
MCS/CS 401, Spring 2020, Midterm 1, Solution

outlines

March 17, 2020

1. Is 3n = O(2n)?

No. If 3n = O(2n) then for c and n0 it holds that 3n ≤ c2n for every
n ≥ n0. Dividing both sides by 2n we get(

3

2

)n
≤ c.

But 3/2 > 1, so (3/2)n gets arbitrarily large as n → ∞. So for every c
there is a value n1 such that (3/2)n > c if n ≥ n1.

Additional note: taking logarithms of both sides we get n log(3/2) ≤ log c,
showing that dlog c/ log(3/2)e+ 1 is a possible value for n1.

2. Give a Θ-bound for the solution of the following recurrence using the
master theorem:

T (n) = 7 · T
(n

2

)
+ n3.

Here a = 7, b = 2 and f(n) = n3. It holds that logb a = log2 7 < log2 8 =
3. Thus there is a sufficiently small ε such that (log2 7) + ε ≤ 3. (Note: in
fact log2 7 < 2.81, so ε = 0.1 works.) Then

n3 = Ω
(
n(logb a)+ε

)
,

corresponding to Case 3 in the master theorem. The additional constraint
that needs to be checked is

7
(n

2

)3

≤ cn3

for some c < 1. Here c = 7/8 works. So Case 3 applies and f(n) = Θ(n3).

3. Consider the following algorithm to produce a permutation of an array A
of size n:

1



for i = 1 to n− 1

swap A[i] with A[RANDOM(i+ 1, n)]

Prove or disprove: the algorithm only produces permutations of the origi-
nal array which are different from the identity permutation, and each such
non-identity permutation is produced with the same probability.

Note: the identity permutation is the permutation which leaves every
element in its original place.

Hint : you can argue about the total number of permutations produced by
all possible runs of the algorithm.

The first part is true, but the second part is false, so the statement is false.

The algorithm only produces permutations different from identity. In the
first iteration A[1] is replaced by one of A[2], . . . , A[n], so A[1] will not
stay in place.

However, the algorithm does not produce every non-identity permutation.
It is sufficient to consider the case n = 3. Then starting from 123, for i = 1
we get either 213 or 321, depending on whether A[2] or A[3] is swapped.
In the next iteration the last two elements are swapped. So we get 231
or 312. Thus the algorithm can produce only 2 non-identity permutations
(each with probability 1/2). There are altogether 3!− 1 = 5 non-identity
permutations. The remaining 3 non-identity permutations are produced
with probability 0.

Note: a similar argument gives that in the general case the algorithm can
produce (n− 1)! non-identity permutations, which is fewer than the total
number n!− 1 of all non-identity permutations.

4. Show the operation of HEAPSORT (displaying the sequence of trees) on
the array

A = 〈6, 3, 4, 5, 7, 1, 9〉,

starting with the procedure BUILD-MAX-HEAP and continuing with the
first call of the procedure MAX-HEAPIFY after that.

Omitted. Note: the problem did not ask for the complete HEAPSORT
algorithm.

5. Given a set of n elements, we would like to find the k largest elements
in sorted order, using the following approach. Use an efficient selection
algorithm to find the k’th largest element, partition with respect to that
element, and then sort the k largest elements.

Determine the worst-case number of comparisons of the resulting algo-
rithm in terms of n and k. For what values of k do we get a linear time
algorithm?

We consider the following algorithm:

2



(a) find the k’th largest element x using SELECT learned in class: run-
ning time O(n).

(b) compare every element with x (this identifies the k largest elements):
running time O(n).

(c) sort the k largest elements using MERGESORT: running timeO(k log k).

Thus the total running time is O(n+ k log k).

This running is linear if k log k = O(n). This holds, for example, when
k ≤
√
n, as then we get

√
n log

√
n = O(n). It also holds when k ≤ nc for

any c < 1, and even when k = n/ log n.

3


