Concavity

Suppose that f(x) is differentiable on an interval a < x < b. Then the graph of f is

• concave upward on a < x < b if f' is increasing on the interval; and

• concave downward on a < x < b if f' is decreasing on the interval.

Concave upward graphs lie *above* the tangent lines, and

concave downward graphs lie *below* the tangent lines.

PICTURES

Second derivative test for determining intervals of concavity

(1) Find points where f''(x) = 0 or f''(x) does not exist. This breaks the domain up into a number of intervals.

(2) On each interval, check the sign of f''(c), at some value c.

• If f''(c) > 0 then the graph of f is concave upward on the interval;

• If f''(c) < 0 then the graph of f is concave downward on the interval.

Points of inflection

A point of inflection of a function f(x) is a point (c, f(c)) so that the concavity of the graph f changes at this point.

At a point of inflection (c, f(c)), we either have f''(c) = 0 or else f''(c) does not exist.

[So, to find points of inflection, find the points as on the previous slide, and check that the sign of f''(x) changes on either side of such a point.]

So, when we're sketching curves, we should also put in concavity and points of inflection...

[By the way, in economics, a point of inflection (when a function goes from concave upward to downward) is the point where the derivative is maximum, and is called the **point of diminishing returns**.]

Note also, that (0,0) is not a point of inflection for $f(x) = x^4$. Why?

On the other hand, for $f''(x) = x^{1/3}$, the point (0,0) is an inflection point, even though f''(0) is not defined.

Examples

Find intervals of concavity, points of inflection (and everything else) about the following functions. Then sketch their graph.

- $f_1(x) = 3x 5$
- $f_2(x) = 4 + 2x x^2$
- $f_3(x) = x^3 x^2 + 3x 3$
- $f_4(x) = x^4 24x^2 + 36x 44$