Computer Algorithms I

Spring 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

NP-completeness

efficient algorithm: has running time $O(n^k)$ for some integer k polynomial time solvable problems

for many important problems no efficient algorithms are known shortest paths / longest paths: find a shortest / longest path between two vertices

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

shortest paths: Bellman - Ford, Dijkstra

longest paths: no efficient algorithm known

can we prove that there is no efficient algorithm? NO

but it is generally believed that there are none

3-CNF satisfiability

3-CNF expression (3-conjunctive normal form)

 $(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor x_4)$

truth assignment

$$x_1 = 1, \ x_2 = 0, \ x_3 = 1, \ x_4 = 0$$

truth value of expression for this truth assignment

$$(1 \lor 0 \lor \overline{1}) \land (\overline{1} \lor 1 \lor 0) = 1$$

so this truth assignment satisfies the expression the expression is satisfiable **3-CNF satisfiability**: given a 3-CNF expression, is it satisfiable?

Clique problem

G = (V, E) undirected graph

clique: $V' \subseteq V$ such that there is an edge between any two vertices in V'

clique problem: given a graph G and a number k, does G have k vertices which form a clique?

do the satisfiability problem and the clique problem have anything to do with each other?

Reduction from 3-CNF-SAT to CLIQUE

given a 3-CNF expression ϕ , we construct a graph G = (V, E) and a number k such that

 ϕ is satisfiable $\Leftrightarrow G$ has a clique of size k

 $C_1 = x_1 \vee \neg x_2 \vee \neg x_3$ -x2 $C_2 = \neg x_1 \lor x_2 \lor x_3$ $C_3 = x_1 \lor x_2 \lor x_3$ X3 X3

k = 3 (number of clauses in ϕ)

・ロト・四ト・モート ヨー うへの

assume that we have an efficient algorithm for the clique problem

Claim then we also have an efficient algorithm for 3-CNF satisfiability!

how can we decide if ϕ is satisfiable?

construct G and k, run the clique algorithm on this input and return the answer!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Satisfiability algorithm using reduction to clique problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- one can prove that many hard problems are "NP-complete"
- any two NP-complete problems can be reduced to each other
- if one of them can be solved efficiently then the others can be solved efficiently as well
- so whether any of those problems have efficient algorithms is just one problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline of the correctness of the reduction

 ϕ is satisfiable $\ \Rightarrow\$ it has a satisfying truth assignment

this satisfying truth assignment can be used to find a clique in the graph

G has a clique of size $k \Rightarrow$ the labels of the nodes of the clique can be used to construct a satisfying truth assignment for ϕ , so ϕ is satisfiable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hamilton cycle

Hamilton cycle: cycle going through every vertex exactly once

does this graph contain a Hamilton cycle?

yes, here, we can certify that!

given a solution it is easy to verify that it is correct

how that solution was found does not matter

Another graph

does this graph contain a Hamilton cycle?

no... but how to verify that?

Verification algorithm

problem: HAM - CYCLE, 3 - CNF - SAT, CLIQUEinput: graph G = (V, E), formula ϕ , graph G = (V, E) and kcertificate: Hamilton cycle, satisfying truth assignment, clique of size k

verification algorithm: decide if a claimed certificate is indeed a certificate

easy in each case

Definitions

optimization problem - e.g., find minimum spanning tree

decision problem version: is there a spanning tree with weight $\leq w$? - yes/no

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

encoding: graphs, flow networks, sets of activities \rightarrow bit sequences, 0-1 strings

set of strings: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$

 $e: I \rightarrow \{0,1\}^*$ (*I*: set of instances)

language: set of strings, $L \subseteq \{0, 1\}^*$

problem \rightarrow language: set of 'yes' instances

P and NP

 $P = \{L \subseteq \{0,1\}^* : L \text{ computed by a polynomial time algorithm}\}$ verification algorithm: A(x, y), x: input, y: certificate example: for Hamilton cycle problem - x: graph, y: cycle

 $NP = \{L : L = \{x : \exists y (|y| = O(|x|^{c})A(x, y) = 1\}\}$

A is a polynomial time verification algorithm, and c is a constant $HAM = \{\langle G \rangle : G \text{ is graph with a Hamilton cycle}\}$ $HAM = \{x : \exists y(|y| = O(|x|^c) \ A(x, y) = 1\}$ where A checks if y is indeed a Hamilton cycle in x so $HAM \in NP$

- ロ ト - 4 回 ト - 4 □

Reduction, NP-completeness

languages $L_1, L_2 \subseteq \{0, 1\}^*$

 $L_1 \leq_P L_2$: L_1 polynomial time reducible to L_2 :

there is a polynomial time computable function f such that for every x it holds that

 $x \in L_1 \Leftrightarrow f(x) \in L_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

L is NP-complete:

•
$$L \in NP$$

•
$$L' \leq L$$
 for every $L' \in NP$

 $P \subseteq NP$

million dollar question: $P \neq NP$?

Three basic properties

- 1. if $L_1 \leq_P L_2$ and $L_2 \in P$ then $L_1 \in P$ proof: diagram
- if L is NP-complete and L ∈ P then P = NP proof: diagram
- 3. if $L' \leq_P L$, L' is NP-complete and $L \in NP$ then L is NP-complete

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

proof: combine reductions

NP-complete problems

Theorem 3 – *CNF* – *SAT* is *NP*-complete

Theorem $3 - CNF - SAT \leq_P CLIQUE$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem CLIQUE is NP-complete

NP-complete problems

Subset sum problem

given: set S of positive integers, target tis there a subset of S adding up to t? example: $S = \{2, 3, 5, 6, 8, 9\}, t = 17$ $SUBSET - SUM = \{ \langle S, t \rangle : \exists S' \subseteq S, \sum_{s \in S'} s = t \}$ $SUBSET - SUM \in NP$: certificate is (encoding of) S' (e.g., $\langle \{2, 6, 9\} \rangle$ SUBSET – SUM is NP-complete: in NP, reduction from 3 - CNE - SAT

$3 - CNF - SAT \leq_P SUBSET - SUM$ $\phi \rightarrow S, t: \phi \text{ satisfiable} \Leftrightarrow S \text{ has subset adding up to } t$

		x_1	<i>x</i> ₂	<i>x</i> ₃	c_1	C_2	C3	C4
<i>v</i> ₁	-	1	0	0	1	0	0	1
ν'_1	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
ν'_2	=	0	1	0	1	1	1	0
<i>v</i> ₃	=	0	0	1	0	0	1	1
v'3	=	0	0	1	1	1	0	0
<i>s</i> ₁	=	0	0	0	1	0	0	0
s'_1	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s'_2	=	0	0	0	0	2	0	0
\$3	=	0	0	0	0	0	1	0
s'3	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s'_4	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is $\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$, where $C_1 = (x_1 \vee -x_2 \vee \neg x_3)$, $C_2 = (-x_1 \vee -x_2 \vee x_3)$, $C_3 = (-x_1 \vee -x_2 \vee x_3)$, and $C_4 = (x_1 \vee x_2 \vee x_3)$. A satisfying assignment of ϕ is $(x_1 = 0, x_2 = 0, x_3 = 1)$. The set *S* produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, *S* = {1001001, 100011, 010001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2}. The target *t* is 1114444. The subset *S'* \subseteq *S* is lightly shaded, and it contains v'_1, v'_2 , and v_3 , corresponding to the satisfying assignment. It also contains slack variables $s_1, s'_1, s'_2, s_3, s_4$, and s'_4 to achieve the target value of 4 in the digits labeled by C_1 through C_4 .