Computer Algorithms |

Spring 2020

Midterm-2-Practice

1. Coin changing
denominations ¢; < ... < ¢ (e.g., 1, 5, 10, 25), assume ¢; =1
make change for n cents using the minimal number of coins!

idea: let coins(i) be the minimal number of coins needed to make
change for i cents

greedy is not always optimall e.g., i =1,c0 =3,c3=4and n=256
coins(n) = min(1 + coins(n—¢;) : i=1,...,k,¢; <n)

running time O(n - k)

Midterm-2-Practice

2. Average completion time

activities ai, ..., a, with processing times pi,..., pp
schedule: ordering of the activities, a; completed in time t;
find schedule minimizing average completion time

idea: here a greedy algorithm works

for ordering a1, a, ..., a, the total completion time is

nopr+(n—1)-p2+ ...+ p

non-decreasing order: assume numbering is such that
pPL<p2...< Pn
This is optimal: in any other order there is an i such that

pi > pi+1. Switching these activities the average completion time
decreases.

Midterm-2-Practice

3. Let G = (V, E) be a connected graph with edge weights such
that the edge weights are all different. Show that there is a unique
minimum spanning tree.

Note: the argument that then Prim's algorithm always has a
unique choice is not correct. Why?

Let T1, T be two different minimum spanning trees. Consider the
smallest weight edge which is in only one of the trees, say e is in
T1. Adding e to T, a cycle is formed. Some edge f on the cycle is
not in Ti. Therefore w(f) > w(e). But then T + e — f is better
than T,, contradiction.

Midterm-2-Practice

4. True or false? Let G be a directed graph. If there is a directed

path from u to v, and in a DFS u.d < v.d then v is a descendant
of u.

False. Let the edges be (r,u),(r,v),(u,r), r be the root and let
the adjacency list of r be u, v.

Midterm-2-Practice

5. Given an acyclic graph and two vertices s and t, find the
number of directed paths from s to t!
Give a O(|V| + |E|) time algorithm for this problem.

apply topological sorting to G and return the linked list of vertices
between s and t

let path(u, t) be the number of paths from u to t
path(u,t) = Z path(v, t)
veG.Adj[u]

compute path(u, t) backwards from t

running time is the same as DFS (array size + sum of out-degrees)

