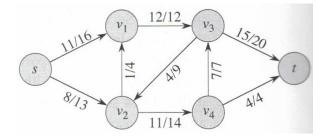
Computer Algorithms I

Spring 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Flow networks



(日)

э

G = (V, E) directed graph, source s, sink t

capacity of edges: $c(u, v) \ge 0$

flow along edges: $0 \le f(u, v) \le c(u, v)$

Maximum flow problem

flow conservation constraint: if $u \neq s, t$ then

$$\sum_{v\in V} f(v, u) = \sum_{v\in V} f(u, v)$$

flow value:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

flow in example has value 19

given a network with capacities, find a flow of maximal value!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

improving a flow: given a flow, modify it to get a flow of larger value!

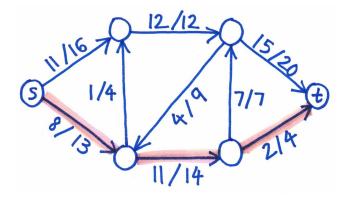
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

what if no further improvement is possible?

show that then the flow is optimal!

How to improve a flow?

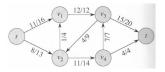
try send more flow along the edges!



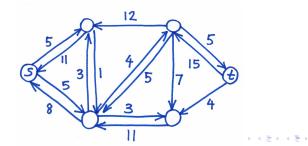
the flow can be increased by 2 units along the path

no such improvement possible in the previous case, and flow is not optimal!

Residual network



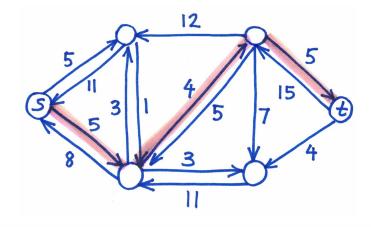
forward / backward edge



э

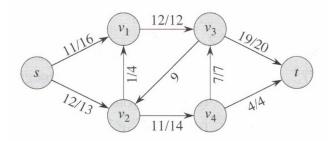
Augmenting path

augmenting path: s - t path in residual network



ad d

Improved flow



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

new flow has value 23

in the residual network no augmenting path

so flow is optimal (?)

Ford-Fulkerson algorithm

FORD-FULKERSON(G, s, t)for each edge $(u, v) \in G.E$ 2 (u, v) f = 03 while there exists a path p from s to t in the residual network G_f 4 $c_f(p) = \min \{ c_f(u, v) : (u, v) \text{ is in } p \}$ 5 for each edge (u, v) in p 6 if $(u, v) \in E$ 7 $(u, v).f = (u, v).f + c_f(p)$ 8 else $(v, u).f = (v, u).f - c_f(p)$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Definitions (simplified)

residual capacity of edges and reversed edges

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & (u,v) \in E\\ f(v,u) & (v,u) \in E \end{cases}$$

residual network: edges and reverse edges with $c_f > 0$ augmenting path: $s \to t$ path p in residual network residual capacity of path p: $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$ augmented flow:

$$(f \uparrow p)(u, v) = \begin{cases} f(u, v) + c_f(p) & (u, v) \in p \\ f(u, v) - c_f(p) & (v, u) \in p \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

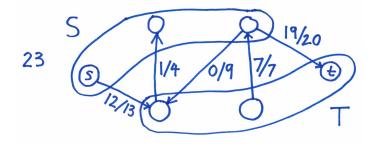
value of augmented flow = value of flow $+c_f(p)$

After augmentation we get a flow

(3) (5) (2) (3) (3) (2) (3) (2) (3) (3) (4) $() \xrightarrow{+2} () \xrightarrow{-2} () \xrightarrow{+2} () \xrightarrow{+2} ()$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Cuts



net flow across cut: f(S, T) = (12 + 0 + 19) - (1 + 7) = 23capacity of cut: c(S, T) = 13 + 9 + 20 = 42 $f(S, T) \le c(S, T)$ for every cut (S, T)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Max-flow min-cut theorem

Theorem

TFAE

- 1. f is a maximum flow
- 2. there is no augmenting path in the residual network for f

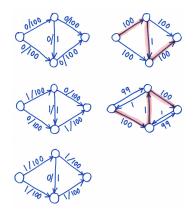
3.
$$|f| = c(S, T)$$
 for some cut (S, T)

 $1 \Rightarrow 2$: any augmenting path could be used to improve |f|

 $2 \Rightarrow 3$: let *S* be the vertices reachable from *s* in the residual network for *f*, and *T* be the rest

$$3 \Rightarrow 1$$
: no flow can have value $> c(S, T)$

An example



no running time bound in terms of |V|

for irrational capacities may not even terminate!

for integer capacities terminates: every augmentation is at least 1 (also for rational)

Edmonds - Karp algorithm

augment along shortest augmenting path running time: $O(|V||E|^2)$

there are more efficient algorithms: $O(|V|^3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●