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Abstract— The growth and treatment of brain tumors
is mathematically examined using a distributed parameters
model. The model is a system of three coupled reaction
diffusion equations involving the tumor cells, normal tissue
and the drug concentration. An optimal control problem is
designed, with the drug delivery rate as the control and
solved to obtain the state and co-state equations as well as
the regular control using a modified double shot forward-
backward method. This gives rise to a coupled system of
equations with a forward state equation and a backward co-
state equation, which is solved using a double shot method. A
numerical procedure based upon the Crank-Nicolson method
is used to solve the coupled system of two three-dimension
partial differential equations.

I. I NTRODUCTION

The growth and control of brain tumors have been the
subject of medical and scientific scrutiny for a very long
time. Simply speaking a tumor, like most cancerous cells
originate from a cell, that proliferates and effects its neigh-
boring normal tissues. As the tumor cells become malignant
they become more dangerous for the host. Understanding
the mechanism of tumor progression is necessary for its
diagnosis and treatment. As mentioned earlier, brain tumors
have been studied for centuries, dating back to as early
as 2500 BC [11]. The most common and deadly form of
brain tumor are the gliomas, which account for more than
half of the brain tumor cases. Gliomas are highly invasive
and severely infiltrate the surrounding tissues [12]. De-
spite improved diagnostic procedures such as computerized
tomography (CT) scan and magnetic resonance imaging
(MRI), the benefits of such modern accessories have been
restricted by the treatment options available. One major
problem of administering the drugs to the brain tumor site
is the blood brain barrier (BBB)[1], which exists in the
human brain as a protection for the brain cells and as
a restriction on the transport of water soluble substances
between the blood and the central nervous system. Another
problem that arises is the resection of a tumor, after the core
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mass of the tumor has been surgically removed. One way
to deliver the drug is to use the drug conjugated with anon-
toxicpolymer like the BCNU and place it in the brain cavity
for controlled release. A more traditional way would be to
deliver the drug by an optimal distribution of the drug about
the original tumor site. Wang et al. [13], [14] have studied
the drug delivery method to tumors in three dimension for
drugs like IgG and BCNU.

The paper will mostly focus on the control for the
optimal distribution of the drug about the original tumor
site. Before that we need to look at the mechanisms behind
the growth of tumor cells as well as normal tissues and
the drug concentration in the tumor. Unlike a lot of other
tumors, gliomas can be highly diffusive [11]. Gatenby et
al. [2] and Mansuri [9] study the mechanism of reaction
diffusion in the growth of tumors. They also take into
account the effects of competition for resources between
the cancerous cells and the healthy tissues. Westman et al.
[15] look at the various types of tumor growth, namely
exponential, logistic and Gompertz. Murray’s books [10],
[11] are excellent references for the study of different
types of growth mechanisms. Also, Woodward et al. [16]
study a model of glioma growth and the effects of surgical
resection. In this paper we set up a fairly generalized
distributed parameters model for the PDE driven system,
define an objective functional to minimize drug delivery and
tumor burden costs, and use a modifiedLagrange multiplier
method[3] for including constraints in the control problem.
Finally a double shot, forward and backward, numerical
method is given to solve for the state, co-state and regular
control. To solve for thePDEs we use a Crank-Nicolson
predictor-corrector method developed by Hanson et al. [5]
and Hanson [6], for stochastic dynamic programming.

II. M ATHEMATICAL MODEL

Let Y1 = n1(x, t) be the density of tumor cells,Y2 =
n2(x, t) be the density of normal tissue andY3 = c(x, t)
be the drug concentration at any vector positionx and time
t. This spatio-temporal model is a system of three coupled
reaction-diffusion equations.



A. Tumor Cells

It is assumed that the density of tumor cells,n1 =
n1(x, t), satisfy a reaction-diffusion equation subject to
competition with the normal cells,n2 = n2(x, t),

∂n1

∂t
=D1∇

2
x[n1]+a1f1(n1)−(α1,2n2+b1(c)) n1, (1)

where the tumor diffusivity isD1. Let the terma1f1(n1)
be the growth rate of the tumor cells, wheref1 could be
exponential, logistic or Gompertz growth ,

f1(n1) = n1, n1

(
1 −

n1

k1

)
or n1 ln

(
k1

n1

)
,

respectively, wherea1 is the tumor cell intrinsic growth rate
andk1 is the tumor cell carrying capacity. Letα1,2 denote
the death rate of the tumor cells due to competition for
resources with the normal tissue. Letb1(c) be the death
rate of tumor cells due to drug treatment, which could be
a function of the localized drug concentrationc(x, t) at the
tumor site, e.g., purely linear function,

b1(c(x, t))=κ1,3 ·c(x, t)

respectively.

B. Normal Tissue

Similar assumptions are made for the density of normal
cells n2 = n2(x, t) with similar coefficients. Thus, the
reaction-diffusion equation for normal tissue evolution is
as follows,

∂n2

∂t
=D2∇

2
x[n2]+a2f2(n2)−(α2,1n1+b2(c)) n2, (2)

wherea2 is the normal cell intrinsic growth rate and the
normal cell growth functionf2 is either exponential, logistic
or Gompertz growth ,

f2(n2) = n2, n2

(
1 −

n2

k2

)
or n2 ln

(
k2

n2

)
,

respectively, wherek2 is the normal tissue carrying capacity.
Note that theb2(c) term indicates that some normal tissues
could die as a result of the treatment andb2(c) must also
depend on the local drug concentrationc(x, t), e.g.,

b2(c(x, t)) = κ2,3 · c(x, t).

C. Concentration

It is assumed that the drug shows a diffusive behavior
and that there is a reabsorption at the ratea3. Also let u =
u(x, t) be the rate at which the drug is being injected. The
choice of the letteru indicates that we will use it as the
control when dealing with the optimal control system. The
equation for drug concentration at positionx and timet is,

∂c

∂t
=D3∇

2
x[c]+a3f3(c)+u, (3)

wheref3(c) = −c is the reabsorption function[14].

D. Global State Vector

Let the global state vector be

Y(x, t) = [Yi(x, t)]3×1 =




n1(x, t)
n2(x, t)
c(x, t)



 , (4)

at positionx in the interior Ω of the state domain and time
t on [0, tf ].

E. Initial and Boundary Conditions

Let the initial conditions for the state be

Y(x, 0) =




n1(x, 0)
n2(x, 0)
c(x, 0)



 =




n10(x)
n20(x)
c0(x)



 ≡ Y0(x), (5)

for x in Ω. Murray [11] recommends using Gaussian
distribution for the initial distributions of tumors. Theno
flux boundary conditions are

−D(N̂ · ∇x)[Y](x, t)=




−D1(N̂·∇x)[n1]

−D2(N̂·∇x)[n2]

−D3(N̂·∇x)[c]



(x, t)=0, (6)

for x ∈ Γ= ∂Ω, i.e., on the boundary of the domain, and
for t ∈ [0, tf ], assumingDi 6= 0 or else theDi would not
be used in the condition, wherêN(x, t) is the normal to
the boundary,−Di∇x[Yi] is the flux of theith component
and the diffusion matrix,

D(x) =




D1 0 0
0 D2 0
0 0 D3



 = [Diδi,j ]3×1

is diagonal and inhomogeneous depending on the brain
matter [12], whereδi,j is the Kronecker delta. Note that
the no flux condition at the boundary is motivated by the
physical reality that the brain is a finite and closed domain.

III. O PTIMAL CONTROL PROBLEM

A possible objective functional is the quadratic form of
running and terminal costs,

J(u) =
1

2

∫ tf

0

dt

∫

Ω

dx
(
rn2

1(x, t)+s (u−u0)
2 (x, t)

)

+

∫

Ω

dx
(
q1n

2
1(x, tf ) + q3c

2(x, tf )
)
. (7)

The goal is to minimize this functional with respect to the
drug input rate relative to some threshold rateu0 and the
terminal costs attf , i.e.,minu [J(u)]. Note that herer > 0
is the tumor burden cost coefficient ands > 0 is the drug
delivery cost coefficient, whileq1 > 0 and q3 > 0 are
the corresponding final costs. We are trying to minimize
the density of tumor cells and the drug delivery quadratic
control term(u(x, t)− u0(x, t))2. We could have chosen a
linear control which would have been less realistic, and also
would give rise to problems like singular control. In addition
no assumption is made about the control constraints, even
though there might be physical restriction on the amount of
drugs that can be administered.



IV. V ECTORFORM

For the sake ofbrevity we put the mathematical model
in vector form with vectors in boldface.

A. Governing equations

The vector state satisfies the PDE:

∂Y

∂t
= D∇2

x[Y] + Af(Y) + B(Y, t)Y + U, (8)

where

A =




a1 0 0
0 a2 0
0 0 a3



 = [aiδi,j ]3×1, f(Y) =




f1(n1)
f2(n2)
f3(c)



 ,

B(Y, t) = −




α1,2n2 + κ1,3c 0 0

0 α2,1n1 + κ2,3c 0
0 0 0



 ,

U(x, t) =




0
0

u(x, t)



 = U3(x, t)e3, (9)

whereei is the ith unit vector.

B. Objective Functional

The objective in vector form is

J [Y,U] =
1

2

∫ tf

0

dt

∫

Ω

dx
(
Y⊤RY+(U−U0)

⊤
S (U−U0)

)

+
1

2

∫

Ω

dx
(
Y⊤QY

)∣∣∣∣
t=tf

, (10)

whereR = re1e
⊤
1 , S = se3e

⊤
3 , Q = q1e1e

⊤
1 + q3e3e

⊤
3

andU0 = u0(x, t)e3.

V. DEFINING THE PSEUDO-HAMILTONIAN

We have three vectors for theLagrange multipliers, two
of which are functions of space and time and one is
independent of time, needed to include the optimization
constraints in the extended objective for the state PDE (8),
the boundary condition (6) and the initial condition (5),

ξ(x, t) =




ξ1

ξ2

ξ3



 , η(x, t) =




η1

η2

η3



 , χ(x) =




χ1

χ2

χ3



 , (11)

i.e., ξi = ξi(x, t), ηi = ηi(x, t) and χi = χi(x), for
i = 1 : 3. Letting Z = (Y,U, ξ, η, χ), define thepseudo-

Hamiltonianas,

H(Z) =
1

2

∫ tf

0

dt

∫

Ω

dx
(
Y⊤RY+(U−U0)

⊤
S (U−U0)

)

+
1

2

∫

Ω

dx
(
Y⊤QY

)∣∣∣∣
t=tf

+

∫ tf

0

dt

∫

Ω

dx ξ⊤

(
∂Y

∂t
−D∇2

x[Y]−Af(Y)

−B(Y, t)Y − U

)

+

∫ tf

0

dt

∫

∂Ω

dΓ η⊤

(
−D

(
N̂·∇x

)
[Y]

)

+

∫

Ω

dx χ⊤

(
Y

∣∣∣∣
t=0

− Y0

)
. (12)

VI. OPTIMAL CONTROL VARIATIONAL FORMULATION

The calculus of variationsis used to find differential
equation of optimal control for the control, state and the
co-state (adjoint or Lagrange multiplier) by seeking the
functional critical point necessary conditions for the first
variation [3], [8] of thepseudo-HamiltonianH(Z).

A. Pseudo-Hamiltonian First Variation

Let the extended state vector be perturbed about the
optimal trajectoryZ∗, so thatZ = Z∗ + δZ, where δZ
is the perturbation. Next expand the pseudo-Hamiltonian

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) + O((δZ)2).

Neglecting the quadratic order terms, including the 2nd
variation of H, the first variation is given by functional
terms linear inδZ using (12),

δH(Z∗, δZ) =

∫ tf

0

dt

∫

Ω

dx
(
(Y∗)⊤RδY+(U∗−U0)

⊤SδU
)

+

∫

Ω

dx
(
(Y∗)⊤QδY

)∣∣∣∣
t=tf

+

∫ tf

0

dt

∫

Ω

dx

(
(ξ∗)⊤

(
δYt−D∇2

x[δY]

−A(δY·∇Y )[f ](Y∗) − B(Y∗, t)δY

−(δY·∇Y )[B](Y∗, t)Y∗ − δU)

+δξ⊤
(
Y∗

t −D∇2
x[Y∗]−Af(Y∗)

−B(Y∗, t)Y∗ − U∗)

)
(13)

−

∫ tf

0

dt

∫

∂Ω

dΓ
(
(η∗)⊤D

(
N̂·∇x

)
[δY]

+δη⊤D
(
N̂·∇x

)
[Y∗]

)

+

∫

Ω

dx

(
(χ∗)⊤δY+δχ⊤

(
Y

∣∣∣∣
t=0

− Y0

))
.

Before the critical conditions for first variation in (13)
can by used to obtain the extended state equations, the
functional dependence of the higher derivatives in time and
state of the extended state perturbations must be eliminated



on lower order terms by one or two integrations by parts,
i.e., by one,

∫ tf

0

dt(ξ∗)⊤δYt = (ξ∗)⊤δY

∣∣∣∣
tf

0

−

∫ tf

0

dtδY⊤ξ∗

t

and by two using the Green’s formula [4],
∫

Ω

dx(ξ∗)⊤D∇2
x[δY] =

∫

Ω

dxδY⊤∇2
x[Dξ

∗]

+

∫

∂Ω

dΓ

(
(N̂·∇x)[δY⊤]Dξ

∗

−δY⊤(N̂·∇x)[Dξ∗]

)
.

Merging these identities with (13), rearranging inner prod-
ucts and collecting terms the extended state equations yields
the following intermediate form:

δH(Z∗, δZ) =

∫ tf

0

dt

∫

Ω

dx δY⊤
(
RY∗−ξ∗

t−∇
2
x[Dξ∗]

−∇Y [f ](Y∗)Aξ∗−B(Y∗, t)ξ∗

−∇Y[B](Y∗, t)):(ξ∗(Y∗)⊤
)

+

∫ tf

0

dt

∫

Ω

dx δU⊤(S (U∗−U0)−ξ∗)

+

∫ tf

0

dt

∫

Ω

dx δξ⊤
(
Y∗

t−D∇2
x[Y∗]

−Af(Y∗)−B(Y∗, t)Y∗ − U∗)

−

∫ tf

0

dt

∫

∂Ω

dΓ δη⊤D
(
N̂·∇x

)
[Y∗]

+

∫ tf

0

dt

∫

∂Ω

dΓ δY⊤

(
N̂·∇x

)
[Dξ∗]

−

∫ tf

0

dt

∫

∂Ω

dΓ
(
N̂·∇x

)[
δY⊤

]
D(η∗+ξ∗)

+

∫

Ω

dx
(
δχ⊤ (Y∗−Y0(x))

)∣∣∣∣
t=0

+

∫

Ω

dx
(
δY⊤(χ∗−ξ∗)

)∣∣∣∣
t=0

+

∫

Ω

dx
(
δY⊤(ξ∗+QY)

)∣∣∣∣
t=tf

,

where A : B denotes the trace of the matrixAB or the
double-dot product.

B. State Equations

The optimal state equation is recovered by setting the
coefficient of(δξ∗)⊤ to zero:

∂Y∗

∂t
= D∇2

x[Y∗] + Af(Y∗) + B(Y∗, t)Y∗ + U∗ (14)

on Ω × (0, tf ], with boundary conditions on∂Ω × [0, tf ]
from the coefficient of(δη∗)⊤, i.e.,

−D(N̂·∇x)[Y∗](x, t) = 0, (15)

for (x, t) ∈ ∂Ω × [0, tf ] and with initial conditions on the
interior Ω from the coefficient of(δχ∗)⊤, i.e.,

Y∗(x, 0) = Y0(x) (16)

for x ∈ Ω. Due to the presence of the functionsf(Y) and
B(Y, t)Y the forward PDE (14) will be nonlinear.

C. Degenerate Regular Optimal Control

Since the control has been defined in (9) has been defined
as only having on component, only the coefficient ofδU3

is set to zero giving the regular, but degenerate, control as

U∗

3 (x, t) = U0,3(x, t) +
1

s
ξ∗3 (x, t), (17)

on Ω × [0, tf ], provideds 6= 0. Note that the control law
with δU1 = 0 = δU2 only requires solving for the 3rd
component of the first co-state vectorξ∗(x, t).

D. Co-State Equations

Upon setting the functional coefficient of(δY∗)⊤ to zero
yields the primary co-state backward PDE:

0 =
∂ξ∗

∂t
+ ∇2

x[Dξ∗] + ∇Y [f ](Y∗)Aξ∗

+B(Y∗, t)ξ∗ + ∇Y [B](Y∗, t)):(ξ∗(Y∗)⊤)

−RY∗, (18)

for (x, t) ∈ Ω × [0, tf). This PDE (18) is unidirectionally
coupled to the state PDE (14), except that only the 3rd
componentξ∗3 (x, t) is needed for the regular optimal control
input U∗

3 (x, t) from (17). The boundary condition follows
from setting the functional coefficient ofδY(x, t) for x on
Γ=∂Ω to zero, so

(N̂·∇x)[Dξ
∗](x, t) = 0, (x, t) ∈ ∂Ω × [0, tf) (19)

and the final condition for this backward PDE follows from
forcing the coefficient ofδY(x, tf ) to be zero onΩ,

ξ∗(x, tf ) = −QY(x, tf ). (20)

The two other co-state vectors should not be needed,
but satisfy rather simple equations. The 2nd co-state vector
equation follows as the zero coefficient of(N̂ ·∇x)[δY⊤]
on the state boundaryΓ=∂Ω,

η∗(x, t) = −ξ∗(x, t), (x, t) ∈ ∂Ω × [0, tf ].

The 3rd co-state vector equation follows as the zero coef-
ficient of state initial conditionδY(x, 0),

χ∗(x) = ξ∗(x, 0), x ∈ Ω.



VII. I TERATIVE APPROXIMATIONS FORCOUPLED

SYSTEM

We need to solve the system of equations developed in
the previous section, namely thestate equations(14) using
the regular optimal control (17) and co-state equations
(18), with the understanding that the state equations are
forward equations while the co-state equations are backward
equations. The method adouble shotmethod, since model
has two vector-valued PDEs, so the method consists of one
forward shot with (14) and and one backward shot with
(18).

The following steps can be used to get approximate
solutions:

1) An initial guess for the first forward-backward shot
iteration is made for the controlU3(x, t) = U

(1)
3 (x, t)

in (17). Substituting it into thestate forward PDE(14)
solving for Y(1)(x, t), using the boundary condition
(15) and initial condition (16).

2) Next the approximate final conditionξ(1)(x, tf ) =
−QY(1)(x, tf ) (20) is used to start the backward
co-state PDE (18) approximation using boundary
conditions (19) .

3) Once ξ(1)(x, t) is determined theregular optimal
control equationis used to determine the updated
value of the control,

U
(2)
3 (x, t) = U0,3(x, t) + ξ

(1)
3 (x, t)/s.

4) This process is repeated forℓ = 2 : L double shot
iterations until a convergence criterion for sufficiently
largeL is reached, e.g., the relative criterion for the
control,
∣∣∣
∣∣∣U (ℓ)

3 (x, t)−U
(ℓ−1)
3 (x, t)

∣∣∣
∣∣∣<tolu

∣∣∣
∣∣∣U (ℓ−1)

3 (x, t)
∣∣∣
∣∣∣ ,

and, say,
∣∣∣
∣∣∣Y (ℓ)

1 (x, t)−Y
(ℓ−1)
1 (x, t)

∣∣∣
∣∣∣<toly

∣∣∣
∣∣∣Y (ℓ−1)

1 (x, t)
∣∣∣
∣∣∣ ,

for ℓ = 2:L until satisfied, provided||U (ℓ−1)
3 (x, t)|| 6=

0 and||Y (ℓ−1)
1 (x, t)|| 6= 0, wheretolu > 0 andtoly >

0 are some prescribed tolerances.

VIII. D OUBLE SHOT FORWARD-BACKWARD

COMPUTATIONAL METHOD

In reality the problem is highly non-linear as are many
problems in biology and we need numerical approximations
of the solution. The main problem here is the fact that
we have a forward state equation and a backward co-state
equation. What we really do here is modify shooting meth-
ods [7] for initial-final-boundary value problems, where the
starting aim is replaced by an estimate of the full control
law U

(ℓ)
3 (x, t) for the forward integration of the state PDE

(14) whose final approximationY(ℓ)(x, tf ) serves as the
backward aim (20) for the backward integration of the co-
state PDE (18) producing an approximationξ(ℓ)(x, t) whose

third component is used to update (17) the control law
U

(ℓ+1)
3 (x, t).
Before we actually go into the details of the shoot-

ing method, we will briefly discuss the Crank-Nicolson,
predictor-corrector central finite difference method used
to solve the nonlinear PDEs. The space is discretized as
follows,

x → xj = [xji,1 + (ji − 1) · ∆xi]3×1.

Here∆xi is the mesh size for statei andj = [ji]3×1 where,
ji = 1:Mi nodes per node for statesi = 1:3. For the forward
state equation we have the forward time discretization,t →
tk = k∆t, for k = 0:K time steps where∆t is the forward
time step size,t0 = 0 and tK = tf . Now we consider the
vector state/co-state PDE system in general form,

Y∗

t = F(x, t,Y∗(x, t),U∗(x, t)),

0 = ξ∗

t + G(x, t, ξ∗(x, t),Y∗(x, t)).

In this equation, using the ordinate discretization
Y(xj, tk) ≃ Yj,k and ξ(xj, tk) ≃ ξj,k, the relevant
derivatives discretization are

(Y∗

t )j,k+1/2≃
Yj,k+1/2+1/2 − Yj,k+1/2−1/2

2(∆t/2)
,

(ξ∗

t )j,k−1/2≃
ξj,k−1/2+1/2 − ξj,k−1/2−1/2

2(∆t/2)

and

(
∇2

x[Y∗]
)
j,k+1/2

≃
Yj+ei,k+1/2−2Yj,k+1/2+Yj−ei,k+1/2

(∆xi)2
,

(
∇2

x[ξ∗]
)
j,k−1/2

≃
ξj+ei,k−1/2−2ξj,k−1/2+ξj−ei,k−1/2

(∆xi)2
,

Consequently the forward and backward numerical schemes
are given by

Y
(ℓ)
j,k+1 = Y

(ℓ)
j,k + ∆tF

(ℓ)

j,k+ 1

2

, for k = 0:K−1,

ξ
(ℓ)
j,k−1 = ξ

(ℓ)
j,k + ∆tG

(ℓ)

j,k− 1

2

, for k =:−1:1,

respectively, forℓ = 1:L. For each double shotℓ the state
starts fromY

(ℓ)
j,0 = Y0,j,0 = Y0(xj, 0) using

U
(ℓ)
3,j,k = U0,3,j,k + ξ

(ℓ−1)
3,j,k /s, for k = 0:K−1,

except whenℓ = 1 and the initial guessU (1)
3,j,k, e.g.,U0,3,j,k,

is used. For each updated forward state shot is completed,
then the backward co-state shot starts fromξ

(ℓ)
j,K = QY

(ℓ)
j,K

using the whole state setY(ℓ)
j,k for k = 0 : K. The

Crank-Nicolson temporal mid-pointF(ℓ)

j,k+ 1

2

state function
is approximated by average with

Y
(ℓ)

j,k+ 1

2

=
1

2

(
Y

(ℓ)
j,k+1 + Y

(ℓ)
j,k

)
,

which can be used to construct finite differences for the
derivatives, with a similar form forU(ℓ)

j,k+ 1

2

, for ℓ = 0:L.



Similarly, the backward temporal mid-pointG
(ℓ)

j,k− 1

2

co-state
function is approximated with the average,

ξ
(ℓ)

j,k− 1

2

=
1

2

(
ξ

(ℓ)
j,k + ξ

(ℓ)
j,k−1

)
,

and is used for the derivatives as well.
The no flux boundary conditions for both the state and

co-state present some extra complexity, since the central dif-
ferences of Crank-Nicolson are not suitable at the boundary
if it is necessary to avoid using artificial external points.
External points can be avoided by judicious use of forward
and backward differences of second order, matching the
accuracy of the Crank-Nicolson central differences. In the
simplest case of rectangular grids, the discretized no flux
boundary conditions (15,19) with second order accuracy are

0 = −
(
(N̂·∇x)[Y∗]

)(ℓ)

j,k

≃ −
3Y

(ℓ)
j,k − 4Y

(ℓ)
j−N,k + Y

(ℓ)
j−2N,k

2|N·∆x|
,

0 =
(
(N̂·∇x)[(ξ)∗]

)(ℓ)

j,k

≃
3(ξ)

(ℓ)
j,k − 4(ξ)

(ℓ)
j−N,k + (ξ)

(ℓ)
j−2N,k

2|N·∆x|
,

respectively, whereN = N̂j,k, ∆x = [∆xi]3×1 > 0, D is
not needed, and, e.g.,Y(ℓ)

j−N,k=Y(ℓ)(xj − |N ·∆x|N, tk).
For non-rectangular domains, interpolation would be needed
to convert evaluations to defined spatial nodes or else
domain compatible grids should be used, e.g., for circular
or spherical grid boundaries,N = er, where herer is the
radius andN · ∆x = ∆r.

During eachℓth double shot, a prediction and corrections
of the state and co-state are used to account for the usual
nonlinearities in the biological models [6], stopping when
the changes are sufficiently small.

The above mentioned method is a sequential double shot
method since one shot is used to getY

(ℓ)
j,k and a subsequent

shot it used to getξ(ℓ)
j,k. Alternately, a parallel two shot

method could be used to get an approximate solution by
integrating for bothY(ℓ)

j,k andξ
(ℓ)
j,k in the forward direction

using a guess initial condition forξ(ℓ)
j,0 at t0 = 0, with

several genuine shooting method shots until someℓ∗ shot
where||ξ(ℓ∗)

j,K +QY
(ℓ∗)
j,K || < tolξ, i.e., the final co-state value

is small enough using some sufficiently small tolerance
tolξ to approximate the final condition (20). Interpolation
should be used to accelerate the convergence ofξ

(ℓ)
j,0 to some

sufficiently small value.

IX. T EST RESULTS

The double shot forward and backward algorithm out-
lined in the previous two sections has been tested on one
space dimension,x, example with three state dimensions
{Y ∗

1 =N∗
1 , Y ∗

2 =N∗
2 , Y ∗

3 =C∗}, plus the drug input control
U∗

3 . The numerical parameter data come from the BCNU

drug simulations for the brain of Wang et al. [14] and the
brain tumor modeling of Swanson [12] and Murray [11],
with some difficult to find parameters from Mansuri [9] or
from reasonable estimates from other areas. For example,
diffusion diagonal vector isD = [4.2e-3, 1.e-15, 2.2e-
1] cm2 per day (normal tissue diffusion is assumed to be
insignificant), the quadratic cost coefficients arer = 0.1 =
s = q1 = q3, the net growth coefficients area = [1.2e-2,
8.6e-7, 1.1e+1] per day, the carrying capacities for tumor
k1 and normalk2 tissues are scaled to one for the normal
value and the interaction coefficients{α1,2, α2,1, κ1,3, κ2,3}
are all given the arbitrary value 1.0e-4. The initial states
are given to be uniformly one for the normal tissue, while
the tumor density was assumed to be a spatial Gaussian
with spread 2.0e-2 about a mean of 0.0 with a weight of
1.e-3. The initial drug concentration has a Gaussian spread
of 1.0e-2 about a mean 0.0 with weight 1.e-4, while the
threshold drug controlu0(x, t) is similarly distributed, but
with weight 1.e-5.

The results are given only for the tumor densityN∗
1 =

N∗
1 (x, t) in Figure 1 on the symmetric space intervalx ∈

[−1.0, +1.0] in centimeters over atf = 5 day treatment.
For this simple one space dimension test example, we
see that the optimal distribution of the tumor using an
optimal distribution of the drug delivery results in the 16.2%
reduction of the tumor density over this simulated five day
drug treatment trial.
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Fig. 1. Tumor densityN∗

1
(x, t) versus the one-dimensional spatial

coordinatex with time t at the rounded parameter values{0, tq1 =
0.25tf , tmid = 0.5tf , tq3 = 0.75tf , tf}, where tf = 5 days. The
targeted tumor density rapidly decays in this simulated 5 day trial.

X. CONCLUSION

The main interest of this paper was to provide the nec-
essary foundation to study the mechanism of drug delivery
to the brain. We have set up a fairly realistic distributed
parameters model which takes into account the spatial
dependence of the state variables. The main focus of the
paper was to develop an algorithm to determine the optimal



drug delivery to brain tumors using an optimal distribution
of the drug about the original tumor site. This paper leaves
room for a lot of new directions of work.

A. Future Directions

One such direction would be running a simulation to
implement the algorithm, using supercomputing tools. Of
course this would require more realistic medical data. An-
other important aspect that can be examined is the effect of
stochasticity, most notably the Gaussian and Poisson type of
noise. The physical basis for such stochasticity would be the
phenomenon of metastasis, which gives rise to additional
tumor sites and also the side effects produced by the drug.
We hope to examine all these aspects of the problem in
future works.
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