HOMEWORK \#10 solutions

(1) Prove that the function $f(x)=x^{3}$ is (Riemann) integrable on [0, 1] and show that

$$
\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

(Without using formulae for integration that you learnt in previous calculus classes...)
You may use the identity $\sum_{i=1}^{n} i^{3}=\frac{1}{4}\left(n^{4}+2 n^{3}+n^{2}\right)$.

Solution:

Let $n \in \mathbb{N}$ and define the dissection

$$
\mathcal{D}_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}
$$

The function $f(x)=x^{3}$ is increasing between 0 and 1 . Therefore the supremum of the values on an interval $\left(x_{i-1}, x_{i}\right)$ is $f\left(x_{i}\right)=x_{i}^{3}$, and the infimum is $f\left(x_{i-1}\right)=x_{i-1}^{3}$. Thus we can calculate the lower and upper sums of f with respect to \mathcal{D}_{n} :

$$
\begin{aligned}
\mathcal{L}\left(f, \mathcal{D}_{n}\right) & =\sum_{i=1}^{n}\left(\frac{i-1}{n}\right)^{3} \cdot \frac{1}{n} \\
& =\frac{1}{n^{4}} \sum_{i=1}^{n}(i-1)^{3} \\
& =\frac{1}{4 n^{4}}\left(n^{4}+2 n^{3}+n^{2}\right)-\frac{n^{3}}{n^{4}} \\
& =\frac{1}{4}-\frac{1}{2 n}+\frac{1}{4 n^{2}}
\end{aligned}
$$

A similar calculation gives

$$
\mathcal{U}\left(f, \mathcal{D}_{n}\right)=\frac{1}{4}+\frac{1}{2 n}+\frac{1}{4 n^{2}}
$$

As $n \rightarrow \infty$ we have $\mathcal{L}\left(f, \mathcal{D}_{n}\right) \rightarrow \frac{1}{4}$ and also $\mathcal{U}\left(f, \mathcal{D}_{n}\right) \rightarrow \frac{1}{4}$. From this it follows that f is integrable on $[0,1]$ and that

$$
\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

as required.
(2) Suppose that $g(x)$ is a continuous function on an interval $[a, b]$ such that $g(x)>0$ for all x. Show that

$$
\int_{a}^{b} g(x) d x>0
$$

Solution

Since $g(x) \neq 0$ on $[a, b]$ the function $\frac{1}{g}$ is defined and continuous on $[a, b]$. Hence there is $M>0$ so that $\frac{1}{g(x)}<M$ for all x. This means that $g(x)>\frac{1}{M}>0$ for all x in $[a, b]$. Let $\mathcal{D}=\{a, b\}$. Then $\mathcal{L}(f, \mathcal{D}) \leq \int_{a}^{b} f$. However,

$$
\mathcal{L}(f, \mathcal{D})>\frac{1}{M}|b-a|>0
$$

so we're done.
(3) Let $f:[1,3] \rightarrow \mathbb{R}$ be defined by:

$$
f(x)=\left\{\begin{array}{lc}
0 & \text { if } x \leq 2 \\
0 & \text { if } x \in(2,3] \cap \mathbb{Q} \\
1 & \text { if } x \in(2,3] \backslash \mathbb{Q}
\end{array}\right.
$$

Prove that f is not Riemann integrable.

Solution:

f is integrable on $[1,3]$ if and only if it is integrable on $[1,2]$ and also on $[2,3]$. Thus, it is enough to show that f is not integrable on $[2,3]$.
Well, for any dissection $\mathcal{D}=\left\{2=x_{0}, \ldots, x_{n}=3\right\}$ of $[2,3]$ we have

$$
\begin{aligned}
\sup \left\{f(x) \mid x \in\left(x_{i-1}, x_{i}\right)\right\} & =1, \text { and } \\
\inf \left\{f(x) \mid x \in\left(x_{i-1}, x_{i}\right)\right\} & =0
\end{aligned}
$$

Therefore

$$
\mathcal{L}(f, \mathcal{D})=0
$$

and

$$
\int_{2}^{3} f=0
$$

Similarly,

$$
\mathcal{U}(f, \mathcal{D})=1
$$

and

$$
\bar{\int}_{2}^{3} f=1
$$

This shows that f is not integrable on $[2,3]$ and hence it is not integrable on $[1,3]$.
(4) Define $p:[0,2] \rightarrow \mathbb{R}$ as follows:

$$
p(x)=\left\{\begin{array}{cl}
x, & \text { if } x \leq 1 \\
1 & \text { if } x>1
\end{array}\right.
$$

Prove that $p(x)$ is Riemann integrable on $[0,2]$ and determine

$$
\int_{0}^{2} p(x) d x
$$

Solution:

f is continuous so integrable on $[0,2]$. We have

$$
\int_{0}^{2} f=\int_{0}^{1} f+\int_{1}^{2} f
$$

Howie works out $\int_{0}^{1} f=\frac{1}{2}$.
On $[1,2], f$ is identically 1 , so it is easy to see that all lower and upper sums (with respect to any dissection) are equal to 1 , which means that

$$
\int_{1}^{2} f=1
$$

Therefore, $\int_{0}^{2} f=1 \frac{1}{2}$.
(5) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is (Riemann) integrable on $[a, b]$. Prove that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)
$$

Solution: Fix $n \in \mathbb{N}$. Consider the following dissection:
$\mathcal{D}_{n}=\left\{a, a+\frac{b-a}{2 n}+\frac{b-a}{n}, a+\frac{b-a}{2 n}+\frac{2(b-a)}{n}, \ldots, a+\frac{b-a}{2 n}+\frac{(n-1)(b-a)}{n}, b\right\}$
This is a partition of $[a, b]$ into n intervals, one of length $\frac{b-a}{2 n}$, one of length $\frac{b-a}{2 n}+\frac{b-a}{n}$ and $n-2$ of length $\frac{b-a}{n}$.
It is more natural to define the partition without the $+\frac{b-a}{2 n}$ points, but we want the point $a+\frac{i(b-a)}{n}$ to be in the interior of the $i^{t h}$ interval, which it is.
Therefore, it the intervals are $I_{1, n}, \ldots, I_{n, n}$, and

$$
\begin{aligned}
m_{i, n} & =\inf \left\{f(x) \mid x \in I_{i, n}\right\} \\
M_{i, n} & =\sup \left\{f(x) \mid x \in I_{i, n}\right\}
\end{aligned}
$$

from which it follows that (for $1 \leq i<n$)

$$
m_{i, n} \leq f\left(a+i \frac{b-a}{n}\right) \leq M_{i, n}
$$

Therefore, the terms of the lower and the upper sum of \mathcal{D}_{n} match up to give an inequality with the required sum $\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)$, except for the first and lat terms where the lengths of the intervals are wrong.
The best thing to do is note that these terms are small, and going to 0 as $n \rightarrow \infty$. Therefore, if we prove that there is a number L so that

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \mathcal{L}\left(f, \mathcal{D}_{n}\right)=\lim _{n \rightarrow \infty} \mathcal{U}\left(f, \mathcal{D}_{n}\right) \tag{1}
\end{equation*}
$$

then we'll see that $L=\int_{a}^{b} f$ and that $L=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)$, which is what we are required to prove. Thus, we are left to prove Equation (1).

To do this, note that we know that f is integrable.
Let $\epsilon>0$ be arbitrary. There is a dissection \mathcal{D} of $[a, b]$ so that

$$
\mathcal{U}(f, \mathcal{D})-\mathcal{L}(f, \mathcal{D})<\frac{\epsilon}{2}
$$

Suppose that there are k intervals in \mathcal{D} and let these intervals be J_{1}, \ldots, J_{k}. Suppose also that

$$
M=\sup \{|f(x)| x \in[a, b]\}
$$

(We'll assume that $M>0$, since otherwise there's almost nothing to prove.)
For any n, any given term in the sum $\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)$ has size at most $M \frac{b-a}{n}$.
Choose $N \in \mathbb{N}$ so that $N>\frac{2 k M(b-a)}{\epsilon}$. Then, if $n>N$ we consider

$$
\mathcal{U}\left(f, \mathcal{D}_{n}\right)-\mathcal{L}\left(f, \mathcal{D}_{n}\right)
$$

This has n terms in it, involving the difference between the supremum and the infimum of f on a given interval. All but at most k of the intervals $I_{i, n}$ are entirely contained within some interval J_{s}. Since the intervals J_{s} are bigger, the difference between the supremum and infimum of f on the interval J_{s} can only be bigger than on the corresponding $I_{i, n}$.
The choice of n guarantees that each of the other terms in the difference (those corresponding to intervals not entirely contained in a J_{s}) have size at most $\frac{\epsilon}{2 k}$, and there are at most k of these terms. Thus, we split the sum

$$
\mathcal{U}\left(f, \mathcal{D}_{n}\right)-\mathcal{L}\left(f, \mathcal{D}_{n}\right)
$$

into two sets of terms. The first set of terms has total size no bigger than

$$
\mathcal{U}(f, \mathcal{D})-\mathcal{L}(f, \mathcal{D})<\frac{\epsilon}{2}
$$

while the second set of terms has size at most

$$
k \cdot \frac{\epsilon}{2 k}=\frac{\epsilon}{2} .
$$

Thus, putting these together we see that

$$
\mathcal{U}\left(f, \mathcal{D}_{n}\right)-\mathcal{L}\left(f, \mathcal{D}_{n}\right)<\epsilon
$$

which proves Equation (1), and finishes the proof.

