HOMEWORK \#2

Model Solutions

(1) Give the definition of the real numbers \mathbb{R} in terms of Dedekind cuts, and define the inclusion map from the rational numbers to the real numbers, $f: \mathbb{Q} \rightarrow \mathbb{R}$. (That is, if a is a rational number, show how to identify a with a particular Dedekind cut.)
Solution: Let \mathbb{Q} be the set of rational numbers. A Dedekind cut is a pair (A, B) of subsets of \mathbb{Q} satisfying:
(i) $A \cup B=\mathbb{Q}, A \cap B=\emptyset$;
(ii) If $x, y \in Q, x<y$ and $y \in A$ then $x \in A$. Conversely, if $x, y \in \mathbb{Q}$, $x<y$ and $x \in B$ then $y \in B$.
(iii) A has no greatest member (that is to say there is no $a \in A$ so that for all $x \in A$ we have $x \leq a$).

We define the real numbers, as a set, to be the set of all Dedekind cuts.
The inclusion map $f: \mathbb{Q} \rightarrow \mathbb{R}$ is defined by $f(a)=(\{x \in \mathbb{Q} \mid x<a\},\{y \in$ $\mathbb{Q} \mid y \geq a\}$).
NOTE: If (A, B) is Dedekind cut then condition (i) above ensures that $B=\mathbb{Q} \backslash A$. Therefore, a Dedekind cut is determined by the first element of a pair.
For the remainder of the solutions, we'll just refer to a Dedekind cut as a set A which satisfies the following two conditions:
(a) A is nonempty, and has no greatest element; and
(b) If $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$ satisfies $y<x$ then $y \in \mathbb{Q}$.

We say that A determines a Dedekind cut, and hence also that A determines a real number.
Aside (not required for solution to the problem): A real number α, determined by a set A, is irrational if $\mathbb{Q} \backslash A$ does not have a least element, and rational exactly when $\mathbb{Q} \backslash A$ does have a least element.
(2) Define the order ' $<$ ' on Dedekind cuts. You do not need to prove anything about this order.
Solution: Let the sets A_{1} and A_{2} determine Dedekind cuts, and hence real numbers α_{1} and α_{2} respectively. We define $\alpha_{1}<\alpha_{2}$ to mean $A_{1} \subset A_{2}$.
(3) Define the negative of a Dedekind cut, and also addition and multiplication of Dedekind cuts. (Remember to define multiplication $a \times b$ when one or both of a and b is negative.)
Solution: If A determines a Dedekind cut, and hence a real number α, then the real number $-\alpha$ is the Dedekind cut determined by the set

$$
\{x \in \mathbb{Q} \mid-x \notin A, \text { and }-x \text { is not the least element of } \mathbb{Q} \backslash A\}
$$

(NOTE: It is not necessarily the case that $\mathbb{Q} \backslash A$ has a least element. If it doesn't, then the condition that $-x$ is not the least element of $\mathbb{Q} \backslash A$ is trivially true.)
If A determines a real number α and B determines a real number β then we define $\alpha+\beta$ to be the Dedekind cut determined by the set:

$$
\{x+y \mid x \in A, y \in B\} .
$$

If A determines a real number α, and B determines a real number β then we define $\alpha . \beta$ as follows:
First suppose that $\alpha \geq 0$ and $\beta \geq 0$ (this means that $0 \in A$ or $A=$ $\{x \in \mathbb{Q} \mid x<0\}$, and similarly for $B) .{ }^{1}$ Then we define $\alpha \times \beta$ to be the Dedekind cut determined by the set

$$
\{x \times y \mid x \in A, x \geq 0, y \in B, y \geq 0\} \cup\{a \in \mathbb{Q} \mid a<0\}
$$

Now suppose that $\alpha \geq 0$ and $\beta<0$. Then the above definition applies to α and $-\beta$ and we define

$$
\alpha \times \beta=-(\alpha \times(-\beta))
$$

Similarly, if $\alpha<0$ and $\beta \geq 0$, we define

$$
\alpha \times \beta=-((-\alpha) \times \beta)
$$

whereas if $\alpha<0$ and $\beta<0$ we define

$$
\alpha \times \beta=(-\alpha) \times(-\beta)
$$

(4) Prove that if a and b are rational numbers, then addition and multiplication of a and b as Dedekind cuts agrees with the usual addition and multiplication of rational numbers. That is, if the map f is as defined in (1), prove that for all $a, b \in \mathbb{Q}$ we have:

$$
f(a+b)=f(a)+f(b), \text { and } f(a \times b)=f(a) \times f(b)
$$

(In each equation above, the operation on the left hand side is the usual one in \mathbb{Q}, whereas the one on the right hand side is the one you defined above in (3).)

[^0]Solution: Let a and b be rational numbers.
Let $A=\{x \in \mathbb{Q} \mid x<a\}$, and $B=\{y \in \mathbb{Q} \mid y<b\}$. Then A determines the Dedekind cut $f(a)$ and B determines the Dedekind cut $f(b)$.
Now, $f(a+b)$ is the Dedekind cut determined by $C=\{z \in \mathbb{Q} \mid z<a+b\}$.
By the definition of addition of Dedekind cuts above we have $f(a)+f(b)$ is the Dedekind cut determined by the set $\{x+y \mid x \in A, y \in B\}$.
Well, the set of rational numbers of the form $x+y$ where $x<a$ and $y<b$ and $x, y \in \mathbb{Q}$ is exactly the set of rational numbers less than $a+b$. Therefore,

$$
\{x+y \mid x \in A, y \in B\}=C
$$

so $f(a)+f(b)=f(a+b)$. This proves that addition of 'rational' Dedekind cuts agrees with the usual addition of rational numbers.
We'll now move on to multiplication.
First suppose that $a \geq 0$ and $b \geq 0$. Then $f(a) \times f(b)$ is the Dedekind cut determined by the set

$$
D=\{x y \mid x \in A, x \geq 0, y \in B, y \geq 0\} \cup\{a \in \mathbb{Q} \mid a<0\}
$$

as in the definition in Part (iii). It is now easiest to consider the complement of D :

$$
\mathbb{Q} \backslash D=\{x \times y \mid x \in \mathbb{Q} \backslash A, y \in \mathbb{Q} \backslash B\} .
$$

(This is the correct definition of $\mathbb{Q} \backslash D$ only because $a \geq 0$ and $b \geq 0$.)
Note that $\mathbb{Q} \backslash D$ has a smallest element, and it is $a \times b$. Also, $\mathbb{Q} \backslash D$ is upwards closed (since D is downwards closed). Therefore, we must have

$$
D=\{z \in \mathbb{Q} \mid z<a \times b\}
$$

which is the set determining the Dedekind cut $f(a \times b)$, by the definition of f.
Thus, in case $a, b \geq 0$ we have $f(a) \times f(b)=f(a \times b)$, as required.
In order to deal with the other cases, it is convenient to consider the negative, since we defined the multiplication of negative numbers using the negative.
Now, $-f(a)$ is determined by the set

$$
D=\{x \mid-x \notin A,-x \text { not the least member of } \mathbb{Q} \backslash A\} .
$$

Since $A=\{x \in Q \mid x<a\}$, we have

$$
\begin{aligned}
D & =\{x \mid-x \notin A,-x \text { not the least member of } \mathbb{Q} \backslash A\} \\
& =\{x \in \mathbb{Q} \mid-x>a\} \\
& =\{y \in \mathbb{Q} \mid y<-a\} .
\end{aligned}
$$

This is exactly the set which determines the Dedekind cut $f(-a)$, which is to say that $-f(a)=f(-a)$.
Now, suppose that $a \geq 0$ and $b<0$. Then we have $f(a) \geq 0, f(b)<0$. Therefore, by the definition of multiplication, of f and the above calculations:

$$
\begin{aligned}
f(a) \times f(b) & =-(f(a) \times(-f(b))) \\
& =-(f(a) \times f(-b)) \\
& =-f(a \times(-b)) \\
& =f(-(a \times(-b))) \\
& =f(a \times b)
\end{aligned}
$$

as required.
Similarly, if $a<0$ and $b \geq 0$ we have $f(a)<0, f(b) \geq 0$, and so

$$
\begin{aligned}
f(a) \times f(b) & =-((-f(a)) \times f(b)) \\
& =-(f(-a) \times f(b)) \\
& =-f((-a) \times b) \\
& =f(-(-a \times b)) \\
& =f(a \times b)
\end{aligned}
$$

as required.
Finally, if $a<0$ and $b<0$ we have $f(a)<0$ and $f(b)<0$. Then we have

$$
\begin{aligned}
f(a) \times f(b) & =(-f(a)) \times(-f(b)) \\
& =f(-a) \times f(-b) \\
& =f((-a) \times(-b)) \\
& =f(a \times b)
\end{aligned}
$$

as required.
Therefore, in all cases we have $f(a) \times f(b)=f(a \times b)$, which is what we were required to prove.

[^0]: ${ }^{1}$ When we say $\alpha \geq 0$, we are considering the 0 in \mathbb{R} to be equal to $f(0)$.

