
Computer Algorithms I

Spring 2020

Shortest paths

directed, edge-weighted graphs

sometimes edge weights are assumed to be ≥ 0

weight of a path: sum of its edge weights

δ(s, v): weight of a shortest path from s to v (distance)

single-source shortest paths: find shortest paths from a source s to
all other vertices!

all-pairs shortest paths: find shortest paths between any two
vertices!

Relaxation for single-source shortest paths
assume that we compute a vertex attribute v .d such that
δ(s, v) ≤ v .d

RELAX (u, v ,w)

if v .d > u.d + w(u, v) then

v .d = u.d + w(u, v)
v .π = u

Claim: after RELAX (u, v ,w) it still holds that δ(s, v) ≤ v .d

δ(s, v) ≤ δ(s, u) + w(u, v) ≤ u.d + w(u, v) = v .d

Bellman - Ford algorithm

initialization: v .d =∞, v .π = NIL for every vertex v , s.d = 0

Bellman - Ford example

Negative weight cycles

shortest paths do not exist if there is a negative weight cycle
reachable from s

Bellman - Ford algorithm properties

edges can have negative weights

Theorem
If there are no negative weight cycles reachable from s then at the
end v .d = δ(s, v) for every vertex v , the edges (v .π, v) form a
shortest-paths tree, and the algorithm returns TRUE.
Otherwise the algorithm returns FALSE.

complexity is O(|V | · |E |)

Dijkstra algorithm

compare with Prim: similarities and differences

Dijkstra example

Dijkstra algorithm properties

edge weights have to be non-negative

at the end:

v .d = δ(s, v) for every vertex v

the edges (v .π, v) form a shortest-paths tree

complexity O(|E | log |V |)

