
Math 330 - Abstract Algebra I Spring 2009

SOLUTIONS TO HW #7

Chapter 7

22. Suppose that G is a group with more than one element and G has no proper, nontrivial sub-
groups. Prove that |G| is prime. (Do not assume at the outset that G is finite.)

Solution.
Let |G| ≥ 2 (possibly |G| = ∞). If G has no proper nontrivial subgroups, then G and 〈e〉 are
the only subgroups. Let a ∈ G be a nonidentity element. Then the subgroup generated by a
cannot be 〈e〉, so 〈a〉 = G, hence G is cyclic. If |G| = ∞, then G ∼= Z. But Z has nontrivial
proper subgroups. Thus |G| < ∞. Suppose |G| = n. Since G is cyclic (that is a CRUCIAL
point), for EVERY divisor d of n, ∃ a subgroup H of order d. If d 6= 1 or d 6= n, then H is
a proper, nontrivial subgroup of G. Therefore, the only divisors of n are n and 1, hence n is
prime.

24. Let G be a group of order 25. Prove that G is cyclic or g5 = e for all g in G.

Solution.
If G is cyclic, then we’re done. So assume that G is not cyclic. Let g ∈ G. If g = e, then
clearly g5 = e. So suppose g 6= e. Then |g| divides 25, i.e., |g| = 1, 5, or 25. But |g| 6= 1 since
we assumed g 6= e, and |g| 6= 25 since otherwise, G would be cyclic. So |g| = 5, i.e., g5 = e.

30. Prove that every subgroup of Dn of odd order is cyclic.

Solution.
Suppose H is a subgroup of Dn, and |H| = m, where m is odd. Then m | 2n. But m odd
means m - 2, so m | n. The elements of Dn are rotations and reflections. If q ∈ Dn is a
reflection, then q2 = e, i.e., |q| = 2. But 2 - m since m is odd, so q cannot belong to H.
This means that the only possible elements of H are rotations. Consider the subset K of Dn

consisting of all rotations (including the identity). This is a subgroup of Dn of order n. Notice
that K is in fact cyclic (it is generated by R2π/n). Since H is a subgroup of Dn that can only
contain rotations, H is a subgroup of K, a cyclic subgroup of Dn. Hence H is cyclic.

40. Let G be the group of rotations of a plane about a point P in the plane. Thinking of G as a
group of permutations of the plane, describe the orbit of a point Q in the plane.

Solution.
If P is fixed and G is the group of rotations of a plane about P , then Q traces a circle around
P of radius |PQ|. The reason for this is that rotation by any angle about P preserves the
symmetry of the plane, so we obtain every possible point in the plane that lies at a distance
of |PQ| from P , in other words, a circle centered at P with radius |PQ|.

42. We will go in order from left to right on the first row and left to right on the second row for this
problem. “North,” “South,” “East,” “West,” “Northeast (NE),” “Northwest (NW),” “North
by Northwest (NNW),” etc. will indicate where points in the orbit are. Your solution should
have one picture for each square, ideally indicating which group element sends the original
point to the indicated point. Let d1 denote the diagonal running from NW to SE and d2 the
diagonal running from NE to SW.



(i) The orbit is {East, North, West, South}. The stabilizer is {R0, QH} since QH keeps the
original point “East” in its position. (Notice that the orbit has 4 elements, the stabilizer
2, and 4 · 2 = 8, the order of D4; this is consistent with the Orbit-Stabilizer Theorem.)

(ii) Orbit: {NE, NW, SW, SE}. Stabilizer: {R0, Qd2}.
(iii) Orbit: {E, N, W, S}. Stabilizer: {R0, QH}.
(iv) Orbit: {ENE, NNE, NNW, WNW, WSW, SSW, SSE, ESE}. Stabilizer: {R0}. (Notice

|orbit|=8, |stabilizer|=1, and again, 8 · 1 = 8.)

(v) Same as (iv) except the point is inside the small triangular region instead of on the
boundary.

(vi) Same as (v), but skewed a little.

44. Use the Orbit-Stabilizer Theorem and choose a “convenient” point from which to do your
calculations, typically either a vertex or the “center” of a polygonal face.

a. Regular tetrahedron: Choose a vertex, say the “top” one. Then |stabilizer|=3, since
you may rotate the tetrahedron 0, 2π/3, or 4π/3 radians about the axis through the top
vertex and keep it where it is. Notice that a symmetry would have to take a vertex to
another vertex or the center of a face to the center of another face. So, |orbit|=4 since
there are 4 vertices. Hence, the order of the rotation group of the tetrahedron is 3·4 = 12.

b. Regular octahedron: Choose, say, the top vertex. Then |stabilizer|=4, since you may
rotate π/2 radians at a time about the axis through the top vertex and preserve symmetry.
Then there are 6 vertices to which you may send the top vertex (including itself) via a
rotational symmetry, so |orbit|=6. Thus, the group of rotations has order 4 · 6 = 24.

c. Regular dodecahedron: Choose the “center” of a pentagonal face. You can rotate the
dodecahedron about the axis through this point by 2πn/5, n = 0, 1, 2, 3, 4 for a total of 5
elements in the stabilizer. You can take this face to any other face by a rotational symme-
try, and there are 12 faces, so |orbit|=12. Hence, the rotation group of the dodecahedron
has order 5 · 12 = 60.

d. Regular icosahedron: Choose a vertex, rotate by 2πn/5, n = 0, 1, 2, 3, 4 to obtain
|stabilizer|=5. (Notice that the similarity to the previous calculation stems from the
fact that the dodecahedron and icosahedron are dual solids.) You can take this vertex to
any other vertex by a rotational symmetry, and here there are 12 vertices, so |orbit|=12.
Thus, the order of the rotation group is 5 · 12 = 60.


