > 0 for all x. Show that∫ b

a

g(x)dx > 0.

Solution

Since g(x) 6= 0 on [a, b] the function 1
g is defined and continuous on [a, b].

Hence there is M > 0 so that 1
g(x) < M for all x. This means that

g(x) > 1
M > 0 for all x in [a, b]. Let D = {a, b}. Then L(f,D) ≤

∫ b
a
f .

However,

L(f,D) >
1
M
|b− a| > 0,

so we’re done.

(3) Let f : [1, 3]→ R be defined by:

f(x) =

 0 if x ≤ 2
0 if x ∈ (2, 3] ∩Q
1 if x ∈ (2, 3] r Q

Prove that f is not Riemann integrable.

Solution:

f is integrable on [1, 3] if and only if it is integrable on [1, 2] and also on
[2, 3]. Thus, it is enough to show that f is not integrable on [2, 3].

Well, for any dissection D = {2 = x0, . . . , xn = 3} of [2, 3] we have

sup{f(x) | x ∈ (xi−1, xi)} = 1, and
inf{f(x) | x ∈ (xi−1, xi)} = 0.

Therefore
L(f,D) = 0,

and ∫ 3

2

f = 0.

Similarly,
U(f,D) = 1,

and ∫ 3

2

f = 1.

This shows that f is not integrable on [2, 3] and hence it is not integrable
on [1, 3].



(4) Define p : [0, 2]→ R as follows:

p(x) =
{
x, if x ≤ 1
1 if x > 1

Prove that p(x) is Riemann integrable on [0, 2] and determine∫ 2

0

p(x)dx.

Solution:

f is continuous so integrable on [0, 2]. We have∫ 2

0

f =
∫ 1

0

f +
∫ 2

1

f.

Howie works out
∫ 1

0
f = 1

2 .

On [1, 2], f is identically 1, so it is easy to see that all lower and upper
sums (with respect to any dissection) are equal to 1, which means that∫ 2

1

f = 1.

Therefore,
∫ 2

0
f = 1 1

2 .

(5) Suppose that f : [a, b]→ R is (Riemann) integrable on [a, b]. Prove that∫ b

a

f(x)dx = lim
n→∞

b− a
n

n∑
i=1

f

(
a+ i

b− a
n

)
.

Solution: Fix n ∈ N. Consider the following dissection:

Dn = {a, a+
b− a
2n

+
b− a
n

, a+
b− a
2n

+
2(b− a)

n
, . . . , a+

b− a
2n

+
(n− 1)(b− a)

n
, b}

This is a partition of [a, b] into n intervals, one of length b−a
2n , one of length

b−a
2n + b−a

n and n− 2 of length b−a
n .

It is more natural to define the partition without the + b−a
2n points, but we

want the point a+ i(b−a)
n to be in the interior of the ith interval, which it

is.

Therefore, it the intervals are I1,n, . . . , In,n, and

mi,n = inf{f(x) | x ∈ Ii,n}
Mi,n = sup{f(x) | x ∈ Ii,n},



from which it follows that (for 1 ≤ i < n)

mi,n ≤ f(a+ i
b− a
n

) ≤Mi,n.

Therefore, the terms of the lower and the upper sum of Dn match up to
give an inequality with the required sum b−a

n

∑n
i=1 f

(
a+ i b−an

)
, except

for the first and lat terms where the lengths of the intervals are wrong.

The best thing to do is note that these terms are small, and going to 0 as
n→∞. Therefore, if we prove that there is a number L so that

L = lim
n→∞

L(f,Dn) = lim
n→∞

U(f,Dn) (1)

then we’ll see that L =
∫ b
a
f and that L = limn→∞

b−a
n

∑n
i=1 f

(
a+ i b−an

)
,

which is what we are required to prove. Thus, we are left to prove Equation
(1).

To do this, note that we know that f is integrable.

Let ε > 0 be arbitrary. There is a dissection D of [a, b] so that

U(f,D)− L(f,D) <
ε

2
.

Suppose that there are k intervals inD and let these intervals be J1, . . . , Jk.
Suppose also that

M = sup{|f(x) | x ∈ [a, b]}.
(We’ll assume that M > 0, since otherwise there’s almost nothing to
prove.)

For any n, any given term in the sum b−a
n

∑n
i=1 f

(
a+ i b−an

)
has size at

most M b−a
n .

Choose N ∈ N so that N > 2kM(b−a)
ε . Then, if n > N we consider

U(f,Dn)− L(f,Dn).

This has n terms in it, involving the difference between the supremum and
the infimum of f on a given interval. All but at most k of the intervals
Ii,n are entirely contained within some interval Js. Since the intervals Js
are bigger, the difference between the supremum and infimum of f on the
interval Js can only be bigger than on the corresponding Ii,n.

The choice of n guarantees that each of the other terms in the difference
(those corresponding to intervals not entirely contained in a Js) have size
at most ε

2k , and there are at most k of these terms. Thus, we split the
sum

U(f,Dn)− L(f,Dn)

into two sets of terms. The first set of terms has total size no bigger than

U(f,D)− L(f,D) <
ε

2
,



while the second set of terms has size at most

k.
ε

2k
=
ε

2
.

Thus, putting these together we see that

U(f,Dn)− L(f,Dn) < ε

which proves Equation (1), and finishes the proof.


