
Computer Algorithms I

Spring 2020

Depth-first search

start with a vertex s

for every undiscovered neighbor, discover that node, and proceed
recursively

time: global variable, a counter increased at the beginning and end
of each recursive call

v.d, v.f: discovery and finishing times of vertex v

Depth-first search algorithm

Depth-first forest example

Discovery and finishing times, edge types

Parenthesis theorem

Parenthesis theorem

The time intervals [u.d , u.f] and [v .d , v .f] are either disjoint or
one is contained in the other.

If the intervals are disjoint then neither vertex is a descendant of
the other.

If [u.d , u.f] contains [v .d , v .f] then v is a descendant of u (and
vice versa).

Proof outline

Assume u.d < v .d

Case 1: u.d < v .d < u.f

Then v was discovered inside DFS − VISIT (G , u), and so it is a
descendant of u and it finishes before u. So [v .d , v .f] ⊂ [u.d , u.f].

Case 2:: u.d < u.f < v .d

Then v was discovered after u was finished, so neither is a
descendant of the other, and the two time intervals are disjoint.

White path theorem

v is a descendant of u iff at time u.d there is a path of white
vertices from u to v

Edge types for directed graphs

tree edges: (u, v), such that v .π = u

back edges: (u, v), such that v is ancestor of u

forward edges: (u, v), such that v is a descendant of u, but
v .π 6= u

cross edges: (u, v), such that neither is an ancestor of the other
(in the same tree, or in different trees).

if (u, v) is a cross edge then u.d > v .d (why?)

Edge types for undirected graphs

tree edges: (u, v), such that v .π = u

back edges: (u, v), such that v is ancestor of u

no cross edges! (why?)

Remarks on depth-first search

stack (LIFO - last-in, first-out)

complexity O(|V |+ |E |), argument similar to BFS

