
Partial Derivatives
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Partial Derivatives

Suppose that we have a function f(x, y) of two variables x and

y. There are lots of ways to measure the infinitesimal rate of

change of f .

We’re going to concentrate on the partial derivatives.
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Definition: The partial derivative of f with respect to x at a

point (a, b) is:

fx(a, b) = lim
h→0

f(a + h, b)− f(a, b)

h
,

supposing that this limit exists.
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Definition: The partial derivative of f with respect to x at a

point (a, b) is:

fx(a, b) = lim
h→0

f(a + h, b)− f(a, b)

h
,

supposing that this limit exists.

As a function of x and y, we get

fx(x, y) = lim
h→0

f(x + h, y)− f(x, y)

h
.
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Definition: The partial derivative of f with respect to x at a

point (a, b) is:

fx(a, b) = lim
h→0

f(a + h, b)− f(a, b)

h
,

supposing that this limit exists.

As a function of x and y, we get

fx(x, y) = lim
h→0

f(x + h, y)− f(x, y)

h
.

[IMPORTANT: The two appearances of ‘x’ in fx(x, y) serve

two different purposes...]
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Similarly, we have the partial derivative of f with respect to y:

fy(a, b) = lim
h→0

f(a, b + h)− f(a, b)

h
,

and as a function:

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.
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Alternative notation:

∂f

∂x
= fx

∂f

∂y
= fy
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OK, so how do we compute partial derivatives?
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OK, so how do we compute partial derivatives?

Well, just like for single-variable functions, there are lots of rules.

In fact, the best thing to do to compute fx is to pretend that y

is just some constant and differentiate as if it was just a function

of x...
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OK, so how do we compute partial derivatives?

Well, just like for single-variable functions, there are lots of rules.

In fact, the best thing to do to compute fx is to pretend that y

is just some constant and differentiate as if it was just a function

of x...

Let’s do some examples.
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Examples:

For the following functions, find the partial derivatives with re-

spect to x and y:

f(x, y) = x2 + xy + y2

f(x, y) = 3x2y − 5xy3 + 7x− 3

f(x, y) = exy

f(x, y) = xey

f(x, y) = x ln(x2 + y)
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Just like with single variable functions, once we’ve differentiated

once, we get a new function and we can keep differentiating.

Now, however, there are lots of choices for second derivatives:
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Just like with single variable functions, once we’ve differentiated

once, we get a new function and we can keep differentiating.

Now, however, there are lots of choices for second derivatives:

fxx = (fx)x =
∂2f

∂x∂x
=

∂

∂x

(
∂f

∂x

)
fxy = (fx)y =

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)

fyx = (fy)x =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)

fyy = (fy)y =
∂2f

∂y∂y
=

∂

∂y

(
∂f

∂y

)
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Aaagghh!
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OK, there are four second partial derivatives:

fxx

fxy

fyx

fyy

15



OK, there are four second partial derivatives:

fxx

fxy

fyx

fyy

The only difficult thing is to remember which order to do the

derivatives in fxy and fyx.
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In fact, for all reasonable functions that we’ll see:

fxy = fyx,

and we don’t need to remember which order to do them in.
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In fact, for all reasonable functions that we’ll see:

fxy = fyx,

and we don’t need to remember which order to do them in.

Let’s do some examples of second partial derivatives.
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Example:

Compute all of the first and second partial derivatives of the

following functions: [And check that fxy = fyx.

f(x, y) = x2y − yx + 3y

f(x, y) = xexy

f(x, y) =
x + y

x− y
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