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FinM 345 Stochastic Calculus:
10. Stochastic-Volatility, Jump-Diffusion (SVJD):
American Option Pricing and Optimal Portfolios:

• 10.1. SVJD American Option Pricing
∗ 10.1.0. SVJD American Option Pricing Outline:

1. Stochastic-Volatility Jump-Diffusion Model.
2. American Put Option Pricing.
3. Heuristic Quadratic Approximation for American Put

Option.
4. American Option Linear Complementarity Problem

Finite Differences.
5. Computation and Comparison of Methods.
6. Checking Approximation with Market Data.
7. Conclusions.
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∗ 10.1.1. Stochastic-Volatility Jump-Diffusion (SVJD) SDE
[Hanson and Yan (ACC2007), invited talk in honor of I. Karatzas,
Stochastic Theory and Control in Finance]: Assume asset price
S(rn)(t), under a risk-neutral probability, follows a
jump-diffusion process and conditional variance V (t) follows
the Heston (1993) square-root mean-reverting diffusion:

dS(rn)(t)= S(rn)(t)((r0−λ0ν)dt+
√

V (t)dWs(t))

+dCPs(t, S(rn)(t)ν(Q)),
(10.1)

where the compound Poisson jump process is
CPs(t, S(t)ν(Q))=

∑P (t)
j=1 S(T −

j )ν(Qj) and
dV (t)=κv(θv−V (t)) dt+σv

√
V (t)dWv(t), (10.2)

where V (t) ≥ εv > 0. Here, r0 =risk-free interest rate;
Ws(t) and Wv(t) satisfy Corr[dWs(t), dWv(t)]=ρv(t)dt;

P (t) has intensity λ0; ν(Q)=Poisson jump-amplitude;
Q=ln(ν(Q)+1) is the amplitude mark process.
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∗ 10.1.2. Log-Uniform Jump-Diffusion Model
[Hanson and Westman (ACC2002)]:

φQ(q)=
1

b−a

1, a≤q≤b

0, else

, a< 0< b,

where µj ≡EQ[Q]=0.5(b+a) is the mark mean;
σ2

j ≡VarQ[Q]=(b−a)2/12 is the mark variance; and the
jump-amplitude mean is

ν ≡E[ν(Q)]≡E[eQ−1]=(eb−ea)/(b−a)−1.

Finite jump-amplitudes and fat tail realism =⇒
• NYSE circuit breakers limit extreme jumps since 1988-9;
• In optimal portfolio problem, finite-support

distributions allow realistic borrowing and
short-selling [Hanson and Zhu (Sethi2006)].

• Uniformly distributed extreme tails.
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∗ 10.1.3 American Put Option Pricing:
{Note: American CALL option on non-dividend stock, it is not optimal
to exercise before maturity; so American call price is equal to
corresponding European call price, at least in the case of diffusions.}
• American Put Option Price:

P (A)(s, v, t; K, T )= supbτ
[
E(rn)

[
e−r0(bτ−t)max[K−S(τ̂ ), 0]∣∣S(t)=s, V (t)=v

]]
on the domain Ds,t ={(s, t) | [0, ∞)×[0, T ]} , where K is
the strike price, T is the maturity date, T (t, T ) are a set of
random stopping times τ̂ ∈ T (t, T ) (on the Snell envelope,

Karatzas (1988) and K & Shreve (1998)) satisfying t<τ̂ ≤T .

• Early Exercise Feature: The American option can be
exercised at any time τ̂ ∈ [0, T ], unlike the European
option.
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• Hence, there exists a Critical Curve s=S∗(t), a free
boundary, in the (s, t)-plane, separating the domain Ds,t

into two regions:

◦ Continuation Region C, where it is optimal to hold the
option, i.e., if s>S∗(t), then
P (A)(s, v, t; K, T )>max[K−s, 0]. Here, P (A) will have
the same description as the European price P (E).

◦ Exercise Region E , where it is optimal to exercise the
option, i.e., if s≤S∗(t), then
P (A)(s, v, t; K, T )=max[K−s, 0].

FINM 345/Stat 390 Stochastic Calculus — Lecture10–page6 — Floyd B. Hanson



• The American put option price satisfies a partial
integro-differential equation (PIDE) similar to that of
the European option price, recalling that S(t)=s and
V (t)=v , so let P

(A)
t (s, v, t; K, T )=P

(A)
t (s, v, t), then

0 =P
(A)
t (s, v, t)+A

[
P (A)

]
(s, v, t)

≡ P
(A)
t +(r0−λ0ν)sP (A)

s +κv(θv−v)P (A)
v −r0P (A)

+0.5
(
vs2P (A)

ss +2ρvσvvsP (A)
sv +σ2

vvP (A)
vv

)
+λ0

∫ ∞

−∞

(
P (A)(seq, v, t)−P (A)(s, v, t)

)
φQ(q)dq,

(10.3)

for (s, t)∈C and defining the backward operator A.
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• American put option pricing problem as free boundary
problem:

0=P
(A)
t (s, v, t)+A

[
P (A)

]
(s, v, t) (10.4)

for (s, t)∈C ≡ [S∗(t), ∞) × [0, T ];

0>P
(A)
t (s, v, t)+A

[
P (A)

]
(s, v, t) (10.5)

for (s, t)∈E ≡ [0, S∗(t)] × [0, T ]. where critical
stock price S∗(t) is not known a priori as a function of
time, called the free boundary.
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• Conditions in the Continuation Region C:
◦ European put terminal condition limit:

lim
t→T

P (A)(s, v, t; K, T )=max[K−s, 0],

◦ Zero stock price limit of option:

lim
s→0

P (A)(s, v, t; K, T )=K,

◦ Infinite stock price limit of option:

lim
s→∞

P (A)(s, v, t; K, T )=0,

◦ Critical option value limit:

lim
s→S∗(t)

P (A)(s, v, t; K, T )=K−S∗(t),

◦ Critical tangency/smooth contact limit in addition:

lim
s→S∗(t)

∂P (A)

∂s
(s, v, t; K, T )=−1.
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∗ 10.1.4 Heuristic Quadratic Approximation for
American Put Options:
• Heuristic Quadratic Approximation [MacMillan

(1986)] Key Insight: if the PIDE applies to American
options P (A) as well as European options P (E) in the
continuation region, it also applies to the American
option optimal exercise premium,
ε(P )(s, v, t; K, T )≡P (A)(s, v, t; K, T )−P (E)(s, v, t; K, T ),

where P (E) is given by Fourier inverse in [Yan and
Hanson (2006), also Lecture 9].

• Change in Time: Assuming
ε(P )(s, v, t; K, T )'G(t)Y (s, v, G(t))

and choosing G(t)=1−e−r0(T −t) as a new time variable
such that ε(P ) =0 when G=0 at t=T .
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• After dropping the term rg(1−g)Yg with G(t)=g since the
quadratic g(1−g)≤0.25 on [0,1], making G(t) a parameter
instead of variable, then the quadratic approximation of
the PIDE for Y (s, v, g) is

0= +(r0−λ0ν) sYs− r0

G(t)
Y +κv(θv−v)Yv

+0.5vs2Yss+ρvσvvsYsv+0.5σ2
vvYvv

+λ0

∫∞
−∞(Y (seq, v, G(t))−Y (s, v, G(t))) φQ(q)dq,

(10.6)

with quadratic approximation boundary conditions:

lim
s→∞

Y (s, v, G(t))=0,

lim
s→S∗

Y (s, v, G(t))=
(
K−S∗−P (E)(S∗, v, t)

)/
G,

lim
s→S∗

Ys(s, v, G(t))=
(
−1−P

(E)
s (S∗, v, t)

)/
G.

(10.7)
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• By constant-volatility jump-diffusion (CVJD) ad hoc
approach [Bates (1996)] reformulated, we assume that the
dependence on the volatility variable v is weak and
replace v by the constant time averaged
quasi-deterministic approximation of V (t) :

V ≡
1

T

∫ T

0

V (t)dt=θv+(V (0)−θv)
(
1−e−κvT

)/
(κvT ), (10.8)

assuming constant {κv, θv}. The PIDE (10.6) for
Y (s, v, g) becomes the linear constant coefficient OIDE
for Y (s, v, g)→ Ŷ (s), with argument suppressed
parameters G and V ,

0 = +(r0−λ0ν) sŶ ′(s)−
r

G
Ŷ (s)+0.5V s2Ŷ ′′(s)

+λ0

∫ ∞

−∞

(
Ŷ (seq)−Ŷ (s)

)
φQ(q)dq. (10.9)

FINM 345/Stat 390 Stochastic Calculus — Lecture10–page12 — Floyd B. Hanson



• Solution to the linear OIDE (10.9) has the power form:

Ŷ (s)=c1s
A1 +c2s

A2, (10.10)
where c1 =0 because positive root A1 is excluded by the
vanishing boundary condition in (10.7) on Y for large s.

• Substituting power form (10.10) and the uniform
distribution into (10.9) for Ŷ (s),

0=V A2
2/2+

(
r0 − λ0ν−V /2

)
A2−r0/G

+λ
((

ebA2 −eaA2
)
/((b− a)A2)− 1

)
,

(10.11)

which is a nearly-quadratic nonlinear equation for
values of interest.
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• The last two boundary conditions in (10.7) give the
equations satisfied by S∗(t) and c2. Then S∗ =S∗(t)

can be calculated by fixed point iteration method with the
expression:

S∗ =
A2

(
K − P (E)

(
S∗, V , t; K, T

))
A2−1−P

(E)
s

(
S∗, V , t; K, T

) (10.12)

and

c2 =
K−S∗−P (E)

(
S∗, V , t; K, T

)
G·(S∗)A2

.
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∗ 10.1.5 Linear Complementarity Problem (LCP) Finite
Differences for American Put Options:
• Free boundary problem is transferred to partial

integro-differential complementarity problem
(PIDCP) formulated as follows

P (A)(s, v, t; K, T )−F (s)≥0,

P
(A)
τ −AP (A) ≥0,(

P
(A)
τ −AP (A)

)(
P (A)−F

)
=0,

(10.13)

where F (s)≡max[K−s, 0] is the put payoff function
and τ ≡T −t is the time-to-go.
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• Crank-Nicolson second-order numerical scheme with
discrete state backward operator L'A,

P (A)(Si, Vj, T −τk; K, T )≡ U(Si, Vj, τk)'U
(k)
i,j ,

U (k) =
[
U

(k)
i,j

]
,

P
(A)
τ ' U (k+1) − U (k)

∆τ ,

AP (A) ' 0.5L
(
U (k+1) + U (k)

)
.

• Standard Linear Algebraic Definitions: Let
Û(k) =

[
Û

(k)
i

]
, the single subscripted version of 2D-array

U (k) =
[
U

(k)
i,j

]
, with corresponding variables F̂, L̂, M̂ and

b̂(k), so M̂ ≡ I − ∆τ
2

L̂ and b̂(k) ≡
(
I + ∆τ

2
L̂
)

Û(k).

FINM 345/Stat 390 Stochastic Calculus — Lecture10–page16 — Floyd B. Hanson



• Discretized LCP [Cottle et al. (1992); Wilmott et al.
(1995, 1998)]:

Û(k+1)−F̂≥0, M̂Û(k+1)−b̂(k) ≥0,(
Û(k+1)−F̂

)>(
M̂Û(k+1)−b̂(k)

)
=0,

(10.14)

• Projective Successive OverRelaxation (PSOR)
(PSOR≡Projected SOR algorithm, projected onto the
max function) with SOR acceleration parameter ω for
LCP (10.14) by iterating Ũ

(n+1)
i for Û

(k+1)
i until changes

are sufficiently small:

Ũ
(n+1)
i = max

F̂i, Ũ
(n)
i +ωM̂−1

i,i

b̂
(k)
i −

∑
j<i

M̂i,jŨ
(n+1)
j

−
∑
j≥i

M̂i,jŨ
(n)
j

,

where the sum splitting over iterates is from SOR.
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• Full Boundary Conditions for U(s, v, τ ):
U(0, v, τ )=F (0) for v≥0 and τ ∈ [0, T ],

U(s, v, τ )→0 as s→∞ for v≥0 and τ ∈ [0, T ],

U(s, 0, τ )=F (s) for s≥0 and τ ∈ [0, T ],

Uv(s, v, τ )=0 as v→∞ for s≥0 and τ ∈ [0, T ].

• Initial Condition for U(s, v, τ ):
U(s, v, 0)=F (s) for s≥0 and v≥0.
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• Discretization of the PIDCP: The first-order and
second-order spatial derivatives and the cross-derivative
term are all approximated with the standard
second-order accurate finite differences, using a
nine-point computational molecule.

• Linear interpolation is applied to the jump integral
term and quadratic extrapolation of the solution is used
for the critical stock price S∗(t) calculation, with
comparable accuracy.
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∗ 10.1.6 Computation and Comparison of Methods for
American Put Options:
• The Heuristic Quadratic Approximation and

LCP/PSOR approaches for American put option pricing
are implemented and compared. All computations are
done on a 2.40GHz Celeron(R) CPU. For the quadratic
approximation analytic formula, one American put option
price and critical stock price can be computed in about 7
seconds. The finite difference method can give a series of
option prices for different stock prices and maturity for a
specific strike price by one implementation. A single
implementation, with 51 × 101 × 51 grids and
acceleration parameter ω=1.35, takes 17 seconds.
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• The American put option prices for Parameters:
r0 =0.05, S0 =$100 ; the stochastic volatilitypart:
V =0.01, κv =10, θv =0.012, σv =0.1, ρv =−0.7;
and the uniform jump part: a=−0.10, b=0.20 and
λ0 =0.5.
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Figure 10.1: The heuristic quadratic approximation gives SVJD-
Uniform American P (A) =P

(A)
QA compared to European P (E) put option

prices for T =0.1 (' 5 weeks) and 0.25 years (3 months), with averaged
approximation of V (t).
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Figure 10.2: The heuristic quadratic approximation gives SVJD-
Uniform American P (A) = P

(A)
QA compared European P (E) put option

prices and critical stock prices for T =0.5 years, with averaged approx-
imation of V (t).
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Figure 10.3: PSOR finite difference implementation of LCP gives
SVJD-Uniform American put option prices U(S, V, τ )=P

(A)
LCP and crit-

ical stock prices S∗(τ ; V ) (using quadratic extrapolation approximations
for smooth contact to the payoff function).
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Figure 10.4: Comparison of American put option prices evaluated by
quadratic approximation (QA) and LCP finite difference (LCPFD)
methods when S = $100 and V = 0.01 (

√
V = 0.1). Maximum

price difference P
(A)
QA − P

(A)
LCP = {$0.08, $0.14, $0.21} for T =

{0.1, 0.25, 0.5} years, respectively, so QA is probably good for prac-
tical purposes.
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∗ 10.1.7 Checking Quadratic Approximation
with Market Data:
• Choose same time XEO (European options) and OEX

(American options) quotes on April 10, 2006 from
CBOE. They are based on same underlying S&P 100
Index.

• Use XEO put option quotes to estimate parameter values
of the European put option pricing for the quadratic
approximation.

• Calculate American put option prices by quadratic
approximation formula with estimated parameter values
and compare the results with OEX quotes. Mean square
error, MSE=0.137, is obtained, showing good fit.
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Table 1: SVJD-Uniform Parameters Estimated from XEO quotes on
April 10, 2006

Parameter Values

κv 10.62

θv 0.0136

σv 0.175

ρ -0.547

a -0.140

b 0.011

λ 0.549

V 0.0083

MSE 0.195
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Figure 10.5: American put option price differences between quadratic
approximation (QA) and OEX (put) quotes, when S = $100 and
V = 0.01 (

√
V = 0.1). Maximum absolute price difference:

P
(A)
QA − P

(A)
OEX = {$0.41, $0.46, $0.73, $1.15, $0.68} for T =

{11, 39, 67, 102, 168} days, respectively.
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Figure 10.6: Critical stock prices S∗ using QA versus K with OEX
quote data, when S = $100 and V = 0.01 (

√
V = 0.1) for T =

{11, 39, 67, 102, 168} days.
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∗ 10.1.8 Conclusions for American Put Options:
• An alternative stochastic-volatility jump-diffusion

(SVJD) stock model is proposed with square root mean
reverting for stochastic-volatility combined with
log-uniform jump amplitudes.

• The heuristic quadratic approximation (QA) and the
accurate LCP finite difference scheme for American put
option pricing are compared, with QA being good and
fast for practical purposes.

• The QA results are also checked against real market
American option pricing data OEX (with XEO for
Euro. price base), yielding reasonable results considering
the simpicity of QA.
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• 10.2. SVJD Optimal Portfolio
and Consumption Problem

∗ 10.2.0. SVJD Optimal Portfolio and Consumption
Problem Outline:
1. Introduction.

2. Optimal Portfolio Problem and Underlying SVJD Model.

3. Portfolio Stochastic Dynamic Programming.

4. CRRA Canonical Solution to Optimal Portfolio Problem.

5. Computational Results.

6. Conclusions.
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∗ 10.2.1. Introduction to SVJD Extension of Merton
Portfolio Optimization Problem:
{Note: Some of the beginning of this part repeats somethings
of the 10.1, first part of L10, but that is for completeness.}
• Merton pioneered the optimal portfolio and

consumption problem for geometric diffusions used
HARA (hyperbolic absolute risk-aversion) utility in his
lifetime portfolio [Merton, RES (1969)] and general
portfolio [Merton, JET (1971)] papers. However, there
were some errors, in particular with bankruptcy boundary
conditions and vanishing consumption.

• The optimal portfolio errors are throughly discussed in
the collection of papers of Sethi’s bankruptcy book
(1997). See Sethi’s introduction, [Karatzas et al., MOR
(1986)] and [Sethi & Taksar, JET (1988)].
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∗ 10.2.2. Underlying Stochastic-Volatility, Jump-Diffusion
(SVJD) Return Model: [Hanson (BFS2008)]

◦ Stock Price Linear Stochastic Differential Equation
(SDE):

dS(t)= S(t)(µs(t)dt+
√

V (t)dGs(t))

+dCPs(t, S(t)ν(Q)),
(10.15)

where the compound Poisson jump process is

CPs(t, S(t)ν(Q))=
P (t)∑
j=1

S(T −
j )νs(Qj),

and
• S(t)=stock price, S(0)=S0 > 0;

• µs(t)=expected rate of return in absence of asset jumps;

• V (t) = stochastic variance = (stochastic volatility)2 =“σ2
s(t)′′;
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• Gs(t) = stock price diffusion process, normally distributed such

that E[dGs(t)] = 0 and Var[dGs(t)] = dt, replacing dWs(t)

since wealth process W (t) has priorty for symbol W ;

• Ps(t) = Poisson jump counting process, Poisson distributed such

that E[dPs(t)]=λs(t)dt=Var[dPs(t)];

• νs(v, t, q) = Poisson jump-amplitude with underlying random

mark variable q = Q, selected for log-return so that

Q = ln(1 + νs(v, t, Q)), such that νs(v, t, q) > −1;

• T −
k is the pre-jump time and Qk is an independent and identically

distributed (IID) mark realization at the kth jump;

• Processes dGs(t) and Ps(t) = Ps(t; Q) along with Qk are

independent, except that Qk is conditioned on a jump-event at Tk.
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◦ Stochastic-Volatility (Square-Root Diffusion) Model:
[CIR, Econometrica (1985); Heston, RFS (1993); FPS, book (2000)]

dV (t)=κv(t) (θv(t)−V (t)) dt+σv(t)
√

V (t)dGv(t), (10.16)
with
• V (t)≥min(V (t))>0+, V (0)=V0 ≥min(V (t))>0+;
• Log-rate κv(t)>0; reversion-level θv(t)>0; volatility of

volatility (variance) σv(t)>0;
• Gv(t)=variance diffusion process, normally distributed such that

E[dGv(t)]=0 and Var[dGv(t)]=dt, with correlation
Corr[dGs(t), dGv(t)]=ρ(t)dt;

• Note: SDE (10.16) is singular for transformations as V (t) → 0+

due to the square root, unlike SDE (10.1) for S(t) where the

singularity is removable through the log transformation, but

Itô-Taylor chain rule or simulation applications might not be valid

unless ∆t �
√

min(V (t)) � 1.

FINM 345/Stat 390 Stochastic Calculus — Lecture10–page35 — Floyd B. Hanson



◦ Double-Uniform Jump-Amplitude Q Mark Distribution:
[Zhu and Hanson, book chapter preprint (Sethi2006)]

ΦQ(q; v, t) = p1(v, t)q − a(v, t)
|a|(v, t) I{a(v,t)≤q<0}

+
(
p1(v, t)+p2(v, t) q

b(v, t)

)
I{0≤q<b(v,t)}

+I{b(v,t),≤q<∞}, q ∈ [a(v, t), b(v, t)],

where a(v, t)<0<b(v, t), p1(v, t)+p2(v, t)=1,

• Mark Mean:

µj(v, t)≡EQ[Q]=(p1(v, t)a(v, t)+p2(v, t)b(v, t))/2;

• Mark Variance: σ2
j (v, t)≡VarQ[Q]=

(p1(v, t)a2(v, t)+p2(v, t)b2(v, t))/3−µ2
j (v, t);

• More motivation: Double-uniform distribution unlinks
the different extreme behaviors in crashes and rallies.
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◦ Wealth Portfolio with Bond, Stock and Consumption:
• Portfolio: Riskless asset or bond at price B(t) and Risky asset or

stock at price S(t) (10.15), with instantaneous portfolio change

fractions Ub(t) and Us(t), respectively, such that

Ub(t)=1−Us(t).
• Exponential Bond Price Process:

dB(t)=r(t)B(t)dt, B(0)=B0.

• SVJD Portfolio Wealth Process W (t), Less Consumption C(t)
with Self-Financing {dW/W =(1−Us)dB/B+UsdS/S−Cdt/W }:

dW (t)=W (t)
(
r(t)dt+Us(t)

(
(µs(t)−r(t))dt

+
√

V (t)dGs(t)
))

+dCPs(t, W (t)Us(t)ν(Q))−C(t)dt,
(10.17)

subject to constraints W (0)=W0 >0, W (t)>0, v=V (t)>0,

0< C(t)≤C
(max)
0 (v, t)W (t) and

U
(min)
0 (v, t)≤Us(t)≤U

(max)
0 (v, t), while allowing extra

shortselling (Us(t)<0) and extra borrowing (Ub(t)<0).
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∗ 10.2.3. SVJD Portfolio Optimal Objective — The Maximal,
Expected Utilities of Final Wealth and Running Consumption:

e−β(t)J∗(w, v, t)= max
{u,c}

[
E
[
e−β(tf )Uw(W (tf))

+
∫ tf

t

e−β(τ)Uc(C(τ ))dτ∣∣∣∣W (t)=w, V (t)=v, Us(t)=u, C(t)=c

]]
.

(10.18)

where
• Cumulative Discount back to t= 0: β(t)=

∫ t

0
β(τ )dτ , where

β(t) is the instantaneous discount rate. The tf = T is the final
time.

• Consumption and Final Wealth Utility Functions: Uc(c) and

Uw(w) are bounded, strictly increasing and concave.
• Variable Classes: State variables are w and v, while control

variables are u and c.
• Final Condition: J∗(w, v, tf) = Uw(w).
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◦ Absorbing Natural Boundary Condition:
Approaching bankruptcy as w → 0+, then, by the consumption
constraint, as c → 0+ and by the objective (10.18),

e−β(t)J∗(0+, v, t
)
=Uw

(
0+
)
e−β(tf )+Uc

(
0+
)∫ tf

t

e−β(s)ds. (10.19)

• This is the simple variant what Merton gave as a
correction in his 1990 book for his 1971 optimal portfolio
paper.

• However, [Karatzas, Lehoczky, Sethi and Shreve
(KLASS) (1986) and [Sethi and Taksar (1988)] pointed
out that it was necessary to enforce the non-negativity of
wealth and consumption.
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◦ Derivation of Stochastic Dynamic Programming PIDE by
Stochastic Calculus:
Assume that the optimization and expectation of state and
control stochastic processes can be decomposed into
independent increments over nonoverlapping time intervals
by Bellman’s Principle of Optimality [Hanson (2007), Ch. 6 &
Ex. 6.3] , so that

e−β(t)J∗(w, v, t)= max
{U,C}(t,t+∆t]

[
E{G,CPQ}(t,t+∆t]

[
∫ t+∆t

t

e−β(τ)Uc(C(τ ))dτ

+e−(β+∆β)(t)

· J∗((W +∆W )(t), (V +∆V )(t), t+∆t)∣∣∣∣∣W (t)=w, V (t)=v, U(t)=u, C(t)=c

]]
.

(10.20)

Next, the limit is taken using the stochastic calculus.
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As ∆t→0+ , we simplify the state S∆E notation as
∆W

∆t= µw∆t+σw∆Gs+νw∆Ps, νw =uw(exp(Q)−1) and
∆V

∆t= µv∆t+σ̂v∆Gv , while using J∗ =J∗(w, v, t) and
conditional values, so

e−β(t)J∗(w, v, t)∆t=max
{u,c}

[
e−β(t)

(
Uc(c)∆t+J∗+∆t

(
−β(t)J∗

+J∗
t +J∗

wµw+J∗
v µv

+0.5J∗
wwσ2

w+ρwσwσ̂vJ∗
wv+0.5J∗

vvσ̂2
v

+λs

∫
Q dqφQ(q)

·(J∗(w+u(eq−1)w, v, t)−J∗(w, v, t))
))]

.

(10.21)

Cancellation of e−β(t)J∗(w, v, t) on both sides and ∆t, yields
0=max

{u,c}

[
Uc(c)−β(t)J∗+J∗

t +J∗
wµw+J∗

v µv

+0.5J∗
wwσ2

w+ρwσwσ̂vJ∗
wv+0.5J∗

vvσ̂2
v

+λs(t)
∫

Q dqφQ(q)(J∗(w+u(eq−1)w, v, t)−J∗(w, v, t))
]
.

(10.22)

Next, we subtitute for temporary coefficients and take the maximum (∗).
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∗ 10.2.4. SVJD Portfolio Stochastic Dynamic
Programming PIDE for Double-Uniform Qs:
0=J∗

t (w, v, t)−β(t)J∗(w, v, t) + Uc(c∗)−c∗J∗
w(w, v, t)

+ (r(t)+(µs(t)−r(t))u∗) wJ∗
w(w, v, t)

+κv(t)(θv(t)−v)J∗
v (w, v, t)+ 1

2
v(u∗)2w2J∗

ww(w, v, t)

+1
2
σ2

v(t)vJ∗
vv(w, v, t)+ρv(t)σv(t)vu∗wJ∗

wv(w, v, t)

+λs(t)
(

p1(v,t)
|a|(v,t)

∫ 0

a(v,t)
+p2(v,t)

b(v,t)

∫ b(v,t)

0

)
·
(
J∗((1+(eq − 1)u∗)w, v, t)−J∗(w, v, t)

)
dq,

(10.23)

where u∗ =u∗(w, v, t)∈
[
U

(min)
0 (v, t), U

(max)
0 (v, t)

]
and

c∗ =c∗(w, v, t)∈
[
0, C

(max)
0 (v, t)w

]
are the optimal controls, if

they exist, while J∗
w(w, v, t) and J∗

ww(w, v, t) are the
continuous partial derivatives with respect to wealth w. Note
that (1+(eq − 1)u∗(w, v, t))w is a post-jump wealth argument.
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∗ 10.2.5. Positivity of Wealth with Jump Distribution:
Since (1+(eq − 1)u∗(w, v, t))w is a wealth argument in
(10.23), it must satisfy the wealth positivity condition, so

K(u, q) ≡ 1 + (eq − 1)u > 0
on [a(v, t), b(v, t)] of the jump-amplitude density φQ(q; v, t).
Lemma 10.1 Bounds on Optimal Stock Fraction due to
Positivity of Wealth Jump Argument:
(a) If the support of φQ(q; v, t) is the finite interval
q ∈ [a(v, t), b(v, t)] with a(v, t) < 0 < b(v, t), then
u∗(w, v, t) is restricted by (10.23) to

−1

νs(v, t, b(v, t))
< u∗(w, v, t) <

−1

νs(v, t, a(v, t))
, (10.24)

where νs(v, t, q)=exp(q) − 1.

(b) If the support of φQ(q; v, t) is fully infinite, i.e.,
(−∞, +∞), then u∗(w, v, t) is restricted by (10.23) to

0 < u∗(w, v, t) < 1. (10.25)
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◦ Remarks: Non-Negativity of Wealth and Jump Distribution:
• Recall that uis the stock fraction, so that short-selling and borrowing

will be overly restricted in the infinite support case (10.25) where

a(v, t)→−∞ and b(v, t)→+∞, unlike the finite case (10.24),

where −∞<a(v, t)<0<b(v, t)<+∞.
• So, unlike option pricing, finite support of the mark density makes a

big difference in the optimal portfolio and consumption problem!

• Thus, it would not be practical to use either normally or

double-exponentially distributed marks in the optimal portfolio and

consumption problem with a bankruptcy condition.
• If [amin, bmax]=[mint(a(v, t)), maxt(b(v, t))], then the

overall u∗ range for the S&P500 data used is

[umin, umax]=[−18, +12]⊂
( −1

(ebmax −1)
,

+1

(1−eamin)

)
.

• Extreme tail ordering:
exp(−x2)�|x|Nexp(−|x|)�|x|−N �1, |x|�1, N >0.
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∗ 10.2.6. Unconstrained Optimal or Regular Control
Policies:
In absence of control constraints and in presence of sufficient
differentiability, the dual policy, implicit critical conditions
are

• Regular Consumption c(reg)(w, v, t) {Implicitly}:
U ′

c(c
(reg)(w, v, t)) = J∗

w(w, v, t). (10.26)

• Regular Portfolio Fraction u(reg)(w, v, t) {Implicitly}:
vw2J∗

ww(w, v, t)u(reg)(w, v, t)=−(µs(t)−r(t))wJ∗
w(w, v, t)

−ρσv(t)vwJ∗
wv(w, v, t)

−λ(t)w

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
·(eq−1)J∗

w

(
t, K

(
u(reg)(w, v, t), q

)
w
)
dq.

(10.27)
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∗ 10.2.6. CRRA Utilities Canonical Solution to Optimal
Portfolio Problem:
• Constant Relative Risk-Aversion (CRRA⊂HARA) Power

Utilities:

Uc(x)=U(x)=Uw(x)=

xγ/γ, γ 6= 0

ln(x), γ =0

, x≥0, γ <1. (10.28)

• ⇐= Relative Risk-Aversion (RRA):
RRA(x) ≡−U ′′(x)/(U ′(x)/x)=(1−γ)>0, γ <1,

i.e., negative of ratio of marginal to average change in
marginal utilility (U ′(x)>0 & U ′′(x)<0) is a constant.

• CRRA Canonical Separation of Variables:
J∗(w, v, t)=U(w)J0(v, t), J0(v, tf)=1, (10.29)

i.e., if valid, then wealth state dependence is known and
only the time-variance dependent factor J0(v, t) need be
determined.
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∗ 10.2.6. Canonical Simplifications with CRRA Utilities:
• Regular Consumption Control is Linear in Wealth:

c(reg)(w, v, t)=w · c
(reg)
0 (v, t)≡w/J

1/(1−γ)
0 (v, t), (10.30)

where c
(reg)
0 (v, t) is a wealth fraction, with optimal

consumption,
c∗
0(v, t)=max

[
min

[
c
(reg)
0 (v, t), C

(max)
0 (v, t)

]
, 0
]

per w.
• Regular Fraction Control is Independent of Wealth:

u(reg)(w, v, t)≡ u
(reg)
0 (v, t)= 1

(1−γ)v

(
µs(t)−r(t)

+ρσv(t)vJ0,v(v,t)

J0(v,t)
+λs(t)I1

(
u

(reg)
0 (v, t), v, t

))
,
(10.31)

where v > 0, in fixed point form, where
u∗ =u∗

0(v, t)=max
[
min

[
u

(reg)
0 (v, t), U

(max)
0

]
, U

(max)
0

]
,

and
I1(u, v, t)≡

 
p1(v, t)

|a|(v, t)

Z 0

a(v,t)

+
p2(v, t)

b(v, t)

Z b(v,t)

0

!
(eq −1)Kγ−1(u, q)dq.
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∗ 10.2.7. CRRA Time-Variance Dependent Component in
Formal “Bernoulli” PDE (γ 6= 0; γ < 1):

0= J0,t(v, t)+(1 − γ)

„
g1J0+g2J

γ
γ−1

0

«
(v, t)

+g3(v, t)J0,v(v, t)+ 1
2
σ2

v(t)vJ0,vv(v, t),

(10.32)

where
• Bernoulli Coefficients g1(v, t), g2(v, t), and g3(v, t):

g1(v, t)=g1(v, t; u∗
0(v, t)),

g2(v, t)=g2

“
v, t; c∗

0(v, t), c
(reg)
0 (v, t)

”
, and g3(v, t)=

g3(v, t; u∗
0(v, t)), introduce implicit nonlinear dependence

on u∗
0(v, t), c∗

0(v, t) and c
(reg)
0 (v, t), so iterations are required.

• Formal (Implicit) Solution using Bernoulli
transformation, J0(v, t) = y1−γ(v, t) , improving interations:

0=yt(v, t)+g1(v, t)y(v, t)+g4(v, t), y(v, tf)=1,

J0(v, t)=
[
eg1(v, t, tf)+

∫ tf

t

g4(v, τ )eg1(v, t, τ )dτ

]1−γ

.(10.33)
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Here,

g1(v, t) ≡ 1

1 − γ
(−β(t) + γ (r(t) + (µs(t) − r(t))u∗

0(v, t))

−1

2
(1 − γ)v(u∗

0)
2(v, t)+λs(t) (I2(u

∗
0(v, t), v, t) − 1)

«
,

g1(v, t, τ) ≡
Z τ

t

g1(v, s)ds.

I2(u, v, t) ≡
 

p1(v, t)

|a|(v, t)

Z 0

a(v,t)

+
p2(v, t)

b(v, t)

Z b(v,t)

0

!
Kγ(u, q)dq,

g2(v, t) ≡ 1

1 − γ

0@ c∗
0(v, t)

c
(reg)
0 (v, t)

!γ

− γ

 
c∗
0(v, t)

c
(reg)
0 (v, t)

!1A ,

g3(v, t)=+κv(t)(θv(t)−v)+γρσv(t)vu∗
0(v, t),

g4(v, t)=g2(v, t)+g3(v, t)yv(v, t)+
1

2
σ2

v(t)v
`
yvv − γ((yv)2/y)

´
(v, t).
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∗ 10.2.8. CRRA Time-Variance Dependent Component in Formal
“Bernoulli” PDE (γ =0; Kelly Criterion):

Famous Users: Ed Thorp, Warren Buffet, George Soros.

In this medium risk-averse case of the logarithmic CRRA utility, the
formal, implicit canonical solution has two terms,

J∗(w, v, t)=ln(w)J0(v, t)+J1(v, t), (10.34)

with final boundary conditions J0(v, t)=1 and J1(v, t)=0.

The regular controls satisfy,

c(reg)(w, v, t)=wc
(reg)
0 (v, t)≡w/J0(v, t),

u(reg)(w, v, t)=u
(reg)
0 (v, t)

≡ 1
v

(
µs(t)−r(t)+ρσv(t)(J0,v/J0)(v, t)

+λs(t)I1

(
u

(reg)
0 (v, t), v, t

))
, v > 0.
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∗ 10.2.9. Computational Considerations and Results:
◦ Computational Considerations:

• The primary problem is having stable computations and much smaller
time-steps ∆t are needed compared to variance-steps ∆V , since the
computations are drift-dominated over the diffusion coefficient, in
that the mesh coefficient associated with J0,v can be hundreds times
larger than that associated with J0,vv for the variance-diffusion.

• Drift-upwinding is needed so the finite differences for the
drift-partial derivatives follow the sign of the drift-coefficient, while
central differences are sufficient for the diffusion partials.

• Iteration calculations in time, controls and volatility are sensitive to
small and negative deviations, as well as the form of the iteration in
terms of the formal implicitly-defined solutions.
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◦ Results for Regular u(reg)(vp, t) and Optimal u∗(vp, t) Portfolio

Fraction Policies, σp =√
vp =16%:
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(a) Regular fraction policy u(reg)(vp, t).
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Umax
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Umin

(b) Optimal fraction policy, u∗(vp, t) .

Figure 10.7: Regular and optimal portfolio stock fraction policies, u(reg)(vp, t)

and u∗(vp, t) on t ∈ [1999.0, 2001.0], while u∗(vp, t) ∈ [−18, 12].
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◦ Results for Optimal Value J∗(w, vp, t) and Optimal Consumption
c∗(w, vp, t), Portfolio Fraction Policies,σp =√

vp =16% :

(a) Optimal portfolio value J∗(w, vp, t). (b) Optimal consumption policy c∗(w, vp, t) .

Figure 10.8: Optimal portfolio value J∗(w, vp, t) and optimal consump-
tion policy c∗(w, vp, t) for (w, vp, t) ∈ [0, 110]× [1999.0, 2001.0],
while c∗(w, vp, t) ∈ [0, 0.75 · w] is enforced near t = 2001.
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◦ Results for Optimal Value J∗(wp, v, t) and
Optimal Consumption c∗(wp, v, t), wp =55:

(a) Optimal portfolio value J∗(wp, v, t). (b) Optimal consumption c∗(wp, v, t) .

Figure 10.9: Optimal portfolio value J∗(wp, v, t) and optimal con-
sumption c∗(wp, v, t) at wp = 55 for (v, t) ∈ ×[vmin, 1.0] ×
[1999.0, 2001.0], while c∗(wp, v, t) ∈ [0, 0.75 · wp] is enforced near
t = 2001.
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◦ Results for Optimal Portfolio Fraction u∗(v, t):

Figure 10.10: Optimal portfolio fraction policy u∗(v, t) for (v, t) ∈
×[vmin, 1.0] × [1999.0, 2001.0], while u∗(v, t) ∈ [−18, 12] is en-
forced near small variance v=vmin > 0.
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∗ 10.2.10. Conclusions for SVJD Optimal Portfolio and
Consumption Problem :
• Generalized the optimal portfolio and consumption problem for

jump-diffusions to include stochastic volatility/variance .
• Confirmed significant effects on variation of instantaneous stock

fraction policies due to time-dependence of interest and discount
rates for SVJD optimal portfolio and consumption models.

• Showed jump-amplitude distributions with compact support are
much less restricted on short-selling and borrowing compared to the
infinite support case in the SVJD optimal portfolio and consumption
problem.

• Noted that the CRRA reduced canonical optimal portfolio problem is
strongly drift-dominated for sample market parameter values over
the diffusion terms, so at least first order drift-upwinding is essential
for stable Bernoulli PDE computations.
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Summary of Lecture 10?

1.

2.

3.

4.

5.
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