
Computer Algorithms I

Spring 2020

Topological sorting

directed graph G = (V ,E) of jobs to be performed in some order

(u, v) ∈ E : job u must come before job v

find a good ordering of the jobs!

is that always possible?

find a good ordering of the jobs if possible and output “not
possible” otherwise!

Topological sorting algorithm

run depth-first search and order vertices according to decreasing
order of finishing times

if this ordering does not work output “not possible”

else output ordering found

complexity O(|V | + |E |), so optimal

Topological sorting example

Correctness I

if G has a directed cycle then it has no topological sorting:
algorithm must be correct in this case

G is acyclic: no directed cycles

Claim 1: if G is acyclic then it has a topological sorting and the
algorithm finds it!

Edge types in acyclic graphs

Theorem
G is acyclic iff there are no back edges in DFS forest

G is cyclic iff there are back edges in the DFS forest

⇐: if there is a back edge (u, v) then G is cyclic: v → . . . → u

⇒: if G is cyclic then there is a back edge

let v be the vertex discovered first, then by the white path theorem
u becomes a descendant of v , so (u, v) is a back edge

Correctness II

Claim 1 again: if G is acyclic then it has a topological sorting and
the algorithm finds it!

if G is acyclic then every edge is a tree edge, a forward edge or a
cross edge

Claim 2: for each such edge (u, v) it holds that u.f > v .f

for tree edges and forward edges follows from parenthesis theorem

cross edges (both types): intervals disjoint, if [u.d , u.f] < [v .d , v .f]
then v becomes a child of u by the white path theorem

