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Abstract

Explainable components in XAI algorithms often come from
a familiar set of models, such as linear models or decision
trees. We formulate an approach where the type of expla-
nation produced is guided by a specification. Specifications
are elicited from the user, possibly using interaction with the
user and contributions from other areas. Areas where a spec-
ification could be obtained include forensic, medical and sci-
entific applications. Providing a menu of possible types of
specifications in an area is an exploratory knowledge repre-
sentation and reasoning task for the algorithm designer, aim-
ing at understanding the possibilities and limitations of ef-
ficiently computable modes of explanations. Two examples
are discussed: explanations for Bayesian networks using the
theory of argumentation, and explanations for graph neural
networks. The latter case illustrates the possibility of having
a representation formalism available to the user for specify-
ing the type of explanation requested, for example, a chemi-
cal query language for classifying molecules. The approach is
motivated by a theory of explanation in the philosophy of sci-
ence, and it is related to current questions in the philosophy
of science on the role of machine learning.

Introduction
Interpretability, explainability, transparency 1 and other re-
quirements for neural networks and other models built using
machine learning pose an important challenge in many ap-
plications. The history of the problem in machine learning
is illustrated by (Sommer 1996): “This paper reopens the is-
sue of understandability of induced theories, which, while
prominent in the early days of ML, seems to have fallen out
of favor in the sequel.” It is often noted that these notions are
used with different meanings and precise definitions do not
exist (see, e.g., (Lipton 2018)). Possibly the notions are in-
herently ambiguous, and therefore giving formal definitions

*Partially supported by the National Research, Development
and Innovation Office of Hungary through the Artificial Intelli-
gence National Excellence Program (grant no.: 2018-1.2.1-NKP-
2018-00008).
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In the introductory discussion we use “interpretability” for the
other related notions as well. The rest of the paper deals with ex-
plainability.

is not necessary and perhaps not even possible. Precise defi-
nitions may not be of interest in themselves, but they can be
useful, even in restricted cases, for understanding the possi-
bilities and limitations of algorithmic approaches.

In view of the large variety of algorithms for interpretabil-
ity, several papers provide taxonomies (e.g., (Arrieta et al.
2020; Guidotti et al. 2019; Henin and Métayer 2019; Sokol
and Flach 2020)). These are not formal definitions, but de-
scribe various components of the algorithms, different types
of those components and their interactions, objectives and
evaluation methods. (Doshi-Velez and Kim 2017) give a
taxonomy of approaches for evaluating interpretability. The
main criterion for evaluating interpretability of a result is its
usefulness for humans.

(Miller, Howe, and Sonenberg 2017), quoting (Cooper
2004), refer to AI researchers designing interpretable learn-
ing algorithms without taking into account desiderata based
on philosophy, cognitive science and other areas as “inmates
running the asylum”. While this suggests that computer sci-
entists have too large a role, it may also be the case that their
task is narrow in the sense that interpretable models usually
are of a familiar kind, such as linear models and decision
trees. Are there other options? We formulate an approach
to post-hoc explainability which, while adhering to Miller’s
warning, could help answer this question.

The proposed approach is that for an XAI application, in-
stead of deciding on the explainable model to be used (say,
a decision tree), one can try to obtain a specification of the
kind of explanation required. The task then is to design an
explainable learning model satisfying the requirements, or
to argue that this is not possible, for informational or com-
putational reasons. This view is related to the taxonomy of
(Doshi-Velez and Kim 2017). Another view is that the speci-
fication represents the type of question or query and the type
of answer expected by the user, providing an abstraction of
the user for the application.

It is to be emphasized that the approach is not expected to
be feasible in every application, but it is hoped that in some
cases it could lead to the development of new explainable
representations. It could also provide an understanding of
the relevant features of explainable models or, in the specifi-
cation phase, provide a better understanding of the explain-
ability requirements of the particular application. Such an
approach is feasible in forensic, medical and scientific appli-
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cations, where the user has an approximate idea of what is
meant by an explanation. This approximate idea can then be
refined in an interaction with the algorithm designer.

The algorithm designer can prepare for such an interac-
tion by studying various types of explanations that are to be
expected in a particular area. Thus the proposed framework
includes exploring knowledge representation and reasoning
aspects of explainability. For a given type of explanation,
an alternative route is to learn a corresponding interpretable
representation directly. The feasibility of this route can de-
pend on the nature of data available for a particular applica-
tion.

In this paper we give several motivations for explanations
from specifications, including functionally grounded evalu-
ation of explainability methods, the pragmatic theory of ex-
planations and the theoretical study of explainability. We de-
scribe several aspects of the realization of the approach, and
we present two examples where there is initial work in the
direction proposed: explaining Bayesian network classifiers
using argumentation theory and explaining graph neural net-
work. Future work is outlined in both cases. The philosophy
of science gives a motivation for the approach, and we also
mention a connection in the other direction as well, noting
that the exploration of the approach could contribute to the
discussion of current problems on the role of machine learn-
ing in scientific research.

Functionally grounded evaluation
In the taxonomy of (Doshi-Velez and Kim 2017) for inter-
pretability evaluation methods, functionally grounded eval-
uation does not use human experiments. Instead, a “formal
definition of interpretability [is used] as a proxy for expla-
nation quality [...] [which is] most appropriate once we have
a class of models or regularizers that have already been val-
idated [...] The challenge, of course, is to determine what
proxies to use. For example, decision trees have been con-
sidered interpretable in many situations”.

A project in this direction, proposed in (Doshi-Velez and
Kim 2017), is to create a matrix with rows corresponding
to real-world tasks, columns corresponding to methods, and
entries corresponding to the performance of methods on the
task (like decision trees of a certain type for a medical in-
terpretability task). An interesting hypothesis formulated in
(Doshi-Velez and Kim 2017) is that such a matrix may be
factored using latent interpretability requirements of tasks
such as global versus local interpretability and the type of
user expertise required, and latent properties of the methods,
e.g., the structure of methods in terms of cognitive chunks.
The approach proposed in this paper promotes these factors
to a central role and makes their elicitation a separate task
guiding algorithm design.

The pragmatic theory of explanation
Interpretability and explainability are much studied, distinct
but related, notions in philosophy. Scientific explanation,
in particular, is a central concept in the philosophy of sci-
ence. Several approaches are formulated, starting with the
deductive-nomological (DN) approach of (Hempel and Op-

penheim 1948). The approaches are quite different and there
is no generally accepted one. Whether this background is
relevant for ML is debated (Krishnan 2019; Páez 2019) 2.
One possible answer is that approaches in the philosophy
of science are of interest in AI as potentially useful views
of what constitutes an explanation in ML. This position in-
volves no commitment on the relationship between the cor-
responding notions in the philosophy of science and AI.

One difference to note is that the objective in the phi-
losophy of science is to capture the notion of a scientific
explanation precisely. Counterarguments against a particu-
lar approach may refer to capturing too much or too little.
In AI, on one hand, the bar is lower, as useful approaches
are sought for, without any claim of precise characteriza-
tion. On the other hand, the bar in AI is higher, because the
approaches are required to be algorithmically tractable. The
distinction between explaining the learned model or explain-
ing the phenomenon modeled is an important one. Robust-
ness may provide a distinction between the two (Alvarez-
Melis and Jaakkola 2018; Hancox-Li 2020).

The approach proposed in this paper is inspired by the
pragmatic theory of explanation of (van Fraassen 1980) 3.
This theory is part of van Fraassen’s constructive empiricist
approach to the philosophy of science. The main aspects are
that explanations are viewed as answers to why-questions in
a contrastive form in the context of a relevance relation 4.
As summarized in (Cross and Roelofsen 2018), “to ask why
is to ask for a reason, and [the relevance relation] R varies
according to the kind of reason that is being requested in a
given context. One can ask why in order to request causal
factors, to request a justification, to request a purpose, to
request a motive, to request a function, and so on”.

One objection to van Fraassen’s approach is that it is not
specified what counts as a relevance relation. We describe
briefly the definition in the version given by (Boniolo 2005).
A why-question is of the form “why P rather than the other
elements of X”, where P is a proposition and X is a set of
propositions containing P . The question also specifies

a knowledge base K, a scientist s and the background
knowledge Ks ⊆ K of s,

2The relationship between scientific explanation and explana-
tion in general is also open to debate.

3Here “pragmatic” does not refer to claim of relevance for prac-
tice (which would apply to other approaches as well), but to aspects
of the participation of the agents in the explanation process (the de-
tails of which are not needed for our discussion). See the distinction
between pragmatic1 and pragmatic2 in (Woodward 2019).

4(Lipton 1990) cites van Fraassen as one of the sources of the
contrastive approach. The critical review of (Worrall 1988) on van
Fraassen’s book argues, among other things, that the contrastive ap-
proach is not applicable to scientific explanation, and context and
relevance relations “lead to unnecessary complexity” by moving
beyond classical logic. Lipton gives a counter-argument to Wor-
rall’s first argument. Regarding the second argument, Worrall is
actually right about complexity (whether the move is necessary or
not is another question). Non-classical logics, like non-monotonic
logic and argumentation theory, do have problems with intractabil-
ity, and overcoming those is an important problem. See further dis-
cussion in the section on argumentation.



Figure 1: Diagram of the proposed approach

a context Cs ⊆ Ks containing a relevance relation R, and
possibly other items,

where R is binary relation between an answer A and pairs of
the form 〈P,X〉. For a proposition A, “Because A” is an an-
swer to the why-question if R(A, 〈P,X〉) holds, A is valid
and plausible w.r.t. Cs, and P is more valid and plausible
w.r.t. Cs than the other members of X .

In AI terms there is a domain with a given background
knowledge and an agent with its own background knowl-
edge. The context the agent considers contains its input and
the kind of “reasoning” the agent is using. Furthermore, the
input has an output P , and the question is: why is P the
output in contrast to the other possibilities in X? Here “rea-
soning” is used as a suggestive term for the relevance rela-
tion, which is not restricted to any kind of logical or causal
reasoning and no notion of truth is involved.

The proposed approach
The proposed view of explainability is summarized in Fig-
ure 1. The N box represents a black box model (N for net-
work, neural or Bayesian), which on a given input X pro-
duces output f(X). The R module (R for relevance or rea-
soning) represents the user’s notion of an explanation. The
missing component with the question mark is E (the ex-
plainer), producing an explanation expl(N,X) which ex-
plains f(X) according to the user’s requirements. The task
of the algorithm designer is to design an appropriate ex-
plainer. It is assumed that the designer knows R, and has
to develop an explainer module which, given an N and an
X , produces a suitable explanation for f(X).

The contrastive aspect is reduced here to “why f(X) and
not something else” for simplicity, but the general version
could also be incorporated. The approach includes other sce-
narios as well, such as building an interpretable model di-
rectly or computing explanations from N directly. The setup
allows for the design of N to take into consideration R,
for the incorporation of explanation construction into the
learning process (Park et al. 2018), for methods where the
learning process of N and the production of explanations
are intertwined (Al-Shedivat, Dubey, and Xing 2018), and,

depending on R, for interaction as well.
The diagram, mutatis mutandis, is also related to other

tasks such as the verification (Katz et al. 2017) or test-
ing (Zhang et al. 2019) of black boxes. (Dhurandhar et al.
2017) gave a formalization of the user in terms of a target
model, the performance of which is to be improved using in-
terpretability. (Overton 2011b,a) discusses the formalization
of various kinds of explanations in science.

Being built around the relevance relation R, the approach
implements van Fraassen’s theory of explanation. By mov-
ing part of the problem formulation to the user and leaving
“only” algorithm design to the computer scientist, the “can
is kicked down the road”. Furthermore, by building on the
relevance relation and the context of the user, the approach
is “as domain-specific as it gets”, thereby adhering to the
domain-specificity of interpretability (Rudin 2019).

(Guidotti et al. 2019) consider an explanation to be an in-
terface between the decision maker (the black box) and the
user, which is an accurate proxy of the decision maker and
is comprehensible to the user. The diagram suggests a way
to achieve the simultaneous occurrence of the two condi-
tions (accurate proxy and comprehensible) required for ex-
planations to be useful. The user is supposed to provide R,
which, by definition, is comprehensible to them. This could
include statistical or logical aspects, background knowledge,
etc. Then the designer has to come up with the explainer,
which is an accurate local proxy in the form of the requested
type of explanation, which can refer to either the model or
the world.

The relevance relation should be formulated in cooper-
ation with the user, building on psychology, cognitive sci-
ence, HCI and other areas. This challenge seems to be some-
what different from tasks such as eliciting user preferences
in terms of parameters of decision trees. It is interesting that
the importance of contrastive explanations, emphasized by
(Miller 2019) is already ‘built in” into van Fraassen’s frame-
work. It is noted by (Miller 2019) that eliciting a contrast
case from a human observer may be a difficult problem. The
present elicitation task may not be easy either, but it may be
useful in other contexts as well. Elicitation and related as-
pects are described in (Cassens and Kofod-Petersen 2007;
Lim, Dey, and Avrahami 2009; Kaur et al. 2020).

The approach can be relevant for forensic, medical and
scientific applications, as there are relevance relations in
these areas which can serve as specifications. Although it
is not indicated in the figure above, the use of background
knowledge is especially important in these areas. Back-
ground knowledge can be incorporated explicitly and im-
plicitly in different ways, including the design of neural net-
works (e.g., architecture, initialization and regularization)
and the construction of explanations. Recent surveys of work
relevant for these aspects are (von Rüden et al. 2019) on uses
of background knowledge, (Karpatne et al. 2017) on theory-
guided data science and (Roscher et al. 2020) on explain-
ability aspects of current science research.

In biology there is a large variety of explanations, in-
cluding non-causal forms of explanation as well, such as
functional and evolutional explanation (see (Braillard and
Malaterre 2015)). Boniolo, in his paper cited above, gave a



taxonomy of relevance relations for explanations in biology.
Relevant types of explanation, besides those mentioned by
(Boniolo 2005), are also given in (Trujillo, Anderson, and
Pelaez 2015). Their MACH (methods, analogies, context,
how) model is obtained from interviews and data from ex-
perts in the context of biology education, and thus it gives
an example of the elicitation process. (Overton 2012, 2013)
gives a theory of explanation in science, and relates it to an
analysis of papers from Science. He uses the categories the-
ory, model, kind, entity and data. For every pair there is a
core relation for explanations involving that pair. These re-
lations are further candidates to explore in the role of the R
box.

Explanations for Bayesian networks using
argumentation

Explanations for Bayesian networks have been studied for
a long time (Lacave and Dı́ez 2002). The issue of inter-
pretability of Bayesian networks requires some clarifica-
tion. Bayesian networks are a clear and interpretable rep-
resentation of dependencies in the joint distribution (al-
though even that requires care to formulate exactly in terms
of distribution-independence). On the other hand, inference
given some evidence is computationally involved and hard
to interpret for users not familiar with details of probabilis-
tic reasoning.

Koller (Ford 2018) noted that such models have an inter-
mediate degree of interpretability. This intermediate position
suggests that interpretability of probabilistic models may be
more accessible than deep learning and may be of interest
for exploring general issues.

Argumentation is a basic form of human reason-
ing (Mercier and Sperber 2011). important in legal and med-
ical contexts. Argumentation theory is a logic formalism for
the mechanism of arriving at a decision making based on ar-
guments for or against a decision, using relations like defeat,
rebuttal and undercut between arguments (Pollock 1995).
The framework of (Dung 1995) is a directed graph with the
arguments as vertices and directed edges corresponding to
the attack relation. This abstract framework is applied to a
class of formulas by defining the attack relation over argu-
ments built from those formulas.

Argumentation has been used for explanations both di-
rectly and with neural networks (see, e.g., the survey (Kakas
and Michael 2020), and (Cocarascu, Čyras, and Toni 2018)).
These applications build on tractable versions of the general
framework.

Motivated by forensic applications, (Timmer et al. 2017)
considered argument-based explanations for Bayesian net-
work inference. In terms of the approach proposed above,
in this case a why-question is a request for arguments. Here
the N box is a Bayesian network, X is the evidence, the
relevance relation R is implication in some argumentation
framework, and the explainer E is an algorithm producing
(probabilistic) arguments replacing network inference. The
algorithm produces efficiently computable arguments for a
class of networks, giving faithful explanations. (Prakken
2017) analyzed the translation further, identified desirable

properties, and also several undesirable ones in terms of the
general theory of probabilistic argumentation frameworks.

The elicitation of R involves the experimental study of
argumentation frameworks. This is a recent direction of re-
search (Cerutti, Tintarev, and Oren 2014; Cramer and Guil-
laume 2019). The grounded extension semantics in (Tim-
mer et al. 2017) is not a particularly good match. A rele-
vant conclusion of (Cerutti, Tintarev, and Oren 2014) is that
domain specific knowledge needs to be considered. Taking
more forms of background knowledge into account is also a
consideration for further work on (Timmer et al. 2017).

Thus further work on argument-based Bayesian network
inference explanation needs the cooperation of algorithm
designers, cognitive scientists and users. It requires further
work to identify desirable characteristics of the argument
frameworks, followed by the design, if possible, of efficient
algorithms producing arguments with those characteristics,
making use of background knowledge.

Explanations for graph neural networks
The graph neural network (GNN) model is a neural network
variant for problems on graphs (Hamilton 2020). Nodes in
each layer correspond to vertices of the input graph. Compu-
tation and updating between layers are done along the edges
of the graph, giving a deep learning version of message pass-
ing algorithms. GNN can be used, for example, for classify-
ing nodes of a graph, or for classifying graphs.

GNN are an important tool for classifying molecules for
problems in chemistry, biology and drug design. In these ar-
eas it is often noted that even though significant progress
has been made by deep learning in terms of prediction, lack
of interpretability of the results is a major problem to solve
(see, e.g., (Ching et al. 2018)). Providing explanations for
node and graph classification has been studied recently by
(Preuer et al. 2019; Ying et al. 2019; Pope et al. 2019; Bal-
dassarre and Azizpour 2019; Huang et al. 2020).

Properties of molecules are often studied by looking for
relevant substructures. The GNNExplainer method of (Ying
et al. 2019) finds explanations for the classification of a
graph by a GNN in the form of a size-bounded subgraph
and a subset of its node features that have large mutual in-
formation with the output. Thus in this case N is a neural
network, X is a graph, an explanation is a subgraph, and the
relevance relation is the subgraph relation.

(Jiménez-Luna, Grisoni, and Schneider 2020) mention the
development of new interpretable molecular representations
as another major research problem. There are many different
representations and explanation types for molecules, even
for a single property (see, for example, the literature on aro-
maticity (Stanger 2009; Sola 2017)). (Yang et al. 2019) in-
vestigate the predictive power of deep learning based repre-
sentations when compared to fixed molecular input descrip-
tions. A comparison with respect to explainability would
also be interesting. In chemoinformatics there are several
query languages describing properties of molecules, such as
SMILES, SMARTS and CSRML (Yang et al. 2015).

GNN learning algorithms and explainability methods are
often evaluated on synthetic graph data as well. Synthetic



problems appear to be more realistic approximations of real-
life properties for molecules than, for example, for image
recognition. Therefore it seems to be of interest to explore
synthetic problems in this context in more detail.

Our approach suggests that scientists can use classes of
queries in the query languages to specify the type of explana-
tion that is meaningful to them. As an exploratory research
project, one can consider various classes of queries as can-
didate explanation types for synthetic problems, and study
the possibilities and limitations of producing explanations
of those types. Going beyond substructures, one could con-
sider more general queries. Extensions could include, for ex-
ample, properties involving the existence of multiple copies
of substructures (perhaps in specified positions like being far
away from each other), Boolean combinations or properties
involving quantification and counting.

As noted in the introduction, for each such query class one
could consider learning such a description directly. GNN
are known to have theoretical computational limitations (Xu
et al. 2019; Morris et al. 2019; Garg, Jegelka, and Jaakkola
2020; Grohe 2020), and so their learning and explanatory as-
pects may differ from general neural networks. Direct learn-
ing is expected to be a hard problem in general.

An example of a class of properties going slightly be-
yond properties considered in (Ying et al. 2019) is having
bounded radius 5. Here we assume that graphs are classified
as positive if their radius is at most r, for an unknown value
of r. In this case learning r directly is straightforward, but
from the point of view of explainability it is of interest to
see if a learned GNN provides meaningful explanations. For
graphs classified positive a natural explanation is a spanning
tree of bounded depth. Thus the relevant subgraphs do not
have bounded size. Nevertheless, the GNNExplainer algo-
rithm can be used with a minor change in the denoising part,
which remains computationally efficient.

Figures 2 and 3 give an example of the explanation found
in our ongoing experiments for the case r = 2. GNNEx-
plainer assigns weights to the edges reflecting their impor-
tance for the classification. The denoising procedure (which
differs from the one in (Ying et al. 2019)) then selects an
explanatory subgraph. This procedure is designed knowing
that the scientist is interested in the role of the radius. There
are several options to extract a radius-related explanation
from the weighted subgraph, and the preferred one could be
chosen through interaction with the biologist. The syntactic
data assume an idealized case, and it needs to be explored
how robust the explanations are if the classification is not in
terms of the radius alone.

Prediction without explanation?
ML providing prediction without explanation in the natural
sciences raises fundamental questions in the philosophy of
science. An upcoming special issue of Minds and Machines
is devoted to these questions 6. Some questions are similar

5The radius of a graph is the smallest number r such that for
some vertex v every other vertex can be reached from v by a path
of length at most r.

6https://www.springer.com/journal/11023/updates/18180316 .
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Figure 2: Input graph: # vertices=10, # edges=15, radius=2
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Figure 3: Explanation graph: spanning tree explanation extracted
from Figure 2 with vertex 1 as the center

to those about the societal aspects of ML, such as policy
decisions and trust, and some are specific to science, such
as the effect of changing types and roles of explanations.
The frequent mention in the scientific literature of lack of
interpretability of results produced by ML indicates that the
problems are present on the level of scientific practice as
well.

A major dividing line in the philosophy of science is
between realism and anti-realism. Realism, the dominant
approach, asserts that the goal of scientific research is to
produce true theories. Van Fraassen’s anti-realist approach
claims that the goal is empirical adequacy or “saving the
phenomena”. On the other hand, theories and explanations
do have a role in his approach as well. For theories, he em-
phasizes their semantic nature as a collection of models, as
opposed to the syntactic version as a collection of true sen-
tences. His notion of explanations has been discussed above.

(Hooker and Hooker 2018) discuss prediction without ex-
planation versus interpretable modelling in the context of the
realism versus anti-realism debate. In their conclusion, ML
leads to “a mode of scientific advance that is alien to our
present philosophical conceptions”.

Explainability from specification can be seen as an at-
tempt to bridge the gap between ML and the philosophy of
science. It is based on van Fraassen’s constructive empiri-
cism, and, in particular, on his pragmatic theory of explana-
tion. In a sense, van Fraassen’s philosophy of science seems
to anticipate, and be able to accommodate, the new develop-
ments involving ML through the role it assigns to theories
and explanations and its view of the research process. If ex-
plainability from specification turns out to be achievable in



ML (at least to some extent) then ML fits van Fraassen’s
constructive empiricist approach as a tool.

To put it another way, the gap would be bridged by in-
corporating ML into van Fraassen’s philosophy of science.
(Hooker and Hooker 2018) mention ML interpretability as a
form of intuitability. It is not a coincidence that explainabil-
ity from specification is applicable for areas such as science,
where a more rigorous form of explanation can be expected.
Intuitability would apply to the types of explanation consid-
ered in most of XAI, describing explanations expected in
societal contexts. In that sense the gap bridging we suggest
is a meeting in the middle.

A neural network predicting a property of molecules ac-
curately contains empirically adequate knowledge and ac-
cording to van Fraassen’s view that is the main objective.
The scientist can also be interested in whether the network
provides relevant explanations according to their relevance
relation, and this is the form of explainability considered in
this paper. As the scientist’s relevance relation is presumably
adapted to the problem studied (like subgraphs for molecule
classification), explainability may have a better chance to
occur than a general purpose notion of explanation (for ex-
ample, a DN explanation).

Thus the main question suggested by this argument is the
following: to what extent can explainability from specifica-
tion be achieved in ML scientific applications?

Positive results on explainability give information on the
compatibility of scientific results using empirically adequate
predictions from ML with the framework of a theory. Corre-
spondence between concepts of a theory and concepts com-
puted at a hidden node is a form of interpretability. Using
the query languages mentioned above could be helpful in
finding such correspondences. Negative results, i.e., the lack
of interpretability could be a source for predicate invention
(see, e.g., (Hocquette and Muggleton 2020)).

A relevant notion for these considerations is the
Rashomon effect, i.e., the existence of multiple good models
for data, introduced by (Breiman 2001). This phenomenon is
explored further in ML, in particular for its relation to inter-
pretability in (Semenova and Rudin 2019; Dziugaite, Ben-
David, and Roy 2020). This effect also seems to match van
Fraassen’s notion of theories through his semantic approach.
(Hancox-Li 2020) notes that the Rashomon effect is argued
as providing possibilities for interpretability in (Semenova
and Rudin 2019), while he views it as relating to the lack of
robustness, which is a limitation for relevance to reality.

Thus philosophy of science not only provided a motiva-
tion for the approach to XAI proposed in this paper but, in
the other direction, it seems that an understanding of the
possibilities and limitations of explainability by specifica-
tion could contribute to answering some of the philosophy
of science questions posed by ML.

Concluding remarks
We described an approach to explainability based on explicit
specifications of the kind of explanations which the user
deems relevant. Candidates for areas where this approach
could be realized are natural sciences, medicine and forensic

science, where there are basic forms of explanations, such as
argumentation, causality and non-causal forms.

Besides the motivations and justifications mentioned ear-
lier, the possibility to prove theoretical results on explana-
tions in well-defined contexts is another reason to consider
this approach. Proving such results is an interesting topic in
itself for theoretical AI, but the considerations of the previ-
ous section give it additional significance.

(Golea 1996) initiated a study of the complexity of rule
extraction, and (Barceló et al. 2020) proved several hardness
results. Obtaining knowledge representations with given
tractability properties is related to knowledge compilation
(Darwiche and Marquis 2002). Here knowledge represen-
tation formalisms, such as DNF and OBDD, are compared
with respect to their expressivity, operations supported and
efficiently decidable properties. Explainability aspects are
discussed in (Darwiche and Hirth 2020). As learned mod-
els contain errors, it is of interest to consider approximate
knowledge compilation. (Chubarian and Turán 2020) prove
an approximate knowledge compilation result related to in-
terpretability. (Macdonald et al. 2020) consider explanations
with an approximate version of prime implicants.

Besides positive results, there are also results on limita-
tions. (Wegener 1994) showed that, assuming prime factor-
ing has no non-uniform polynomial time algorithms, there is
no data structure for Boolean functions which can represent
a version of multiplication in polynomial size and allows for
efficient implementation of certain operations. Such nega-
tive results would be of interest for explainability as well.

Opening a black box and explaining a computational re-
sult in a form comprehensible to the user are two hard prob-
lems. The requirement to solve two interconnected hard
problems at the same time contributes to the difficulties of
XAI. The proposed approach to explainability separates the
algorithm design task and the explainability aspect. This
could help by disentangling the cognitive and algorithmic
aspects of developing explainable learning algorithms.

(Rudin 2019) warns against using explanations provided
by black boxes for high stakes decisions. Even though the
scope of this warning is not quite clear, e.g., for self-driving
cars, it seems that the areas suitable for the proposed ap-
proach are less of a concern from this point of view. The role
of ML models in these applications is more of an assistant
rather than a decision maker. Similarly, explainability has to
address adversarial aspects, like “gaming” and privacy (see,
e.g., (Milli et al. 2019)). Another common feature of the ar-
eas mentioned is that these issues seem less relevant there as
well.
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Berend, Karine Chubarian, Nick Huggett, Márk Jelasity, Jie
Liang and Viktor Weiszfeiler for useful discussions.

References
Al-Shedivat, M.; Dubey, A.; and Xing, E. P. 2018. The
Intriguing Properties of Model Explanations. CoRR
abs/1801.09808.
Alvarez-Melis, D.; and Jaakkola, T. S. 2018. On the Robust-
ness of Interpretability Methods. CoRR abs/1806.08049.



Arrieta, A. B.; Rodrı́guez, N. D.; Ser, J. D.; Bennetot,
A.; Tabik, S.; Barbado, A.; Garcı́a, S.; Gil-Lopez, S.;
Molina, D.; Benjamins, R.; Chatila, R.; and Herrera, F.
2020. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsi-
ble AI. Inf. Fusion 58: 82–115.

Baldassarre, F.; and Azizpour, H. 2019. Explainability
Techniques for Graph Convolutional Networks. CoRR
abs/1905.13686.
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