1 Elementary number theory, V

The setup is the same as in Worksheets I, II, III and IV. You may assume all the Propositions from Worksheets I, II, III and IV. [But, be warned that you are expected to know the proofs of these, and we will be revisiting them.]

Definition 39. We say that integers a and b are relatively prime (or cop rime) if gcd(a, b) = 1.

Corollary 40. Let a and b be integers, not both zero. Then gcd(a,b) = 1 if and only if there exist integers x and y so that ax + by = 1.

Proposition 41. If n is an integer, then gcd(n, n+1) = 1.

Theorem 42. Let a, b and c be integers. If a|bc and gcd(a, b) = 1 then a|c.

Proposition 43. Let a and b be integers such that at least one of a and b is not zero. If a = bq + r then gcd(a, b) = gcd(b, r).

Example 44. Find gcd(835, 45), gcd(216, 57) and gcd(85, 31).

Exercise 45. Describe the method (discussed in class) suggested by Proposition 43 for finding the greatest common divisor of two integers.

This method finds gcd(a, b) from a and b. Explain how it also finds x and y so that

$$ax + by = \gcd(a, b).$$

Theorem 46. Let a be an integer and n a natural number. If gcd(a, n) = 1 then there exists an integer x such that $ax \equiv 1 \mod n$.

Example 47. Let a = 12 and n = 85. Use what we now know to find an integer x so that $12x \equiv 1 \mod 85$.

Exercise 48. Find four examples of problems like Example 47. You should find a and n that are relatively prime, then find an integer x so that $ax \equiv 1 \mod n$, for your choice(s) of a and n.

Make sure that your examples are not too easy, but also not too hard.

Question 49. Suppose that a and b are relatively prime integers. How many solutions (x, y) are there of the equation

ax + by = 1,

for x and y integers? Is the solution unique? Are there at most five solutions? Are there finitely many? Are there infinitely many?

Conjecture 50. Let a, b and c be integers with $c \neq 0$, and let n be a natural number. If $ac \equiv bc \mod n$ then $a \equiv b \mod n$.