Optimal control of drug delivery to brain tumors
for a distributed parameters model
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Abstract— The growth and treatment of brain tumors core mass of the tumor has been surgically removed. One
is mathematically examined using a distributed parameters \ay to deliver the drug is to use the drug conjugated with a
model. The model is a system of three coupled reaction 4 toxicpolymer like the BCNU and place it in the brain
diffusion equations involving the tumor cells, normal tissie . ..
and the drug concentration. An optimal control problem is cavity for. controlied release. A more t.raqmonal way would
designed, with the drug delivery rate as the control and be to deliver the drug by an optimal distribution of the drug
solved to obtain the state and co-state equations as well as about the original tumor site. Wang and others [12], [13]

the regular control using a modified double shot foward- have studied the drug delivery method to tumors in three
backward method. This gives rise to a coupled system of dimension for drugs like 1gG and BCNU
equations with a forward state equation and a backward co- ’

state equation, which is solved using a double shot method. ~ The paper will mostly focus on the control for the optimal
A numerical procedure using the Crank-Nicolson implicit  distribution of the drug about the original tumor site. Befo
method is presented for solving the coupled system of these that we need to look at the mechanisms behind the growth
two partial differential equations. of tumor cells as well as normal tissues and the drug
|. INTRODUCTION concentration in the tumor. Unlike a lot of other tumors,

The growth and control of brain tumors have been th@liomas can be highly diffusive [10]. Gatenby et al. [2]
subject of medical and scientific scrutiny for a very long2nd Mansuri [8], both study the mechanism of reaction
time. Simply speaking a tumor, like most cancerous celldiffusion in the growth of tumors. They also take into
originate from a cell, that proliferates and effects itsghei account the effects of competition fqr resources between
boring normal tissues. As the tumor cells become malignaft€ cancerous cells and the healthy tissues. Westman et al.
they become more dangerous for the host. Understandibf] 100k at the various types of tumor growth, namely
the mechanism of tumor progression is necessary for ifPonential, logistic and Gompertz. Murray’s book [9] is an
diagnosis and treatment. As mentioned earlier, brain tsmogXcellent reference for the study of different types of giow
have been studied for centuries, dating back to as ea,q?.echanlsms. Also, Woodward et al. [15] study a model of
as 2500 BC [10]. The most common and deadly form o§lioma growth and thg effects of_ surglgal resection. In this
brain tumor are the gliomas, which account for more thaRaPer we set up a fairly generalized distributed parameters
half of the brain tumor cases. Gliomas are highly invasivE'0del, define an objective functional and use a modified
and severely infiltrate the surrounding tissues [11]. De-@grange multiplier method3] for the control problem.
spite improved diagnostic procedures such as computerizEfally a double shat forward and backward, numerical
tomography (CT) scan and magnetic resonance imagirq@ethod is given to solve for the state, co-state apd regular
(MRYI), the benefits of such modern accessories have be€fntrol. To solve for the®PDEswe use a Crank-Nicolson
restricted by the treatment options available. One majdiedictor-corrector method developed by Hanson et al. [5]
problem of administering the drugs to the brain tumor sit@nd Hanson [6], for stochastic dynamic programming.
is the blood brain barrier (BBB)[1], which exists in the
human brain as a protection for the brain cells and as
a restriction on the transport of water soluble substances Il. MATHEMATICAL MODEL
between the blood and the central nervous system. Another

roblem that arises is the resection of tumor cell, after the .
P ’ Let Y1 = ni(x,t) be the density of tumor cell§> =

Work supported in part by the National Science Foundatioan@r n2(x,t) be the density of normal tissue and = c(x, t)
DMS-99-73231 and DMS-02-07081. The first author was alspostedl  pe the drug concentration at any vector positioand time
by the Provost’'s award for Graduate Researewarded by the Graduate Thi . | del i fth led
College at the University of lllinois at Chicago. To be sutied to t. Is spatiotemporal model Is a system of three couple
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A. Tumor Cells D. Global State Vector

It is assumed that the density of tumor cells, = Let the global state vector be
n1(x,t), satisfy a reaction-diffusion equation subject to

" . t)
competition with the normal cells;, = ny(x, t), (X,
Y(Xv t) = [}/i(xv t)]3 1= n?(xa t) ) (4)
ony 2 - c(x,t)
2 ~P1Ve [n1]4+a1fi(n1) — (1 2n2+bi(c)) n1, (1)

S at positionx in theinterior € of the state domain and time
where the tumor diffusivity isD;. Let the terma; fi1(n1) 4 gn [0,t/].

be the growth rate of the tumor cells, whefe could be

exponential, logistic or Gompertz growth , E. Initial and Boundary Conditions
n1 k1 Let the initial conditions for the state be
fl(nl) =ni, M (1 — k_) or niln (—)
! "1 n1(x,0) n1o(x)
respectively, where, is the intrinsic tumor cell growthrate Y (x,0) = |na(x,0)| = |n20(x) | = Yo(x), (5)
andk; is the tumor cell carrying capacity. Let; » denote c(x,0) co(x)

the death rate of the tumor cells due to competition fOfor x in Q. Murray [10] recommends using Gaussian
resources with the normal tissue. Lit(c) be t.he death distribution for the initial distributions of tumors. Theo
rate of tumor cells due to drug treatment, which could bﬂux boundary conditions are

a function of the localized drug concentraticfx, t) at the
tumor site, e.g., purely linear function, _Dl(ﬁ'vm)[nl]

bi(e(x,t))=kr13-c(x,1)

respectively. ) )
assumingD; # 0 or else theD; would not be used in the
B. Normal Tissue condition, forx € I" = 01, i.e., on the boundary of the

Similar assumptions are made for the density of norm&omain, and fot < [0, ¢;], whereN(x, ¢) is the normal to
cells n, = na(x,t) with similar coefficients. Thus, the the boundary—D; V. [Y;] is the flux of theith component

reaction-diffusion equation for normal tissue evolutien j and the diffusion matrix,

as follows, Dy 0 0
6n D(X) = 0 D2 0 = [D251 ']3><1
a—szzvi [no]+azfa(n2) —(azani+b2(c)) n2,  (2) 0 0 Ds ’

where as is the normal cell intrinsic growth rate and theis diagonal and inhomogeneous depending on the brain
normal cell growth functiorys is either exponential, logistic matter [11], wherej; ; is the Kronecker delta. Note that

or Gompertz growth , the no flux condition at the boundary is motivated by the
n I physical reality that the brain is a finite and closed domain.
f2(n2) = N2, N2 <1 — —2> or no In (—2> s
k2 n2 [1l. OPTIMAL CONTROL PROBLEM

respectively, wherg, is the normal tissue carrying capacity. A possible objective functional is the quadratic form
Note that theb(c) term indicates that some normal tissues

could die as a result of the treatment angc) must also 1[4 2 2
, Juw)== [ dt [dx (rnl (x,t)+s (u—ug)” (%, t))
depend on the local drug concentratigi, t), e.g., 2 Jo Q

ba(c(x, 1)) = kag - ¢(x, 1). + / dx (qni(x,t5) +asc?(x,ty)) - @)
Q
C. Concentration The goal is to minimize this functional with respect to
It is assumed that the drug shows a diffusive behavidhe drug input rate relative to some threshold raseand
and that there is a reabsorption at the rateAlso letw = the terminal costs aty, i.e., min, [/(u)]. Note that here

u(x,t) be the rate at which the drug is being injected. The > 0, s > 0, ¢ > 0 and g3 > 0. We are trying
choice of the letter; indicates that we will use it as the to minimize the density of tumor cells and the quadratic

control when dealing with the optimal control system. Th&ontrol term(u(x, t) — uo(x, t))*. We could have chosen a
equation for drug concentration at positigrand timet is,  linear control which would have been less realistic, and als

9 would give rise to problems like singular control. In adoliti
8_C:D3v§ [c]4asfs(c)+u, (3) nho assumption_is made ab(_)ut the qontrol constraints, even

¢ though there might be physical restriction on the amount of
where f3(c) = —c is the reabsorption function[13]. drugs that can be administered.



IV. VECTORFORM

For the sake obrevity we put the mathematical model

in vector form.

A. Governing equations
The vector state satisfies the PDE:

aY

5 = DV2[Y] + Af(Y) + B(Y,1)Y + U, (8)
where
ap 0 0 fi(n1)
A=10 ax 0| =laidijlsx1, £(Y)=|fa(n2)|,
0 0 a3 f3(e
a1 2M2 + K1,3C 0 0
B(Y,t) = — 0 Q21MN1 + K2,3C 0
0 0 0
0
U(x,t) = 0 = Us(x,1)es, 9)
u(x,t)

wheree; is theith unit vector.

B. Objective Functional

The objective in vector form is

J[Y,U]:%/O /

1
+3 /Q dx (Y'QY)

Y'RY+(U-Uy) 'S (U—Uo))

, (10)

t=ty

where R = reje|, S = sege;, Q = qeie] + q3e3e;—

Hamiltonianas,
H(Z) = % /0 it /Q dx (YTRY+(U-U) 'S (U-Uy) )
+% / dx (Y'QY) .
+/O /d ¢ (——sz[ |- AF(Y)
_B(Y,1)Y — U)
+/Otfdt /BQ arn’ (—D (ﬁ-vm) [Y])
< fax(¥] ).

V1. OPTIMAL CONTROL VARIATIONAL FORMULATION

(12)

The calculus of variationsis used to find differential
equation of optimal control for the control, state and the
co-state (adjoint or Lagrange multiplier) by seeking the
functional critical point necessary conditions for the tfirs
variation [3], [7] of thepseudo-HamiltoniarH (Z).

A. Pseudo-Hamiltonian First Variation

Let the extended state vector be perturbed about the
optimal trajectoryZ*, so thatZ = Z* + ¢6Z, where §Z
is the perturbation. Next expand the pseudo-Hamiltonian

H(Z* + 6Z) = H(Z*) + 6H(Z*,6Z) + O((6Z)?).

Neglecting the quadratic order terms, including the 2nd
variation of H, the first variation is given by functional
terms linear indZ using (12),

H(Z*,5Z) :/O /dx

*\ Tr
+/de((Y ) 'Q5Y)

o[ fx (€

Y*)TRY + (U*—Uy) 55U)

t=ty

T(6Y;—DV2[5Y]

andU, = UO(X, t)eg. —A oY - VY ]( ) — B(Y*,t)§Y
—(0Y-Vy)[B](Y",1)Y" —4U)
V. DEFINING THE PSEUDO-HAMILTONIAN +0¢ (Y —DV2[Y*]|- Af(Y")
We have three vectors for theagrange multiplierstwo —B(Y", )Y" — U*)> (13)
of which are functions of space and time and one is
independent of time, needed to include the optimization / / TD N-V, ) [0Y]
o0

constraints in the extended objective for the state PDE (8),
the boundary condition (6) and the initial condition (5),

&1 m X1
S(X, t) = 52 ) U(Xa t) = |72 ) X(X) = X2 (11)
3 X3

&3
e, & = &(xt),m = ni(x,t) and x; = x;(x), for
1=1:3. LettingZ = (Y, U, €&,n,x), define thepseudo-

+on'D (N-Vw) [ ])

+ /g ldx ((x*)T5Y+5XT<Y e YO)) .

Before the critical conditions for first variation in (13)
can by used to obtain the extended state equations, the
functional dependence of the higher derivatives in time and
state of the extended state perturbations must be elinginate




on lower order terms by one or two integrations by part€C. Degenerate Regular Optimal Control

i.e., by one, Since the control has been defined in (9) has been defined
T ¢&*
_/ Aoy &; is set to zero giving the regular, but degenerate, control as

ts as only having on component, only the coefficientdof;

ty
/ dt(€*)T0Y, = (£")T6Y
0 0 0
and by two using the Green's formula [4],

/ dx(¢*)'DV2[6Y] = / dxdY V2 [Deg*]
Q Q

U3 (6.1) = Unae. 1) + 65 (1), an

on Q x [0,ty], provideds # 0. Note that the control law
N . with §U; = 0 = 06U, only requires solving for the 3rd
+ /anF((N-VmMéY D€ component of the first co-state vectgi(x, t).

—§YT(1<T-VI)[D£*]>. D. Co-State Equations
Upon setting the functional coefficient 6fY*) T to zero

Merging these identities with (13), rearranging inner prodyields the primary co-state backward PDE:
ucts and collecting terms the extended state equatiordsyiel

the following intermediate form: 0= 865* + V2[DE*] + Vy [f](Y*)Ag*
t
H(Z",52) / dt / dx Y (RY* £~V [DE"] +B(Y )€" + Vy[B](Y*,0)):(€"(Y")T)
e . —RY™, (18)
J(Y*)AE™—B(Y",1)§
B]( “1): (€Y ) for (x,t)_ € Q2 x[0,ty), where A:B denotes the trace of
the matrixAB or the double-dot product. This PDE (18) is
/ /dx SUT(S (U*—Ug)-£% unidirectionally coupled to the state PDE (14), except that
only the 3rd componerd;(x,t) is needed for the regular
/dt /dx se” Y;‘-DV?C[Y*] optima_ll control inputUg(x_, t) from (17_). The bom_mdary
g condition follows from setting the functional coefficierit o
—Af(Y Y —UY Y (x,t) for x on I'=99 to zero, so
—/ /dI‘ 677TD N.-V ) [Y*] (N-V,)[DE7](x,t) =0, (x,t) €2 x [0,t7) (19)
0 o0
. . and the final condition for this backward PDE follows from
/ /adr oY N Va ) [DE7] forcing the coefficient oBY (x,#;) to be zero o,
ty * _
_/ t/dl" N V. 6YT}D(77*—|—§*) 3 (Xatf)— QY(Xatf)- (20)
0 o0

The two other co-state vectors should not be needed,
but satisfy rather simple equations. The 2nd co-state vecto
t=0 equation follows as the zero coefficient @N-V,)[Y ']
on the state boundaly=0¢2,

+/de (6X (Y*—Yo(x)))

+ /de (5YT(X*—£*))

=0 N (x,t) = —€*(x,t), (x,t) € 02 x [0,t/].
+ [dx (Y T(&+QY : ,
/Q X( (€@ )) =t The 3rd co-state vector equation follows as the zero coef-
B. State Equations ficient of state initial conditionY (x, 0),
The optimal state equation is recovered by setting the x"(x) = €°(x,0), xe.
coefficient of (6¢*) T to zero:
Iy VII. | TERATIVE APPROXIMATIONS FOR THECOUPLED

= DVZ[Y*] + Af(Y*) + B(Y*,t)Y* + U* (14) SYSTEM
We need to solve the system of equations developed in

the previous section, namely thtate equations, regular op-
timal controlandco-state equationsvith the understanding

ot
on © x (0,ts], with boundary conditions 0@ x [0, t¢]
from the coefficient of on*)T, i.e.,

—D(N-V,)[Y*](x,t) =0, (15) that the state equations are forward equations while the co-
for (x,t) € 92 x [0, ;] and with initial conditions on the state equations are backward equations. The followingstep
interior 2 from the coefficient of 6x*) 7, i.e. can be used to get analytical solutions, which is possible

. only in the case of really simple linear coefficients.
Y (x,0) = Yo(x) (16) 1) An initial guess for the first forward-backward shot
for x € Q. Due to the presence of the functiofigY’) and iteration is made for the contrdls(x, t) = U?El)(x, t)
B(Y,t)Y the forward PDE (14) will be nonlinear. in (17). Substituting it into thetate forward PDE14)



solving for YY) (x, ), using the boundary condition derivatives discretization are
(15) and initial condition (16).

2) Next the approximatiorly (V) (x,t) is used in the U Yst1241/2 — Yikt1/2-1/2

co-state equatiorto solve for €V (x,¢) using the (Ye)jer1/2™ 2(At/2) ’
backward PDE (18) with boundary conditions (19) . & k1724172 — & h—1/2-1/2
and final conditions (20). (&0)j 0172 2(At/2)
3) Once ¢ (x,t) is determined theregular optimal
control equationis used to determine the updated,nq
value of the control,
U () = U, 1) + 657 (). (T2 Yy TR bl

4) This process is repeated fér= 2: L double shot Sirei k172728 k12150 k12

2
iteration until a convergence criterion for sufficiently (vw[‘ﬂ)jykflﬂ_ (Az;)? ’
large L is reached, e.g., the relative criterion for the
control, Consequently the forward and backward numerical schemes
are given b
‘ ]U?f” (x, )-US Y (x, 1) ] ‘<t01u’ ’U?EH) (x, 1) ] ‘ , gren by
0 _ 0 O] — 0
and, say, Y=Y+ AtFj,H%, for k = 0:K—1,

(€0 _ £ (o) .
‘ ‘}/1@) (X, t)_Yl(f—l)(X, t)‘ ‘<t01y‘ ‘}/l(f—l)(x7 t) ‘ ‘ , Sj-,k*l = £Jk + Ath,k—%’ fOr k = K 11,

for ¢ = 2:L until satisfied, providequg(é_l)(x, £)]| # respectively, forf = 1:L. For each double shdtthe state

© _ R . i
0 and||Y1(é_1)(x, t)|| # 0, wheretol,, > 0 andtol, > starts fromY;;; = Yo,5.0 = Yo(x;,0) using

0 are some prescribed tolerances.
)

US) = Unsgn + €50 /s, for k=01,
VIIl. D OUBLE SHOT FORWARD-BACKWARD ’ ’

COMPUTATIONAL METHOD _— (1)
except whert = 1 and the initial guest; ;';, €.9.,.Uo,3,j,k:

In reality the problem is highly non-linear as are manys used. For each updated forward state shot is completed,

problems in biology and we need numerical approximationgien the backward co-state shot starts figiff, = QY%

of the solution. The main problem here is the fact thaﬁsing the whole state se¥® for k — 0 : K. The
4 = 0: K.

we have a forward state equation and a backward co-state ) R © )
equation. We call the method as double shot because of t&ank-Nicolson temporal mld_po”ﬁ‘j,k-ﬁ-% state function
presence of two equations, forward in (14) and backwarg approximated by average with

in (18). What we really do here is use the shooting method

for boundary value problems, with an iterated boundary v©O = 1 (Y_(l) JrY_(l)

conditiont = 0 for the co-state PDE (18). Before we Bkts 2 \ TR k)

actually go into the details of the shooting method, we | . )

will briefly discuss the Crank-Nicolson, predictor-cogr Which can be used to construct f|n|lte differences for the
central finite difference method used to solve the PDEs. THierivatives, with a similar form fOUj,k-q—%’ for £ = 0:L.
space is discretized as follows, Similarly, the backward temporal mid-poit{®) , co-state

function is approximated with the average,

[V

X—=Xj= [xjml + (]z - 1) : Axi]3><1-

Here Az; is the mesh size for stateandj = [j:]3x1 Where, v = 1 (5@2 n 5@}271) 7
4; = 1:M; nodes per node for statés= 1:3. For the forward Bz 2 3 >
state equation we have the forward time discretization,

tx = kAt, for k = 0.K time steps wheré\{ is the forward 2nd iS used for the derivatives as well.
time step sizefo = 0 andtx = t;. Now we consider the The no flux boundary conditions for both the state and

vector state/co-state PDE system in general form, co-state present some extra complexity, since the central d
ferences of Crank-Nicolson are not suitable at the boundary

Y; =F(x,t,Y"(x,t), U%(x,t)), if it is necessary to avoid using artificial external points.

0= & +G(xtE(x 1), Y (x1). External points can be avoided by judicious use of forward

and backward differences of second order, matching the
In this equation using the ordinate discretizatioraccuracy of the Crank-Nicolson central differences. In the
Y(xj,tr) =~ Yjr and &(xj,tx) =~ &, the relevant simplest case of rectangular grids, the discretized no flux



boundary conditions (15,19) with second order accuracy avéith spread 2.0e-2 about a mean of 0.0 with a weight of
® 1.e-3. The initial drug concentration has a Gaussian spread
. of 1.0e-2 about a mean 0.0 with weight 1.e-4, while the

0= — ((N-v,)[Y"))

©® © K © threshold drug controkg(z, t) is similarly distributed, but
- 3Yj,k - 4Yj7N,k + Yj72N,k with weight 1.e-5.
- 2|N-AXx| ’ The results are given only for the tumor densiyf =
~ N, N{(z,t) in Figure 1 on the symmetric space intervak
0= ((N-Vm)[(‘ﬁ) ])j,k [-1.0,41.0] in centimeters over &, = 5 day treatment.

For this simple one space dimension test example, we
see that the optimal distribution of the tumor using an
2[N-Ax| ’ optimal distribution of the drug delivery results in the 2%
reduction of the tumor density over this simulated five day
drug treatment trial.

3O — 4 n + (€ an

respectively, wheré&N = Njyk, Ax = [Axz;]sx1 > 0, D is
not needed, and, e.ng(f)N_k:Y(@(xj — |IN-AX|N, ).

For non-rectangular domains, interpolation would be ndede Optimal Relative Tumor Density N (x)

to convert evaluations to defined spatial nodes or els 107 ,
domain compatible grids should be used, e.g., for circula s N
or spherical gridsN = e,, where here- is the radius and Nt )
N - Ax = Ar. i Nt )|
During eachvth double shot, a prediction and corrections ur Nkt |
of the state and co-state are used to account for the usu 12f =" |

nonlinearites in the biological models [6], stopping when «2;10.

the changes are sufficiently small. =
The above mentioned method is a sequential double shi

method since one shot is used to gg({,z and a subsequent

shot it used to geﬁ}f,ﬂ. Alternately, a parallel two shot
method could be used to get an approximate solution b )
integrating for bothYJ.(f,z and SJ(Q in the forward direction [ e e _Ji:"'_gfzs AL R A T
using a guess initial condition fo‘fjgfg atty = 0, with - '

several g(?*?ume s(f;*o)oting met.hOd ShOt.S until samshot ig. 1.  Tumor densityN;(z,t) versus the one-dimensional spatial
Where||‘£j,K +QYj,K_|| < t01£' I.e., the final co-state value coordinate z with time ¢ a% thé rounded parameter valu¢s,tq1 =

is small enough using some sufficiently small tolerance.25ty, ¢,,;q =0.5ts,tqs=0.75t5,ts}, wheret; = 5 days. The tumor
tole to approximate the final condition (20). Interpolationdensity rapidly decays in this simulated 5 day trial.

should be used to accelerate the convergene;-‘éfg)fo some
sufficiently small value. X. CONCLUSION
The main interest of this paper was to provide the nec-

i essary foundation to study the mechanism of drug delivery
The double shot forward and backward algorithm outg, the prain. We have set up a fairly realistic distributed

lined in the previous two sections has been tested on 0BG ameters model which takes into account the spatial
space dimensiony, example with three state dimensionsyependence of the state variables. The main focus of the
{YI"=N7, Y5 =N3, Y3'=C"}, plus the drug input control haner \was to develop an algorithm to determine the optimal
Usz. The numerical parameter data come from the BCNWy,4 delivery to brain tumors using an optimal distribution

drug simulations for the brain of Wang et al. [13] and theyt the drug about the original tumor site. This paper leaves
brain tumor modeling of Swanson [11] and Murray [10],.55m for a lot of new directions of work.

with some difficult to find parameters from Mansuri [8] or o
from reasonable estimates from other areas. For exampfe, Future Directions

IX. TESTRESULTS

diffusion diagonal vector idD = [4.2e-3, 1l.e-15, 2.2e- One such direction would be running a simulation to
1] cm? per day (normal tissue diffusion is assumed to bémplement the algorithm, using supercomputing tools. Of
insignificant, the quadratic cost coefficients are- 0.1 = course this would require more realistic medical data. An-

s = q1 = g3, the net growth coefficients are = [1.2e-2, other important aspect that can be examined is the effect of
8.6e-7, 1l.1e+lper day, the carrying capacities for tumorstochasticity, most notably the Gaussian and Poisson tiype o
k1 and normalk, tissues are scaled to one for the normahoise. The physical basis for such stochasticity would ke th
value and the interaction coefficier{ts; 2, a1, 51,3, k2,3}  phenomenon of metastasis, which gives rise to additional
are all given the arbitray value 1.0e-4. The initial statetumor sites and also the side effects produced by the drug.
are given to be uniformly one for the normal tissue, whilaNe hope to examine all these aspects of the problem in
the tumor density was assumed to be a spatial Gaussifuture works.
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