
Computer Algorithms I

Spring 2020

Midterm-2-Practice

1. Coin changing

denominations c1 < . . . < ck (e.g., 1, 5, 10, 25), assume c1 = 1

make change for n cents using the minimal number of coins!

idea: let coins(i) be the minimal number of coins needed to make
change for i cents

greedy is not always optimal! e.g., c1 = 1, c2 = 3, c3 = 4 and n = 6

coins(n) = min(1 + coins(n − ci) : i = 1, . . . , k, ci ≤ n)

running time O(n · k)

Midterm-2-Practice

2. Average completion time

activities a1, . . . , an with processing times p1, . . . , pn

schedule: ordering of the activities, ai completed in time ti

find schedule minimizing average completion time

idea: here a greedy algorithm works

for ordering a1, a2, . . . , an the total completion time is

n · p1 + (n − 1) · p2 + . . . + pn

non-decreasing order: assume numbering is such that
p1 ≤ p2 . . . ≤ pn

This is optimal: in any other order there is an i such that
pi > pi+1. Switching these activities the average completion time
decreases.

Midterm-2-Practice

3. Let G = (V ,E) be a connected graph with edge weights such
that the edge weights are all different. Show that there is a unique
minimum spanning tree.

Note: the argument that then Prim’s algorithm always has a
unique choice is not correct. Why?

Let T1,T2 be two different minimum spanning trees. Consider the
smallest weight edge which is in only one of the trees, say e is in
T1. Adding e to T2 a cycle is formed. Some edge f on the cycle is
not in T1. Therefore w(f) > w(e). But then T2 + e − f is better
than T2, contradiction.

Midterm-2-Practice

4. True or false? Let G be a directed graph. If there is a directed
path from u to v , and in a DFS u.d < v .d then v is a descendant
of u.

False. Let the edges be (r , u), (r , v), (u, r), r be the root and let
the adjacency list of r be u, v .

Midterm-2-Practice

5. Given an acyclic graph and two vertices s and t, find the
number of directed paths from s to t!
Give a O(|V |+ |E |) time algorithm for this problem.

apply topological sorting to G and return the linked list of vertices
between s and t

let path(u, t) be the number of paths from u to t

path(u, t) =
∑

v∈G .Adj[u]

path(v , t)

compute path(u, t) backwards from t

running time is the same as DFS (array size + sum of out-degrees)

