Computer Algorithms |

Spring 2020



Shortest paths

directed, edge-weighted graphs

sometimes edge weights are assumed to be > 0

weight of a path: sum of its edge weights

d(s, v): weight of a shortest path from s to v (distance)

single-source shortest paths: find shortest paths from a source s to
all other vertices!

all-pairs shortest paths: find shortest paths between any two
vertices!



Relaxation for single-source shortest paths

assume that we compute a vertex attribute v.d such that
d(s,v) <v.d

RELAX (u, v, w)
if v.d > u.d + w(u, v) then

v.d = u.d+ w(u,v)
VT =u

Claim: after RELAX(u, v, w) it still holds that d(s,v) < v.d
d(s,v) <d(s,u) + w(u,v) <ud+w(uv)=vd
7

V/\MH

S A \V



Bellman - Ford algorithm

initialization: v.d = oo, v.m = NIL for every vertex v, s.d =0

BELLMAN-FORD(G, w, §)

1 INITIALIZE-SINGLE—SOURCE(G.S)
2 fori =1t0|G.V|—1

3 for each edge (u.v) € G.E

4 RELAX(u,v, W)

5 for each edge (u,v) € G.E

6 ifv.d>u.d+wu,v)

7 return FALSE

8 return TRUE



Bellman - Ford example

6 »4-2

B

0

Y/ /4



Negative weight cycles

shortest paths do not exist if there is a negative weight cycle
reachable from s



Bellman - Ford algorithm properties

edges can have negative weights

Theorem

If there are no negative weight cycles reachable from s then at the
end v.d = (s, v) for every vertex v, the edges (v.m,v) form a
shortest-paths tree, and the algorithm returns TRUE.

Otherwise the algorithm returns FALSE.

complexity is O(| V| - |E|)



Dijkstra algorithm

DUKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 §S=90

3 0=V

4 while Q #0

5 u = EXTRACT-MIN(Q)

6 =8 Udu}

7 for each vertex v € G.Adj[u]

8 RELAX (u, v, w)

compare with Prim: similarities and differences



Dijkstra example




Dijkstra algorithm properties

edge weights have to be non-negative
at the end:
v.d = 0(s, v) for every vertex v
the edges (v.m, v) form a shortest-paths tree

complexity O(|E|log |V])



