
MCS 401 Spring 2020

Homework 4

April 9, 2020

1. Problem 1 [Exercise 11-2-2, page 261]: The following table shows how to put 5, 28, 19, 15, 20, 33,
12,17,10 into a hash table with h(k) = k mod 9.

2. Problem 2 [Problem 11-4-1, page 277]:

The table below shows how to insert 10,22,31,4,15,28,17,88,59 into a hash table with m = 11 slots
using the various techniques specified in the problem:

3. Problem 3 [Exercise 15-4-4, page 396]:

1

2

4. Problem 4 [Exercise 16-1-5, page 422]:

Let {a1, . . . , an} be a set of activities and let us denote a value of activity aj as vj . Assume the
activities are sorted in a way that for i < j the finishing time fi ≤ fj . We set Sij to be a set of all
activities which start after ai is finished and before aj is started. Note that this definition implies
that S[ii + 1] = ∅ as well as S[ji] = ∅ for j ≥ i. Let c[ij] denote a a value of the optimal solution
restricted to Sij . Then we can fill the table as follows:

c[ij] =

{
0, Sij = ∅
maxak∈Sij{c[ik] + vk + c[kj]}, Sij 6= ∅

We create n+ 1×n+ 1 table indexed by 0, . . . , n and initialize c[ij] = 0 for i ≥ j, i, j ∈ [0, n+ 1] and
c[i, i + 1] = 0 for i ∈ [o, n] as base cases. We output c[0, n + 1] as an optimal solution.

Sorting the activities takes polynomial time. Each Sij has |Sij | ≤ n and there are at most
(
n+1
2

)
=

O(n2). Therefore, constructing all Si,j takes polynomial time. Finding k that maximizes the value
c[ij] also takes polynomial time. Hence, computing each c[ij] takes polynomial time as well. The
algorithm fills each entry of O(n2) table exactly once. Thus, the algorithm runs in polynomial time.

The optimal substructure of the problem is proved on the page 416 of the book.

5. Problem 5 [Extra problem]:

(a) Let T denote the dynamic programming table and v denote an m × n matrix. To find the
maximum cost path, we fill the table T as follows:

T [1][1] = 0

T [i][j] = max{T [i− 1][j] + |v[i− 1][j]− v[i][j]|, T [i][j − 1] + |v[i][j]− v[i][j − 1]|}

Note that this is different from first taking the max subpath and then adding the corresponding cost
- it is possible that the max subpath plus corresponding cost is actually less than another subpath
plus corresponding cost, if the cost (absolute difference) is large.

(b) The max path is 9→ 13→ 3→ 10→ 1→ 4, giving a cost of 33.

3

