- Solve:
0.543E-3*X(1) + 3.21*X(2) = 3.87
4.32 *X(1) + 2.31*X(2) = 4.92
using only forward Gaussian elimination with back substitution to 3 significant
digits. Record multipliers. Use no partial pivoting nor use scaling.
(Final ans.: X =(33.1,1.20)T).
- Solve:
0.543*X(1) + 3.21e3*X(2) = 3.87e3
4.32 *X(1) + 2.31 *X(2) = 4.92
using only forward Gaussian elimination With "virtual" partial pivoting and
back substitution to 3 significant digits. Record multipliers and pivot
vectors for each elimination step; but use no scaling.
(Final ans.: X=(0.497, 1.20)T).
- Solve:
0.995*X(1) + 1.54 *X(2) + 4.51*X(3) = 43.1
0.995*X(1) + 2.16 *X(2) + 1.19*X(3) = 31.6
0.298*X(1) + 0.577*X(2) + 1.42*X(3) = 16.2
using forward Gaussian elimination with "virtual" partial pivoting, "virtual"
scaling and back substitution chopping to 3 significant digits. Show
multipliers, scale vectors and pivot vectors for each step. Record the final
answer and that only rounded to 2 significant digits.
(Final ans.: X =(4c) (-29.1,23.7,7.89) =(2r) (-29.,+24.,+7.9)T ).
- Solve:
8.955*X(1) + 9.230*X(2) + 13.53*X(3) = 63.4
4.479*X(1) + 5.770*X(2) + 7.058*X(3) = 79.6
8.955*X(1) + 12.31*X(2) + 3.530*X(3) = 95.5
using forward Gaussian elimination, "virtual" scaling, "virtual" partial
pivoting and back substitution to 4 significant digits. Record augmented
matrices with scale and pivot vectors at each elimination step. Round your
final solution to 3 significant digits.
(Ans.: [A|B|P|S]=
8.955 9.230 13.53 63.40 1 13.53
4.479 5.770 7.058 79.60 2 7.058
8.955 12.31 3.530 95.50 3 12.31
=(4c)
(+1.000)m -3.080 10.00 -32.10 3 10.00
(+.5001)m -.3862 5.292 31.84 2 5.292
8.955 12.31 3.530 95.50 1 -----
=(4c)
----- -3.080 10.00 -32.10 3 -----
----- (+.1253)m 4.039 35.86 1 ----- ,
8.955 12.31 3.530 95.50 2 -----
X(3) =(4c) 35.86/4.039 =(4c) 8.878 =(3r) 8.88
X(2) =(4c) (-31.2-10.*8.878)/(-3.08) =(4c) 39.24 =(3r) 39.2
X(1) =(4c) (95.5-3.53*8.878-12.31*39.24)/8.955 =(4c) -46.77 =(3r) -46.8
- Solve A*X=B and simultaneously find the inverse A^(-1) for
6.245e-5*X(1)+3.872*X(2)=3.741
2.236 *X(1)+5.292*X(2)=5.099
using forward Gaussian elimination with back substitution only. (Note: use no
pivoting or scaling.) Compute the condition number of A in the 1-norm.
(partial ans.: X=(4c) [10.37 .9960]^T;
A^(-1)=(4c)
3.996 0.4473;
0.2582 -7.215e-6
||A^(-1)||1 =(4c) 4.254; Cond(A)1=(4c) 38.98
- Using Newton's method and forward Gaussian elimination, approximate the
vector zero of
f1(X,Y) = 4*X^2+Y^2-4
f2(X,Y) = exp(Y)-X-2 ,
by starting at [X,Y]^(1) = [1., 1.] and finding the next iterate as well as
its vector-f and its Jacobian (matrix of gradients).
(partial ans.:
(X,Y)=(4c) (.8619,1.052); (f1,f2)=(4c) (.07819,.001472);
jacobian(f)=(6.895,2.104,-1.,2.863) by cols.;
(alternate ans.:
(X,Y)=(4c) (.8618,1.052); (f1,f2)=(4c)(-.07750,.001572);
jacobian(f)=(6.894,2.104,-1.,2.863) by columns.
- (masters-exam/a/w83).
Approximate the solution of the following linear algebraic
system using forward Gaussian elimination, partial pivoting with "virtual"
scaling (i.e., not actual scaling) and back substitution. At each elimination
step record the augmented matrix (A/B), pivot vector, scale vector and
multipliers chopped to 4 significant digits and continue calculations with
these recorded results. Calculate the absolute value norm of the residuals
relative to the approximate solution in the same norm.
8.955*X(1) + 9.230*X(2) + 13.53*X(3) = 63.40
4.479*X(1) + 5.770*X(2) + 7.058*X(3) = 79.60
8.955*X(1) + 12.31*X(2) + 3.530*X(3) = 92.87
(partial ans.: X =(4c) (-47.08,39.18, 9.121);
norm of rel. residuals = ||r||/||a||/||b|| =(4c) .9997e-3 ,
or = ||r||/||b|| =(4c) 0.4043e-3 .
- (masters-exam/a/s82).
Approximate the solution of the following linear algebraic
system using forward Gaussian elimination along with "virtual" scaling,
partial pivoting and back substitution. At each elimination step record the
augmented matrix [A|B], scale vector, pivot vector and multipliers chopped to
4 significant digits and continue calculations with these chopped results and
the number of multiplications or divisions and the number of additions or
subtractions used.
4.477*X(1) + 1.538*X(2) + 13.53*X(3) = 31.72
8.958*X(1) + 3.846*X(2) + 28.23*X(3) = 159.2
8.955*X(1) + 4.103*X(2) + 7.063*X(3) = 95.49
(Answer: [A|B|P|S] =
4.477 1.538 13.53 31.72 1 13.53
8.958 3.846 28.23 159.2 2 28.23
8.955 4.103 7.063 95.49 3 8.955
=(4c)
(0.4999)m -0.5130 9.999 -16.01 3 9.999
(1.000)m -0.2570 21.16 63.71 2 21.16
8.955 4.103 7.063 95.49 1 -----
=(4c)
----- -0.5130 9.999 -16.01 3 ----- ;
----- (0.5009)m 16.15 71.72 1 ----- ;
8.955 4.103 7.063 95.49 2 ----- ;
X(3) =(4c) 4.440 =(3r) 4.44
X(2) =(4c) 117.7 =(3r) 118.
X(1) =(4c) -46.76 =(3r) -46.8
sum-mults. = 19 (or 22, depending on what is counted); sum-adds = 11
Web Source: http://www.math.uic.edu/~hanson/mcs471pp2.html
Click Here For Class HomePage