Spring 2009

HOMEWORK #10 SOLUTIONS

(1) Prove that the function $f(x) = x^3$ is (Riemann) integrable on [0, 1] and show that

$$\int_0^1 x^3 dx = \frac{1}{4}.$$

(Without using formulae for integration that you learnt in previous calculus classes...)

You may use the identity $\sum_{i=1}^{n} i^3 = \frac{1}{4}(n^4 + 2n^3 + n^2).$

Solution:

Let $n \in \mathbb{N}$ and define the dissection

$$\mathcal{D}_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}.$$

The function $f(x) = x^3$ is increasing between 0 and 1. Therefore the supremum of the values on an interval (x_{i-1}, x_i) is $f(x_i) = x_i^3$, and the infimum is $f(x_{i-1}) = x_{i-1}^3$. Thus we can calculate the lower and upper sums of f with respect to \mathcal{D}_n :

$$\mathcal{L}(f, \mathcal{D}_n) = \sum_{i=1}^n (\frac{i-1}{n})^3 \cdot \frac{1}{n}$$

= $\frac{1}{n^4} \sum_{i=1}^n (i-1)^3$
= $\frac{1}{4n^4} (n^4 + 2n^3 + n^2) - \frac{n^3}{n^4}$
= $\frac{1}{4} - \frac{1}{2n} + \frac{1}{4n^2}$

A similar calculation gives

$$\mathcal{U}(f, \mathcal{D}_n) = \frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^2}.$$

As $n \to \infty$ we have $\mathcal{L}(f, \mathcal{D}_n) \to \frac{1}{4}$ and also $\mathcal{U}(f, \mathcal{D}_n) \to \frac{1}{4}$. From this it follows that f is integrable on [0, 1] and that

$$\int_0^1 x^3 dx = \frac{1}{4},$$

as required.

(2) Suppose that g(x) is a continuous function on an interval [a, b] such that g(x) > 0 for all x. Show that

$$\int_{a}^{b} g(x)dx > 0.$$

Solution

Since $g(x) \neq 0$ on [a, b] the function $\frac{1}{g}$ is defined and continuous on [a, b]. Hence there is M > 0 so that $\frac{1}{g(x)} < M$ for all x. This means that $g(x) > \frac{1}{M} > 0$ for all x in [a, b]. Let $\mathcal{D} = \{a, b\}$. Then $\mathcal{L}(f, \mathcal{D}) \leq \int_a^b f$. However,

$$\mathcal{L}(f, \mathcal{D}) > \frac{1}{M} |b - a| > 0,$$

so we're done.

(3) Let $f : [1,3] \to \mathbb{R}$ be defined by:

$$f(x) = \begin{cases} 0 & \text{if } x \le 2\\ 0 & \text{if } x \in (2,3] \cap \mathbb{Q}\\ 1 & \text{if } x \in (2,3] \smallsetminus \mathbb{Q} \end{cases}$$

Prove that f is not Riemann integrable.

Solution:

f is integrable on [1,3] if and only if it is integrable on [1,2] and also on [2,3]. Thus, it is enough to show that f is not integrable on [2,3].

Well, for any dissection $\mathcal{D} = \{2 = x_0, \dots, x_n = 3\}$ of [2,3] we have

$$\sup\{f(x) \mid x \in (x_{i-1}, x_i)\} = 1, \text{ and} \\ \inf\{f(x) \mid x \in (x_{i-1}, x_i)\} = 0.$$

Therefore

$$\mathcal{L}(f,\mathcal{D}) = 0$$

and

$$\underline{\int}_{2}^{3} f = 0.$$

Similarly,

$$\mathcal{U}(f,\mathcal{D})=1,$$

and

$$\overline{\int}_{2}^{3} f = 1.$$

This shows that f is not integrable on [2,3] and hence it is not integrable on [1,3].

(4) Define $p: [0,2] \to \mathbb{R}$ as follows:

$$p(x) = \begin{cases} x, & \text{if } x \le 1\\ 1 & \text{if } x > 1 \end{cases}$$

Prove that p(x) is Riemann integrable on [0, 2] and determine

$$\int_0^2 p(x) dx.$$

Solution:

f is continuous so integrable on [0, 2]. We have

$$\int_0^2 f = \int_0^1 f + \int_1^2 f.$$

Howie works out $\int_0^1 f = \frac{1}{2}$.

On [1, 2], f is identically 1, so it is easy to see that all lower and upper sums (with respect to any dissection) are equal to 1, which means that

$$\int_{1}^{2} f = 1.$$

Therefore, $\int_0^2 f = 1\frac{1}{2}$.

(5) Suppose that $f:[a,b] \to \mathbb{R}$ is (Riemann) integrable on [a,b]. Prove that

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i\frac{b-a}{n}\right).$$

Solution: Fix $n \in \mathbb{N}$. Consider the following dissection:

$$\mathcal{D}_n = \{a, a + \frac{b-a}{2n} + \frac{b-a}{n}, a + \frac{b-a}{2n} + \frac{2(b-a)}{n}, \dots, a + \frac{b-a}{2n} + \frac{(n-1)(b-a)}{n}, b\}$$

This is a partition of [a, b] into n intervals, one of length $\frac{b-a}{2n}$, one of length $\frac{b-a}{2n} + \frac{b-a}{n}$ and n-2 of length $\frac{b-a}{n}$.

It is more natural to define the partition without the $+\frac{b-a}{2n}$ points, but we want the point $a + \frac{i(b-a)}{n}$ to be in the interior of the i^{th} interval, which it is.

Therefore, it the intervals are $I_{1,n}, \ldots, I_{n,n}$, and

$$m_{i,n} = \inf\{f(x) \mid x \in I_{i,n}\} M_{i,n} = \sup\{f(x) \mid x \in I_{i,n}\},\$$

from which it follows that (for $1 \le i < n$)

$$m_{i,n} \le f(a+i\frac{b-a}{n}) \le M_{i,n}$$

Therefore, the terms of the lower and the upper sum of \mathcal{D}_n match up to give an inequality with the required sum $\frac{b-a}{n}\sum_{i=1}^n f\left(a+i\frac{b-a}{n}\right)$, except for the first and lat terms where the lengths of the intervals are wrong.

The best thing to do is note that these terms are small, and going to 0 as $n \to \infty$. Therefore, if we prove that there is a number L so that

$$L = \lim_{n \to \infty} \mathcal{L}(f, \mathcal{D}_n) = \lim_{n \to \infty} \mathcal{U}(f, \mathcal{D}_n)$$
(1)

then we'll see that $L = \int_a^b f$ and that $L = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^n f\left(a + i\frac{b-a}{n}\right)$, which is what we are required to prove. Thus, we are left to prove Equation (1).

To do this, note that we know that f is integrable.

Let $\epsilon > 0$ be arbitrary. There is a dissection \mathcal{D} of [a, b] so that

$$\mathcal{U}(f,\mathcal{D}) - \mathcal{L}(f,\mathcal{D}) < \frac{\epsilon}{2}.$$

Suppose that there are k intervals in \mathcal{D} and let these intervals be J_1, \ldots, J_k . Suppose also that

$$M = \sup\{|f(x) | x \in [a, b]\}.$$

(We'll assume that M > 0, since otherwise there's almost nothing to prove.)

For any n, any given term in the sum $\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i\frac{b-a}{n}\right)$ has size at most $M^{\frac{b-a}{n}}$.

Choose $N \in \mathbb{N}$ so that $N > \frac{2kM(b-a)}{\epsilon}$. Then, if n > N we consider

$$\mathcal{U}(f,\mathcal{D}_n)-\mathcal{L}(f,\mathcal{D}_n).$$

This has *n* terms in it, involving the difference between the supremum and the infimum of f on a given interval. All but at most k of the intervals $I_{i,n}$ are entirely contained within some interval J_s . Since the intervals J_s are bigger, the difference between the supremum and infimum of f on the interval J_s can only be bigger than on the corresponding $I_{i,n}$.

The choice of n guarantees that each of the other terms in the difference (those corresponding to intervals not entirely contained in a J_s) have size at most $\frac{\epsilon}{2k}$, and there are at most k of these terms. Thus, we split the sum

$$\mathcal{U}(f,\mathcal{D}_n) - \mathcal{L}(f,\mathcal{D}_n)$$

into two sets of terms. The first set of terms has total size no bigger than

$$\mathcal{U}(f,\mathcal{D}) - \mathcal{L}(f,\mathcal{D}) < \frac{\epsilon}{2},$$

while the second set of terms has size at most

$$k \cdot \frac{\epsilon}{2k} = \frac{\epsilon}{2}.$$

Thus, putting these together we see that

$$\mathcal{U}(f, \mathcal{D}_n) - \mathcal{L}(f, \mathcal{D}_n) < \epsilon$$

which proves Equation (1), and finishes the proof.