HOMEWORK #2 Model Solutions

(1) Give the definition of the real numbers \mathbb{R} in terms of *Dedekind cuts*, and define the inclusion map from the rational numbers to the real numbers, $f : \mathbb{Q} \to \mathbb{R}$. (That is, if *a* is a rational number, show how to identify *a* with a particular Dedekind cut.)

Solution: Let \mathbb{Q} be the set of rational numbers. A *Dedekind cut* is a pair (A, B) of subsets of \mathbb{Q} satisfying:

- (i) $A \cup B = \mathbb{Q}, A \cap B = \emptyset;$
- (ii) If $x, y \in Q$, x < y and $y \in A$ then $x \in A$. Conversely, if $x, y \in \mathbb{Q}$, x < y and $x \in B$ then $y \in B$.
- (iii) A has no greatest member (that is to say there is no $a \in A$ so that for all $x \in A$ we have $x \leq a$).

We define the real numbers, as a set, to be the set of all Dedekind cuts.

The inclusion map $f : \mathbb{Q} \to \mathbb{R}$ is defined by $f(a) = (\{x \in \mathbb{Q} \mid x < a\}, \{y \in \mathbb{Q} \mid y \ge a\}).$

NOTE: If (A, B) is Dedekind cut then condition (i) above ensures that $B = \mathbb{Q} \setminus A$. Therefore, a Dedekind cut is determined by the first element of a pair.

For the remainder of the solutions, we'll just refer to a Dedekind cut as a set A which satisfies the following two conditions:

- (a) A is nonempty, and has no greatest element; and
- (b) If $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$ satisfies y < x then $y \in \mathbb{Q}$.

We say that A determines a Dedekind cut, and hence also that A determines a real number.

Aside (not required for solution to the problem): A real number α , determined by a set A, is *irrational* if $\mathbb{Q} \setminus A$ does not have a least element, and rational exactly when $\mathbb{Q} \setminus A$ does have a least element.

(2) Define the order '<' on Dedekind cuts. You do not need to prove anything about this order.

Solution: Let the sets A_1 and A_2 determine Dedekind cuts, and hence real numbers α_1 and α_2 respectively. We define $\alpha_1 < \alpha_2$ to mean $A_1 \subset A_2$. (3) Define the negative of a Dedekind cut, and also addition and multiplication of Dedekind cuts. (Remember to define multiplication $a \times b$ when one or both of a and b is negative.)

Solution: If A determines a Dedekind cut, and hence a real number α , then the real number $-\alpha$ is the Dedekind cut determined by the set

 $\{x \in \mathbb{Q} \mid -x \notin A, \text{ and } -x \text{ is not the least element of } \mathbb{Q} \setminus A\}.$

(NOTE: It is not necessarily the case that $\mathbb{Q} \setminus A$ has a least element. If it doesn't, then the condition that -x is not the least element of $\mathbb{Q} \setminus A$ is trivially true.)

If A determines a real number α and B determines a real number β then we define $\alpha + \beta$ to be the Dedekind cut determined by the set:

$$\{x+y \mid x \in A, y \in B\}$$

If A determines a real number α , and B determines a real number β then we define $\alpha.\beta$ as follows:

First suppose that $\alpha \geq 0$ and $\beta \geq 0$ (this means that $0 \in A$ or $A = \{x \in \mathbb{Q} \mid x < 0\}$, and similarly for B).¹ Then we define $\alpha \times \beta$ to be the Dedekind cut determined by the set

$$\{x \times y \mid x \in A, x \ge 0, y \in B, y \ge 0\} \cup \{a \in \mathbb{Q} \mid a < 0\}.$$

Now suppose that $\alpha \geq 0$ and $\beta < 0$. Then the above definition applies to α and $-\beta$ and we define

$$\alpha \times \beta = -(\alpha \times (-\beta)).$$

Similarly, if $\alpha < 0$ and $\beta \ge 0$, we define

$$\alpha \times \beta = -((-\alpha) \times \beta),$$

whereas if $\alpha < 0$ and $\beta < 0$ we define

$$\alpha \times \beta = (-\alpha) \times (-\beta).$$

(4) Prove that if a and b are rational numbers, then addition and multiplication of a and b as Dedekind cuts agrees with the usual addition and multiplication of rational numbers. That is, if the map f is as defined in (1), prove that for all $a, b \in \mathbb{Q}$ we have:

$$f(a+b) = f(a) + f(b)$$
, and $f(a \times b) = f(a) \times f(b)$.

(In each equation above, the operation on the left hand side is the usual one in \mathbb{Q} , whereas the one on the right hand side is the one you defined above in (3).)

¹When we say $\alpha \geq 0$, we are considering the 0 in \mathbb{R} to be equal to f(0).

Solution: Let a and b be rational numbers.

Let $A = \{x \in \mathbb{Q} \mid x < a\}$, and $B = \{y \in \mathbb{Q} \mid y < b\}$. Then A determines the Dedekind cut f(a) and B determines the Dedekind cut f(b).

Now, f(a+b) is the Dedekind cut determined by $C = \{z \in \mathbb{Q} \mid z < a+b\}.$

By the definition of addition of Dedekind cuts above we have f(a) + f(b) is the Dedekind cut determined by the set $\{x + y \mid x \in A, y \in B\}$.

Well, the set of rational numbers of the form x + y where x < a and y < b and $x, y \in \mathbb{Q}$ is exactly the set of rational numbers less than a + b. Therefore,

$$\{x+y \mid x \in A, y \in B\} = C,$$

so f(a) + f(b) = f(a+b). This proves that addition of 'rational' Dedekind cuts agrees with the usual addition of rational numbers.

We'll now move on to multiplication.

First suppose that $a \ge 0$ and $b \ge 0$. Then $f(a) \times f(b)$ is the Dedekind cut determined by the set

$$D = \{ xy \mid x \in A, x \ge 0, y \in B, y \ge 0 \} \cup \{ a \in \mathbb{Q} \mid a < 0 \},\$$

as in the definition in Part (iii). It is now easiest to consider the complement of D:

$$\mathbb{Q} \smallsetminus D = \{ x \times y \mid x \in \mathbb{Q} \smallsetminus A, y \in \mathbb{Q} \smallsetminus B \}$$

(This is the correct definition of $\mathbb{Q} \setminus D$ only because $a \ge 0$ and $b \ge 0$.)

Note that $\mathbb{Q} \setminus D$ has a smallest element, and it is $a \times b$. Also, $\mathbb{Q} \setminus D$ is upwards closed (since D is downwards closed). Therefore, we must have

$$D = \{ z \in \mathbb{Q} \mid z < a \times b \},\$$

which is the set determining the Dedekind cut $f(a \times b)$, by the definition of f.

Thus, in case $a, b \ge 0$ we have $f(a) \times f(b) = f(a \times b)$, as required.

In order to deal with the other cases, it is convenient to consider the negative, since we defined the multiplication of negative numbers using the negative.

Now, -f(a) is determined by the set

 $D = \{x \mid -x \notin A, -x \text{ not the least member of } \mathbb{Q} \smallsetminus A\}.$

Since $A = \{x \in Q \mid x < a\}$, we have

$$D = \{x \mid -x \notin A, -x \text{ not the least member of } \mathbb{Q} \smallsetminus A\}$$
$$= \{x \in \mathbb{Q} \mid -x > a\}$$
$$= \{y \in \mathbb{Q} \mid y < -a\}.$$

This is exactly the set which determines the Dedekind cut f(-a), which is to say that -f(a) = f(-a).

Now, suppose that $a \ge 0$ and b < 0. Then we have $f(a) \ge 0$, f(b) < 0. Therefore, by the definition of multiplication, of f and the above calculations:

$$\begin{aligned} f(a) \times f(b) &= -(f(a) \times (-f(b))) \\ &= -(f(a) \times f(-b)) \\ &= -f(a \times (-b)) \\ &= f(-(a \times (-b))) \\ &= f(a \times b), \end{aligned}$$

as required.

Similarly, if a < 0 and $b \ge 0$ we have f(a) < 0, $f(b) \ge 0$, and so

as required.

Finally, if a < 0 and b < 0 we have f(a) < 0 and f(b) < 0. Then we have

$$\begin{array}{lll} f(a) \times f(b) &=& (-f(a)) \times (-f(b)) \\ &=& f(-a) \times f(-b) \\ &=& f((-a) \times (-b)) \\ &=& f(a \times b), \end{array}$$

as required.

Therefore, in all cases we have $f(a) \times f(b) = f(a \times b)$, which is what we were required to prove.