MCS 401 Spring 2020
Homework 4

April 9, 2020

1. Problem 1 [Exercise 11-2-2, page 261]: The following table shows how to put 5, 28, 19, 15, 20, 33,
12,17,10 into a hash table with h(k) = k£ mod 9.

10| 19| 28 |
20
12

5
33| 15 |

20 (=1 (S (0 | LB = (2

17 |

2. Problem 2 [Problem 11-4-1, page 277]:

The table below shows how to insert 10,22,31,4,15,28,17,88,59 into a hash table with m = 11 slots
using the various techniques specified in the problem:

position | O 1 2 3 4 5 6 7 8 9 10
linear 22 88 4 15 28 17 59 31 10
probing
guadratic probing | 22 88 17 4 28 59 15 31 10
double 22 59 17 4 15 28 88 31 10
hashing

3. Problem 3 [Exercise 15-4-4, page 396]:

Let the row sequence and column sequence have mand n entries respectively. Without
loss of generality we can assume that n £ m, since if otherwise we can just switch the
two sequences.

When computing a particular row of the ¢ table, no rows before the previous row are
needed. Thus only two rows, and hence 2 « n entries, are needed to be kept in memory at
a time. (Note: Each row of ¢ actually has m+ 1 entries, however we don't need to store
the column of 0's but make the program "know"” that those entries are 0.) We can thus do
away with the ¢ table as follows:

= Use two arrays of length n, previous-row and current-row, to hold the appropriate
rows of c.

« Initialize previous-row to all 0 and compute current-row from left to right.

« When current-row is filled, if there are still more rows to compute, copy
currentrow into previous-row and compute the new current-row.

Actually only a little more than one row's worth of c—n + 1 entries—are needed
during the computation. The only entries needed in the table when it is time to compute

dij] are

» c|ik] for k< j-1 (ie., earlier entries in the current row, which will be needed to
compute the nextrow):

« and c[i— 1,k] for k= j- 1 (i.e., entries in the previous row that are still needed to
compute the rest of the currentrow).

This is one entry for each k from 1 to n except that there are two entries with k= j-1,
hence the additional entry needed besides the one row's worth of entries. We can thus
do away with the ¢ table as follows:

« Useanarray aof length n + 1 to hold the appropriate entries of ¢. At the time c[ij]
is to be computed, a will hold the following entries:
- alk] = c[i,k] for 1 £ k<j-1 (i.e., earlier entries in the current “row"),

- alk] =c]i-1,k] for k=j—- 1 (i.e, entries in the previous “row"),

- al0] = fij - 1] (i.e, the previous entry computed, which couldn't be put into
the “right” place in a without erasing the still-needed c[i - 1, - 1]).

» Initialize ato all 0 and compute the entries from left to right.

- Note that the 3 values needed to compute c[if] forj > 1 are in a[0] = ¢[ij - 1],
alj- 1] =cli- 1,j - 1], and alj] = c[i - 1j].

- When ¢[ij] has been computed, move a[0] (c[ij- 1]) to its “correct” place, afj
- 1], and put ¢[i,j] in a[0].

4. Problem 4 [Exercise 16-1-5, page 422]:

Let {a1,...,an} be a set of activities and let us denote a value of activity a; as vj. Assume the
activities are sorted in a way that for 7 < j the finishing time f; < f;. We set S;; to be a set of all
activities which start after a; is finished and before a; is started. Note that this definition implies
that S[ii + 1] = () as well as S[ji] = 0 for j > i. Let c[ij] denote a a value of the optimal solution
restricted to Sj;. Then we can fill the table as follows:

i) = 1% Sij =10
= maxakgsij{C[ik] + Vi + C[k]]}a S’Lj # @

We create n+ 1 x n+ 1 table indexed by 0, ...,n and initialize c[ij] = 0 for i > j,4,j € [0,n+ 1] and

cli,i+ 1] = 0 for i € [0,n] as base cases. We output ¢[0,n + 1] as an optimal solution.

n—l—l) .
2

Sorting the activities takes polynomial time. Each S;; has |S;j| < n and there are at most (
O(n?). Therefore, constructing all S;; takes polynomial time. Finding k that maximizes the value
clij] also takes polynomial time. Hence, computing each c[ij] takes polynomial time as well. The
algorithm fills each entry of O(n?) table exactly once. Thus, the algorithm runs in polynomial time.

The optimal substructure of the problem is proved on the page 416 of the book.

5. Problem 5 [Extra problem]:

(a) Let T' denote the dynamic programming table and v denote an m x n matrix. To find the
maximum cost path, we fill the table T as follows:

T[] =0

T[)l5] = max{T[i =][j] + [v[i = [j] = o[d][I]], Tll7 = 1] + [0l [5] = o[idl5 —][}

Note that this is different from first taking the max subpath and then adding the corresponding cost
- it is possible that the max subpath plus corresponding cost is actually less than another subpath
plus corresponding cost, if the cost (absolute difference) is large.

(b) The max path is 9 — 13 —+ 3 — 10 — 1 — 4, giving a cost of 33.

