Optimal control of drug delivery to brain tumors
for a distributed parameters model
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Abstract— The growth and treatment of brain tumors mass of the tumor has been surgically removed. One way
is mathematically exgmined using a distributed parameters g deliver the drug is to use the drug conjugated witroa-
model. The model is a system of three coupled reaction yyic nolymer like the BCNU and place it in the brain cavity
diffusion equations involving the tumor cells, normal tissie L
and the drug concentration. An optimal control problem is for.controlled release. A more 'Fraqmo_nal way would be to
designed’ with the drug de”very rate as the control and de“Ver the drug by an Optlmal d|str|but|0n Of the dl’ug about
solved to obtain the state and co-state equations as well as the original tumor site. Wang et al. [13], [14] have studied

the regular control using a modified double shot forward- the drug delivery method to tumors in three dimension for
backward method. This gives rise to a coupled system of drugs like IgG and BCNU.

equations with a forward state equation and a backward co- .

state equation, which is solved using a double shot method. A 1he paper will mostly focus on the control for the
numerical procedure based upon the Crank-Nicolson method optimal distribution of the drug about the original tumor
is used to solve the coupled system of two three-dimension sjte. Before that we need to look at the mechanisms behind
partial differential equations. the growth of tumor cells as well as normal tissues and

|. INTRODUCTION the drug concentration in the tumor. Unlike a lot of other

The growth and control of brain tumors have been th!mors, gliomas can be highly diffusive [1.1]' Gatenby_ et
subject of medical and scientific scrutiny for a very Ionga!' [2], a”‘?' Mansuri [9] study the mechanism of reac_:tlon
time. Simply speaking a tumor, like most cancerous celdiffusion in the growth of umors. They also take into
originate from a cell, that proliferates and effects itsghei account the effects of compefition fqr resources between
boring normal tissues. As the tumor cells become malignafff€ cancerous cells gnd the healthy tissues. Westman et al.
they become more dangerous for the host. Understandi ] Iook_at the_ various types of tumor gr9wth, namely
the mechanism of tumor progression is necessary for i ponential, logistic and Gompertz. Murray’s books [10],

diagnosis and treatment. As mentioned earlier, brain tsmo 1] aref excelrl]ent rt;fergnces flor the SBUdy dOf diflferent
have been studied for centuries, dating back to as ea es of growt mechanisms. Also, Woodward et al. [.16]
as 2500 BC [11]. The most common and deadly form of udy a model of glioma growth and the effects of surgical

brain tumor are the gliomas, which account for more tha _sept;[lona In this paper vgelsfet l;]p i\)ggrg_generallzed
half of the brain tumor cases. Gliomas are highly invasiv Istributed parameters model for the riven system,

and severely infiltrate the surrounding tissues [12]. DGQefme an objective functional to minimize drug delivery and

spite improved diagnostic procedures such as Computeriz%nor burden _costs,_and use a _mod_ifleugrange multiplier
tomography (CT) scan and magnetic resonance imagi ethod[3] for including constraints in the control probl_em.
(MRI), the benefits of such modern accessories have be ally a_ldo_uble shat forward and backward, numerical
restricted by the treatment options available. One majtfpethOd Is given to solve for the state, co-state af‘d regular
problem of administering the drugs to the brain tumor sit&omr,OI' To solve for thePDEswe use a Crank-Nicolson

is the blood brain barrier (BBB)[1], which exists in the predictor-corrector method developed by Hanson et al. [5]

human brain as a protection for the brain cells and a%nd Hanson [6], for stochastic dynamic programming.

a restriction on the transport of water soluble substances
between the blood and the central nervous system. Another [l. MATHEMATICAL MODEL

roblem that arises is the resection of a tumor, after the cor .
P Let Y1 = ny(x,t) be the density of tumor cell§> =

Work supported in part by the National Science Foundatioan@r n2(x,t) be the density of normal tissue and = c(x, t)
DMS-99-73231 and DMS-02-07081. The first author was alspostedl  pe the drug concentration at any vector positioand time
by the Provost’'s award for Graduate Researewarded by the Graduate . . .

College at the University of lllinois at Chicago. SubmittedProceedings t. This spatlo-temporal model is a system of three coupled
of American Control Conference 2005 reaction-diffusion equations.



A. Tumor Cells D. Global State Vector

It is assumed that the density of tumor cells, = Let the global state vector be

n1(x,t), satisfy a reaction-diffusion equation subject to ni(x,t)

competition with the normal cellgyz = na(x,t), Y(x,t) = [Yi(x,)]sx1 = |na(x,1) ], (4)
) e(x,t)

(;1—D1V [n1]4a1 fi(n1)—(a1,2n2+b1(c)) n1, (1)

where the tumor diffusivity isD;. Let the termay f1(nq)
be the growth rate of the tumor cells, whefe could be E. Initial and Boundary Conditions

at positionx in theinterior €2 of the state domain and time
t on[0,%].

exponential, logistic or Gompertz growth , Let the initial conditions for the state be
- 1 ni 1 k1 nl(x, O) nlO(X)
fl(nl) =ni, N - k_l or npln n_l 5 Y(x7 0) — nz(x’ O) — n?O(X) = Yo(x)’ (5)
¢(x,0) ¢o(x)

respectively, where; is the tumor cell intrinsic growth rate . . .
b Y ! 9 for x in Q. Murray [11] recommends using Gaussian

andk; is the tumor cell carrying capacity. Let; o denote . 7 . 7L Lo
the dleath rate of the tumo)r/ cgells Fc)iue {0 cc>1|’”r21petition foflstrlbunon for the initial distributions of tumors. Theo
lux boundary conditions are

resources with the normal tissue. Ligt(c) be the death

rate of tumor cells due to drug treatment, which could be —D1(N-V,)[n1]
a function of the localized drug concentratioix, ) atthe  _p(N . v,)[Y](x,t)= —Dy(N-V,)[ns] |(x,£)=0, (6)
tumor site, e.g., purely linear function, —Ds(ﬁ V)l
bi(c(x,t))=r13-¢(x,t). for x € I'=01, i.e., on the boundary of the domain, and
) for ¢ € [0,ts], assumingD; # 0 or else theD; would not
B. Normal Tissue be used in the condition, whel (x,¢) is the normal to
Similar assumpt|0ns are made for the density of normdhe boundary-D;V.[Y;] is the flux of theith component
cells ny = na(x,t) with similar coefficients. Thus, the and the diffusion matrix,
reaction-diffusion equation for normal tissue evolutien i D, 0 0
as follows, D(x)=1|0 Dy 0 |=[Dibijlsx1
02 _ p,v2 b 2 o0 D
ot 2Valnel +azfo(na) = (a2 ami+bo(c)) n2, - (2) is diagonal and inhomogeneous depending on the brain

matter [12], whered; ; is the Kronecker delta. Note that
the no flux condition at the boundary is motivated by the
physical reality that the brain is a finite and closed domain.

where as is the normal cell intrinsic growth rate and the
normal cell growth functiory; is either exponential, logistic

or Gompertz growth ,
ka

fa(n2) =ma, mo(1- k_z or ngln - A possible objective functional is the quadratic form of

running and terminal costs,

respectively, wherg is the normal tissue carrying capacity.

> IIl. OPTIMAL CONTROL PROBLEM
)

Note that theb;(c) term indicates that some normal tissues J(u / dt /dx 2 (x, t)+s (u—ug)> (x,t))
could die as a result of the treatment angc) must also Q
depend on the local drug concentratigi, t), e.g., +/dx (qm1 (x,tf) + gsc?(x, tf)) ) (7)
Q
ba(c(x, 1)) = ka3 - c(x,t). The goal is to minimize this functional with respect to the

drug input rate relative to some threshold rateand the
terminal costs aty, i.e., min, [J(u)]. Note that here > 0

It is assumed that the drug shows a diffusive behavias the tumor burden cost coefficient and> 0 is the drug
and that there is a reabsorption at the rafeAlso letw =  delivery cost coefficient, while;; > 0 andgs > 0 are
u(x,t) be the rate at which the drug is being injected. Théhe corresponding final costs. We are trying to minimize
choice of the letter: indicates that we will use it as the the density of tumor cells and the drug delivery quadratic
control when dealing with the optimal control system. Theontrol term(u(x, t) — uo(x, t))?. We could have chosen a
equation for drug concentration at positigrand timet is, linear control which would have been less realistic, and als
would give rise to problems like singular control. In adoliti
— =D3V2[c]+azfs(c)+u, (3) no assumption is made about the control constraints, even
though there might be physical restriction on the amount of
where f3(c) = —c is the reabsorption function[14]. drugs that can be administered.

C. Concentration



IV. VECTORFORM

For the sake obrevity we put the mathematical model

in vector form with vectors in boldface.

A. Governing equations
The vector state satisfies the PDE:

aY

5 = DV2[Y] + Af(Y) + B(Y,1)Y + U, (8)
where
ap 0 0 fi(n1)
A=10 ax 0| =laidijlsx1, £(Y)=|fa(n2)|,
0 0 a3 f3(e
a1 2M2 + K1,3C 0 0
B(Y,t) = — 0 Q21MN1 + K2,3C 0
0 0 0
0
U(x,t) = 0 = Us(x,1)es, 9)
u(x,t)

wheree; is theith unit vector.

B. Objective Functional

The objective in vector form is

J[Y,U]:%/O /

1
+3 /Q dx (Y'QY)

Y'RY+(U-Uy) 'S (U—Uo))

, (10)

t=ty

where R = reje|, S = sege;, Q = qeie] + q3e3e;—

Hamiltonianas,
H(Z) = % /0 it /Q dx (YTRY+(U-U) 'S (U-Uy) )
+% / dx (Y'QY) .
+/O /d ¢ (——sz[ |- AF(Y)
_B(Y,1)Y — U)
+/Otfdt /BQ arn’ (—D (ﬁ-vm) [Y])
< fax(¥] ).

V1. OPTIMAL CONTROL VARIATIONAL FORMULATION

(12)

The calculus of variationsis used to find differential
equation of optimal control for the control, state and the
co-state (adjoint or Lagrange multiplier) by seeking the
functional critical point necessary conditions for the tfirs
variation [3], [8] of thepseudo-HamiltoniarH (Z).

A. Pseudo-Hamiltonian First Variation

Let the extended state vector be perturbed about the
optimal trajectoryZ*, so thatZ = Z* + ¢6Z, where §Z
is the perturbation. Next expand the pseudo-Hamiltonian

H(Z* + 6Z) = H(Z*) + 6H(Z*,6Z) + O((6Z)?).

Neglecting the quadratic order terms, including the 2nd
variation of H, the first variation is given by functional
terms linear indZ using (12),

H(Z*,5Z) :/O /dx

*\ Tr
+/de((Y ) 'Q5Y)

o[ fx (€

Y*)TRY + (U*—Uy) 55U)

t=ty

T(6Y;—DV2[5Y]

andU, = UO(X, t)eg. —A oY - VY ]( ) — B(Y*,t)§Y
—(0Y-Vy)[B](Y",1)Y" —4U)
V. DEFINING THE PSEUDO-HAMILTONIAN +0¢ (Y —DV2[Y*]|- Af(Y")
We have three vectors for theagrange multiplierstwo —B(Y", )Y" — U*)> (13)
of which are functions of space and time and one is
independent of time, needed to include the optimization / / TD N-V, ) [0Y]
o0

constraints in the extended objective for the state PDE (8),
the boundary condition (6) and the initial condition (5),

&1 m X1
S(X, t) = 52 ) U(Xa t) = |72 ) X(X) = X2 (11)
3 X3

&3
e, & = &(xt),m = ni(x,t) and x; = x;(x), for
1=1:3. LettingZ = (Y, U, €&,n,x), define thepseudo-

+on'D (N-Vw) [ ])

+ /g ldx ((x*)T5Y+5XT<Y e YO)) .

Before the critical conditions for first variation in (13)
can by used to obtain the extended state equations, the
functional dependence of the higher derivatives in time and
state of the extended state perturbations must be elinginate




on lower order terms by one or two integrations by partdpr (x,¢) € 9Q x [0,¢;] and with initial conditions on the
i.e., by one, interior © from the coefficient o x) T, i.e.,

ty

/ Cane)Tay, = (€)oy| - / CayTe; Y7 (x,0) = Yo(x) (16)
0 0

0
for x € . Due to the presence of the functiofi§y’) and

and by two using the Green's formula [4], B(Y,t)Y the forward PDE (14) will be nonlinear.

/ dx(€*) DVZ[§Y] = / dxd8Y V2 (D¢
S S

2 2 C. Regular Optimal Control
+/ dI‘((N-VI)[éYT]Dg* Since the control has been defined in (9) as only having
oQ one component, only the coefficient 65 is set to zero
—5YT(N-VI)[D£*]>. giving the corresponding regular control
Merging these identities with (13), rearranging inner prod Ui (x,t) = Ups(x,t) + lg; (x,1), (17)
ucts and collecting terms the extended state equatiordsyiel o
the following intermediate form: on Q x [0,t], provideds # 0. Note that this control law
ty only requires solving for the 3rd component of the first co-
SH(Z",0Z) :/ dt /dx §Y "(RY*—¢,-V2[D¢" state vecto™(x,t), sincedU; =0 and U, = 0.
Q

—Vy[ ](Y*)Aé*—B(Y* t)g

ok D. Co-State Equations
VBI(Y" )€ (Y a

T (U . Upon setting the functional coefficient 65Y)" to zero
/ /de oU (S (U"-Up)-¢") yields the primary co-state backward PDE:
dt dx og"( Y*—sz[ *] [/ A g*
0= —- + Vi[DE] + Vy[f](Y") A€
ar(y SOYT - +B(Y*, )€ + Vy [B(Y*, )" (Y")")
/ dt / dr 5nTD N.-V )[ *] —-RY", (18)
l9)
T « for (x,t) € Q x [0,t5). This PDE (18) is unidirectionally
+/ /BdI‘ oY N Ve ) [DE7] coupled to the state PDE (14), except that only the 3rd

ty component; (x, t) is needed for the regular optimal control
—/ t/dI‘ N Ve 5YT}D(77*+€*) input U3 (x,t) from (17). The boundary condition follows
0 o from setting the functional coefficient éfY (x, ¢) for x on
+ /dx (6x" (Y*—Yo(x))) =01 to zero, so
¢

2 t=0
+ /dX (6Y—r (X*—S*)) (NVI)[Dé*](Xa t) = 07 (Xa t) € 0N x [Ovtf) (19)
Q t=0
s and the final condition for this backward PDE follows from
+/de (0Y'(€+QY)) . forcing the coefficient obY (x,¢¢) to be zero o,
=tr
where A: B denotes the trace of the matriAB or the £ (x,t5) = —QY(x,t5). (20)
double-dot product.
_ The two other co-state vectors should not be needed,
B. State Equations but satisfy rather simple equations. The 2nd co-state vecto
The optimal state equation is recovered by setting tHgduation follows as the zero coefficient aN-v,) Y]
coefficient of (6¢)T to zero: on the state boundaly =012,

The 3rd co-state vector equation follows as the zero coef-

on §2 x (0, ], with boundary conditions 082 x [0, ;] ficient of state initial conditiodY (x, 0)

from the coefficient of(dn) T, i.e.,

—D(N-V,)[Y*](x,t) =0, (15) X" (x) =€°(x,0), x€Q.



VII. | TERATIVE APPROXIMATIONS FORCOUPLED third component is used to update (17) the control law
SYSTEM Ut (x, ).

We need to solve the system of equations developed in Before we actuglly g0 mtq the details of the_ shoot-
the previous section, namely tiséate equation§l4) using Ing method, we will briefly _d'_SCUS_S the Crank-Nicolson,
the regular optimal control (17) and co-state equations predictor-corrector central finite difference method used

(18), with the understanding that the state equations ald solve the nonlinear PDEs. The space is discretized as

forward equations while the co-state equations are baakwal!loWs:
equations. The methoddouble shotmethod, since model

has two vector-valued PDEs, so the method consists of one
forward shot with (14) and and one backward shot wittHere Az; is the mesh size for stateandj = [j;]3x1 Where,

X—=Xj= [xjml + (]z - 1) : Axi]3><1-

(18). ji: = 1:M; nodes per node for statés- 1:3. For the forward
The following steps can be used to get approximatstate equation we have the forward time discretizatior,
solutions: tr = kAt, for k = 0:K time steps wheré\¢ is the forward
1) An initial guess for the first forward-backward shotlime Step sizefo = 0 andtx = ¢;. Now we consider the
iteration is made for the contrél;(x, t) = ?El)(x’ t) vector state/co-state PDE system in general form,
in (1_7). Substituting it int(_) thetate forward PDE(1_4_) Y: = F(x,t,Y*(x,1), U (x,1)),
solving for Y(Y)(x,t), using the boundary condition _ &G ; v+
(15) and initial condition (16). 0= & +Gx 16 (x1), Y (x1)).
. . e 1
2) Next the approximate final conditiog™ (x.tf) = |n this equation, using the ordinate discretization

QYW (x,t;) (20) is used to start the backwardy(xjjtk) ~ Y;, and £(xj,t) ~ & the relevant
co-state PDE (18) approximation using boundary yerivatives discretization are ’
conditions (19) .

3) Once ¢ (x,t) is determined theregular optimal (YD), o Ykt1/2+41/2 —Yj,k+1/2—1/27
control equationis used to determine the updated etz 2(At/2)
value of the control, ) k12412 = &ik-1/2-172
tyk=1/27 2(At/2)

U§2)(x, t) = Ups(x,t) + fél)(x, t)/s.
and
4) This process is repeated fér= 2: L double shot

. . ' e > . Yjie, —2Y; +Y; e,
iterations until a convergence criterion for sufficiently(V2[Y*) o dtenktl/2 2 2 ik /2T D jmenktl/2

) - s Jk+1/27 (Ax;)? ’

large L is reached, e.g., the relative criterion for the
control, (V2ET), o, o Srrenko1/z 21/ tE) ooy

z jk—1/27 (AIi)Q )
HUW(X H)-US D (x t)H<tol HU“—”(X t)H _

3\ 3 ’ s e Consequently the forward and backward numerical schemes
and, say are given by
0 _ 0 © -0
Y = Yj,k + AtFj,k+%a for k = 0:K—1,

e R (e
&) = &0+ atGl) , for k= K11,

for ¢ = 2:L until satisfied, providedUéefl)(Xa t)l # e e

0 and||Y1(é_1)(X, #)|| # 0, wheretol, > 0 andtol, >  respectively, (fgc))ré = 1:L. For each doul:_)le shdtthe state

0 are some prescribed tolerances. starts fromY;; , = Yo 5.0 = Yo(x;,0) using

VIII. D OUBLE SHOT FORWARD-BACKWARD Ugj),k =Uos,jk+ 5§fjj,j>/s, for k = 0:K—1,
COMPUTATIONAL METHOD .
except wher? = 1 and the initial gues@é j)k, e.9..U0.3j.k»

In reallt_y th_e problem is highly non—h_near as aré manyq \,seq. For each updated forward state shot is completed,
problems in biology and we need numerical approximatio

- — ()
of the solution. The main problem here is the fact th;'[[%en the backward co-state shot starts fr@ﬁ%{ =QY; i

we have a forward state equation and a backward co-st&téing the whole state SeYj(,le for & = 0: K. The
equation. What we really do here is modify shooting meth€rank-Nicolson temporal mid-poirﬁ‘é%rl state function
ods [7] for initial-final-boundary value problems, whereth is approximated by average with =

starting aim is replaced by an estimate of the full control 1

law U?EZ) (x,t) for the forward integration of the state PDE YJ.(2+1 == (Yj(z,z+1 + J-(Zk) ;

(14) whose final approximatio’y (“)(x, ;) serves as the o2 7

backward aim (20) for the backward integration of the cowhich can be used to construct finizte differences for the
state PDE (18) producing an approximat'&fﬁ (X, t) whose deriVatiVeS, with a similar form fOU§7;+%, for ¢ = 0:L.



Similarly, the backward temporal mid-poiﬁtﬁi_l co-state drug simulations for the brain of Wang et al. [14] and the

function is approximated with the average, brain tumor modeling of Swanson [12] and Murray [11],
1 with some difficult to find parameters from Mansuri [9] or
552,; = _ (652 + éf,z_l) , from reasonable estimates from other areas. For example,
_ e 2 S diffusion diagonal vector iD = [4.2e-3, l.e-15, 2.2e-
and is used for the derivatives as well. 1] cm? per day (normal tissue diffusion is assumed to be

The no flux boundary conditions for both the state anhsjgnificant), the quadratic cost coefficients are: 0.1 =
co-state present some extra complexity, since the central ds — ;; — ¢, the net growth coefficients are = [1.2e-2,
ferences of Crank-Nicolson are not suitable at the boundagyge_7, 1.1e+]lper day, the carrying capacities for tumor
if it is necessary to avoid using artificial external pointsy.. and normalk, tissues are scaled to one for the normal
External points can be avoided by judicious use of forwargs|ye and the interaction coefficienfts o, o 1, k1.3, K2.3}
and backward differences of second order, matching thge all given the arbitrary value 1.0e-4. The initial states
accuracy of the Crank-Nicolson central differences. In thgre given to be uniformly one for the normal tissue, while
simplest case of rectangular grids, the discretized no flyse tumor density was assumed to be a spatial Gaussian
boundary conditions (15,19) with second order accuracy a{@ith spread 2.0e-2 about a mean of 0.0 with a weight of

N 0) 1.e-3. The initial drug concentration has a Gaussian spread
0= - ((N-v,)[Y"])

ik of 1.0e-2 about a mean 0.0 with weight 1.e-4, while the
0 () 0 threshold drug controk(z, ) is similarly distributed, but
o Y T Y Nt Yj—zN,k’ with weight 1.e-5.
2[N-Ax| The results are given only for the tumor densifyf =
0— ((ﬁv )[(é)*])“) N (x,t) in Figure 1 on the symmetric space intervak
B ‘ ik [-1.0,+1.0] in centimeters over a; = 5 day treatment.
14 4 14 i i i i
N 3(6)\7 = 48)\“ns + (€ on For t?]ls S|hmple pneI s(,jpac_el; d_|men.;,|orr]1 test example, we
~ 2 NAx] , see that the optimal distribution of the tumor using an

optimal distribution of the drug delivery results in the 2%
respectively, wherdN = NJ. ke AX = [Azi]3x1 > 0, D is reduction of the tumor density over this simulated five day

not needed, and, e.gY| "y , =Y (x; — |[N-Ax|N, ;). drug treatment trial.
For non-rectangular domains, interpolation would be ndede
to convert evaluations to defined spatial nodes or els 107
domain compatible grids should be used, e.g., for circula '
or spherical grid boundarie®y = e,, where here- is the o)
radius andN - Ax = Ar. 16 ..Nixv*:d).
During eachvth double shot, a prediction and corrections 14} Nt |1
of the state and co-state are used to account for the usu Nyt ]
nonlinearities in the biological models [6], stopping when

Optimal Relative Tumor Density N *1(x,t)

18f o N,(x.0)

the changes are sufficiently small. S
The above mentioned method is a sequential double shi i
method since one shot is used to gg({,g and a subsequent o
shot it used to geEJff,z. Alternately, a parallel two shot T
method could be used to get an approximate solution b 2t
integrating for bothYJ.(f,z andéf,z in the forward direction . DUDUNEERNL . S

X, Space in cm.

using a guess initial condition fog}fg at tg = 0, with
several genuine shooting method shots until sdmshot
Where||£§fK) +QYJ.(,ZK)|| < tolg, i.e., the final co-state value Fig: dl- t Tum_f:rr] l:_ensittyN%‘(t:;f{ t) Vefzusd the Onet-dimeTSiOQni' spatial
is small enough using some suff_igiently small tolera\_ncé?;srt:ifz M 0.5'2:23 a 0_8752:172;’ ﬁﬁ;?gqger:"asugagls‘flﬁe
tolg to approximate the final condition (20). Interpolationtargeted tumor density rapidly decays in this simulated  tdal.
should be used to accelerate the convergenéﬁbto some

sufficiently small value.
X. CONCLUSION

IX. TESTRESULTS The main interest of this paper was to provide the nec-

The double shot forward and backward algorithm outessary foundation to study the mechanism of drug delivery
lined in the previous two sections has been tested on ot the brain. We have set up a fairly realistic distributed
space dimensiony, example with three state dimensionsparameters model which takes into account the spatial
{Y{'=N7,Y, =N;,Y;s=C*}, plus the drug input control dependence of the state variables. The main focus of the
Us. The numerical parameter data come from the BCNlpaper was to develop an algorithm to determine the optimal



drug delivery to brain tumors using an optimal distribution [4]
of the drug about the original tumor site. This paper leaves
room for a lot of new directions of work. [5]

A. Future Directions

One such direction would be running a simulation to (6]
implement the algorithm, using supercomputing tools. Of
course this would require more realistic medical data. An-
other important aspect that can be examined is the effect (Z[)];]
stochasticity, most notably the Gaussian and Poisson tiype
noise. The physical basis for such stochasticity would be th[8]
phenomenon of metastasis, which gives rise to addition !
tumor sites and also the side effects produced by the drug.
We hope to examine all these aspects of the problem o]

future works. [11]

XI. ACKNOWLEDGMENTS (12]

The authors gratefully acknowledge, Dr. Herbert H. En-
gelhard of Neurological Surgery at the University of lllino (23]
Medical Center for suggesting the problem and Professor
William D. O’Neill of Bioengineering at the University of [14]
lllinois at Chicago for putting us in contact.

15

REFERENCES [15]

[1] H.H. Engelhard, “Brain Tumors and the Blood-Brain Barfi Neuro-
Oncology, The Essentialpp. 49-53, Thieme Medical Publishers,
Inc., New York 2000. [16]

[2] R.A. Gatenby and E.T. Gawlinski, “A Reaction-Diffusioklodel
of Cancer Invasion,”Cancer Researchvol. 56, pp. 5745-5753,
December 15, 1996.

M.D. Gunzburger,Perspectives in Flow Control and Optimizatjon

SIAM Series in Design and Control, Philadelphia, 2003.

(31

R. Haberman,Elementary Applied Partial Differential Equations
with Fourier Series and Boundary Value Problenfrentice-Hall,
Englewood Cliffs, NJ, 1983.

F.B.Hanson and K.Naimipour, “Convergence of Numerib&thod
for Multistate Stochastic Dynamic Progamming?roceedings of
International Federation of Automatic Control 12th Worle@ress
vol. 9, pp.501-504, 1993.

F.B.Hanson, “Techniques in Computational Stochastjmdmic Pro-
gramming,”Control and Dynamic Systems: Advances in Theory and
Applications vol. 76, pp.103-162, Academic Press, New York, April
1996.

H. B. Keller, Numerical Methods for Two-Point Boundary Value
Problems Gin Blaisdell, Waltham, MA, 1968.

D. E. Kirk, Optimal Control Theory: An IntroductigrPrentice-Hall,
Englewood Cliffs, NJ, 1970.

J. Mansuri, The Modelling of Tumor Growth Using Reaction-
Diffusion EquationsMSc Thesis, Oxford University, 2002.
J.D.Murray,Mathematical Biology I: An IntroductigrSpringer, New
York, 2002.

J.D.Murray,Mathematical Biology II: Spatial Models and Biomedi-
cal Applications Springer, New York, 2003.

K.R. SwansonMathematical Modeling of the Growth and Control
of Tumors PhD Thesis, University of Washington, 1999.

C-H. Wang and J. Li, “Three dimensional simulation oGlglelivery
to tumors,” Chemical Engineering Scienceol. 53, pp. 3579-3600,
1998.

C-H. Wang, J. Li, C.S. Teo and T. Lee, “The delivery of BGN
to brain tumors,”Journal of Controlled Releaseol. 61, pp. 21-41,
1999.

J. J. Westman, B. R. Fabijonas, D. L. Kern, and F. B. Hanso
“Compartmental Model for Cancer Evolution: Chemotheramd a
Drug Resistance,Mathematical BioSciencepp. 1-20, May 2002,
under revision.

D.E.Woodward, J.Cook, P.Tracqui, G.C.Cruywagen, JMDrray,
E.C.Alvord, Jr., “A mathematical model of glioma growtheteffect
of extent of surgical resectionCell Proliferation vol. 29, pp. 269-
288, 1996.



