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~ Abstract—The growth and treatment of brain tumors  on solid tumors. Websites provide very useful information
is mathematically examined using a distributed parameters on Clinical Trials and Noteworthy Treatments for Brain
model. The model is a system of three coupled reaction Tumorslike BCNU [1] and Gliadel wafers [2]. Wang et al.

diffusion equations involving the tumor cells, normal tissie . .
and the drug concentration. An optimal control problem is [17], [18] have modeled drug delivery behavior to tumors

designed, with the drug delivery rate as the control and in three dimensions for drugs like IgG and BCNU.
solved to obtain the state and co-state equations as well as In this paper, the focus will be mostly on the distribution

the regular control. This gives rise to a coupled system of and optimal control of the drug about the original tumor
equations with a forward state equation and a backward co- - gjte First the mechanisms behind the growth of tumor cells

state equation, which are solved using a modified double shot . L
forward-backward method. as well as normal tissues and the drug concentration in the

A numerical procedure based upon the Crank-Nicolson tumor are considered. Unlike a lot of other tumors, gliomas
method is used to solve the coupled nonlinear system of sixen  can be highly diffusive [15]. Gatenby et al. [5] and Mansuri
dimension partial differential equations, along with a quasi-  [13] study the mechanism of reaction diffusion in the
linear approximation of the nonlinearites using extrapoldor-  growih of tumors. They also take into account the effects of
predlctor-corrector iteration technlques. .

competition for resources between the cancerous cells and
|. INTRODUCTION the healthy tissues. Westman et al. [19] look at the various

The growth and control of brain tumors have been tht pes of tumor growth, namely exponential, logistic and

. . o . ompertz. Murray’s books [14], [15] are excellent refer-
subject of medical and scientific scrutiny for a very long . .
. . ; : ences for the study of different types of growth mechanisms.
time [15]. Simply speaking a tumor, like most cancerou :
o . : Iso, Woodward et al. [20] study a model of glioma growth
cells originates from a single cell, that proliferates and

effects its neighboring normal tissues. As the tumor celland the effects of surgical resection. Here, we set up a
g g ) Pairly generalized distributed parameters model for thé&ePD

become malignant they become more dangerous for the. : L : S
. . . driven system, define an objective functional to minimize
host. Understanding the mechanism of tumor progressm()p

is necessary for its diagnosis and treatment. The moE,{ug delivery and tumor burden costs, and use a modified

) . agrange multiplier method6] for including constraints
common and deadly form of brain tumor are thieomas . :
. . in the control problem. Finally alouble shat forward-
which account for more than half of the brain tumor , ! L .
. . . . ... backward iteration method is given to approximate the state
cases. Gliomas are highly invasive and severely infiltrate : ) :
co-state and regular control. For implementing this method

the surrounding tissues [16]. Despite improved dlagnost%r the PDESs a substantial modification is developed from

procedures such as computerized tomography (CT) scan atﬂ% Crank-Nicolson predictor-corrector method developed

mag_netlc resonance imaging (MRI),thelr _beneﬁts have bg%r;/ Hanson et al. [9] and Hanson [10] for stochastic dy-
restricted by the treatment options available. One maj%ram'c roaramming of bioloaical control applications. it |
impediment to administering the drugs to the brain tumor IC prog N9 lologi pplications. st |

site is theblood brain barrier (BBB)[4], which exists important to point out that the model presentgd 'S appleabl
: . ... to many cancer and non-cancer model applications.

as a protection for the brain cells and as a restriction

on the transport of water soluble substances between the II. MATHEMATICAL MODEL

blood and the central nervous system. Another problem )

that arises is the resection of a tumor after the core massket Y1 = ni(x,t) be the density of tumor cells); =

of the tumor has been surgically removed. The reader can(x,t) be the density of normal tissue ang = c(x, )

consult the recent work by Arauijo et al.[3], for more detaild€ the drug concentration at any vector positioand time

t. This spatio-temporal model is a system of three coupled
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where the tumor diffusivity i9;. Let the terma;nigi(n1) I[11. OPTIMAL CONTROL PROBLEM

be the growth rate O.f the tumor cells, whergy, () could The objective functional is taken to be a quadratic form
be exponential, logistic or Gompertz growth,(n1) = 1,  of running and terminal costs,

(1-n1/k1) orIn(ky /ny), respectively, where; is the tumor

cell intrinsic growth rate and; is the tumor cell carryin 1Y 2 9

capacity. Letgél_g denote the death rate of the tum0¥ cglls Jw) = 5/0 dt /de (rim (6 1) +s3 (u—10)” (x,1))

due to competition for resources with the normal tissue. Let —l—/dx (@ (x,t7) + gsc(x, ) - %)
#1,3¢ be the death rate of tumor cells due to drug treatment, o ’ T

although it could be a nonlinear function. The goal is to minimize this functional with respect to

B. Normal Tissue the drug input rate:(x, t) relative to some threshold rate
Similar assumptions are made for the density of normalo(x, t) and the terminal costs &, i.e., min,, [/(u)]. Note
cells no = nao(x,t) with similar coefficients. Thus, the that herer; > 0 is the tumor burden cost coefficient and
reaction-diffusion equation for normal tissue evolutisn i g5 > 0 is the drug delivery cost coefficient, whitg > 0
9 and g3 > 0 are the corresponding final costs. We could
ot = D2Valnaltammage(na)—(a2amthzsc)nz, (2) have chosen a linear control which would have been less
where a, is the normal cell intrinsic growth rate and therealistic, but would give rise to singular control comptica
normal cell growth functiomags(ns) is either exponential, tions. In addition no assumption is made about the control
logistic or Gompertz growthgs(ng) =1, (1—ng/ks) oF constraints, buty(x, t) serves as physical restriction on the
In(ky/ns), respectively, wherek, is the normal tissue amount and costs of drugs that can be administered.
carrying capacity. Note that the, 3¢ term indicates that
some normal tissues could die as a result of the treatment. IV. VECTORFORM

8TL2

C. Concentration For the sake obrevity we put the mathematical model

The drug exhibits a diffusive behavior and there is dn vector form with vectors in boldface.
reabsorption at the rates. Let u = u(x,t) be the rate
at which the drug is being injected and is the controh Governing equations
variable in an optimal control system. The equation for drug

concentration at positior and timet is, The vector state is governed by a nonlinear PDE:
dc
5t = D3V [e]+asegs(c) +u, ®) 88—1{ = DV2[Y] + A(Y)Y + B(Y,t)Y + U, ®)

wherecgs(c)=—c is the reabsorption function [18]. where

D. Global State Vector
A(Y) =[aigi(Yi)di j]lax3, U(x,t) = Us(x,t)es, 9
Let the global state vector be (Y) = [aigi(Y)3ii]axs (x,1) = Us(x, t)es ©)

Y(x,t) = [Yi(x,D)]sx1 = [m(x,1) na(x,1) e(x,8)]T, () B(Y,t) = —(ar2n2 + kisc)ere] — (azini + kzsc)ees ,

at positionx in the state domaiimterior 2 and timet on ¢, is theith unit vector and/s(x, t) =u(x, t).
[07 tf]

E. Initial and Boundary Conditions B. Objective Functional
Let the initial conditions for the state be The quadratic objective in vector form is
Y(X7 0) = YO(X)7 (5)

t
_ _ , v,u =1 / ot /dx (YTRY+(U—U0)TS (U—Uo))
for x in Q. Murray [15] recommends using Gaussian 2Jo Q

distribution for the initial distributions of tumors. Theo 1 -
flux boundary conditions are 3 /de (Y QY)(thf)v (10)
—D (N . V@) [Y](X7 t):[—Dz(NVm)D/Z](Xy t):|3><1 (6) whereR = rleleir, S = 83636;, Q = q16191r + QSeSe:;r and

for x € T' = 99, i.e., on the boundary of the domain, V° = uo(x,t)es

and fort € [0,t7], assumingD; # 0 or else theD;
would not be used in the condition, wheNyx, ¢) is the
normal to the boundary, and the diffusion matrix is diagpnal There are three vectlagrange multiplierstwo of which
D(x)=[D;6:;]sx1 and could be inhomogeneous dependingre functions of space and time and one is independent
on the brain matter [16], wher& ; is the Kronecker delta. of time, needed to include the optimization constraints in

Note that the no flux condition at the boundary is motivategti’(')(?.]gi)t(itc?rr]1 %g)d aonbéetﬂg/ ien}‘ggltrégnséﬁitgnﬁ%E (8), the boundary
by the physical reality that the brain is a finite and closed ’

domain. E(x,t)=[&ilax1 , n(x,t)=[milax1, x(X)=[xlsx1, (11)

V. DEFINING THE PSEUDO-HAMILTONIAN



ie., & =6&(x,t), ni=ni(x,t) and y;=xi(x), for i = 1:3.  and by two using the Green’s formula [7],
Let Z = (Y,U,&,n,x) be an extended state vector and ) .
define th(epseudo-Hanziltonian Jodx(€") DVE[6Y]=[dx5Y Vi[DE"]
" + Lyl (89015 1€~ 5Y T (R-9.0[DE"]).
H(Z) = = / dt /dx YTRY+(U—UO)TS (U—Uo))
Merging these identities with (13), rearranging inner prod

/dx (YY) t) ucts and collecting terms yields the intermediate form:
/ dt / dx €' (——Dv [Y]-A(Y)Y OH(Z7,02) = /0 K /Q dx Y (RY"—€;-V3[D¢"]
_B(Y,)Y — U) SAY)E -V [AIY (€YY

” ) BY",0¢-VyBIY " 0):(€(Y)T))

+/0 dt/m arq" (-p (N-v.) [Y]) +/tét/dx S (6
+ e (7YYo w0) 12)

/) /dx6£ (Yi-DV2[Y"]

VI. OPTIMAL CONTROL VARIATIONAL FORMULATION “AYNY"-B(Y )Y —U"

The calculus of variationsis used to find differential / /dl‘ on'D (N Ve )[Y*]
equation of optimal control for the control, state and the 0 0%
co-state (adjoint or Lagrange multiplier) by seeking the / /dr (SYT N-V. )[Dg*]
functional critical point necessary conditions for the tfirs .
variation [6], [12] of thepseudo-Hamiltoniart(Z). / /dr N V 5YT] (™)
A. Pseudo-Hamiltonian First Variation / ( T( —Yo) 0)

Let the extended state vector be perturbed about the
optimal trajectoryZ*, so thatZ = Z* + ¢Z, where §Z / (5YT ¢ ) 0)
is the perturbation. Next expand the pseudo-Hamiltonian

H(Z* + 6Z) = H(Z") + SH(Z",6Z) + O((6Z)?). +/de( Y (¢ +QY))(thf)7

Neglecting the quadratic order terms, including the 2ndihere 4 : B denotes the trace of the matritB or the
variation of 7, the first variation is given by terms linear yo,,ple-dot product
in 6Z using (12), '

B. State Equations

H(Z",0Z) /dt /dx )TRSY +(U —UO)TS<5U) The optimal state equation is recovered by setting the
coefficient of (5¢) T to zero:
dx Q5Y ) (x,t *
/ (¥)@sv)xoty) 8;‘; = DV2[Y']+ A(Y)Y* + BY )Y +U*  (14)
/ dt /dx < (0¥ - DV3[3Y] onQx (0, ¢r], with boundary conditions 08Q2x[0, ¢ ;] from
—(5Y V) [A(Y7) the coefficient of(én) ", i.e
—B(Y,t)(SY (Y -Vy)[B](Y",t)Y"-4U) —D(N-V,)[Y"|(x,) =0, (x,t)€dQx|0,/] (15)
+06 (Y =DV [Y - A(Y)Y" and with initial conditions on the interiof2 from the
_B(Y", t)Y*—U*> (13 coefficient of (5x) ", i.e
Y*(x,0) = Yo(x), xe€Q. (16)
/dt/aQ 'V”) [5Y] Due to the presence of the functiofi€Y') and B(Y,)Y

+on'D (N-Vw) Y ]) the forward PDE (14) will be nonlinear.

T - C. Regular Optimal Control
+/dx ((X ) O¥Hox (Y= YO))(X’ 0)- Since the control has been defined in (9) as only having
one component, only the coefficient 6f/;5 is set to zero
Before the critical conditions for first variation in (13)rca giving the corresponding regular control
be applied, the higher order derivatives in time and state of
the extended state perturbations must be reduced by one 6fs (x,t) = wo(x, 1) + &5 (x, ) /53, (x,8) €2 x [0,¢s],  (17)

two integrations by parts, i.e., by one, provideds; # 0. Note that this control law only requires
ty Sy e solving for the 3rd component of the first co-state vector
_/ dioY &, £*(x,t), sincedU; = 0 anddU, = 0.

0 0

/ e o = (€) oy

0




D. Co-State Equations we have a forward state equation and a backward co-state
Upon setting the functional coefficient 68Y) " to zero equation along with two pairs of bilinear terms due to the in-

yields the primary co-state backward PDE: trinsic growth termA(Y)Y and interaction ternB(Y,#)Y,
e o . . o both amenable to quasi-linear approximations. The double
0= Z-+Va[DE]+AY)E +VY[A](Y”7:(5 (Y7 ) shot method is a major modification of the shooting methods

FBY )€ +Vy [B|(Y", t):(g*(Y*)T)_RY*7 (18) [11] .for ir?itiql-final-boundary valug problems, where the

starting aim is replaced by an estimate of the full control

for (x,t) € Qx[0,¢s). This PDE (18) is unidirectionally law U?Ef) (x,t) for the forward integration of the state PDE
coupled to the state PDE (14), but only the 3rd componegi4) whose final approximatioy”)(x, ;) serves as the

&X(x,t) is needed for the regular optimal conti@} (x, t) - . . )
frgom (17). The boundary condition follows from setting thebackward aim (20) for the backward integration of the co

coefficient of Y (x, 1) for xe I =) to zero, SO state PDE (18) producing an approximatidfi (x, t) whose
third component is used to update (17), the control law

(N-V.)[D€*](x,t) =0, (x,t) € 0 x [0,t5) (19) i+ (x p).
and the final condition for this backward PDE follows from An initial guess for the first{ = 1) forward-backward
forcing the coefficient 0bY (x,t,) to be zero orf, shot iteration is made for the contrdl(x, t) = US" (x, #)
£ (x,t5) = —QY (x,t7), x€Q. (20) in (17), whereUél)(x, t) is taken as a Gaussian distribution

fter [15] with weight appropriate to the concentratiorelev

The two other co-state vectors should not be neederg, T .
but satisfy rather simple equations. The 2nd co-state vectgubstituting it into thestate forward PDE(14) solving

equation follows as the zero coefficient @¥-v,)[sY ] on for YV(x,t), using the initial conditionY,(x) (16) and

the state boundarf/ =91, boundary condition (15). For each successive double shot

x x for ¢ > 1, the starting control is given from a discrete

x,t) = —€"(x,t x,t) € O x [0,tf]. . '
7 () &) ) [0.27] version of (17).

The 3rd co-state vector equation follows as the zero coef- Next, a predictor-corrector adaptation of the Crank-

ficient of state initial conditioY (x, 0), Nicolson implicit method in one space dimension or al-

X"(x) =€°(x,0), x€Q. ternating directions implicit method in higher dimensions

to this forward-backward problem is made in order to

COMPUTATIONAL | TERATION METHOD correct for a qua3|-I|near_ f_;lpprOX|mat|0n (_)f the nonl_lne_ar

) o terms and preserve the tridiagonal properties of the intplic

Itis necessary to solve the system consisting ofsiiaée  gte, Central finite differences for all derivatives arecuse
equations(14) using theregular optimal control(17) and  eyerywhere, except that appropriate second order accurate
co-state equationg18), with the understanding that thefonyard or backward differences are used at nodes adjacent

state equations are forward equations while the co-staf§ the houndary due to the no flux boundary conditions.

equations are backward equations in time. The method jigsre our test results will be for the one-dimensional model.
a double shat forward-backward iteration method, since The three-dimensional space is discretized as follows,

the model has two vector-valued PDEs and the method

consists of one forward shot with (14) followed by one X = x5 = [zj,0 4 (i = 1) - Azilsxa.

backward shot with (18). Thidouble shomethod is similar  Here Az; is the mesh size for dimensiarandj = [ji]sx1

to the multiple shooting methoaf Hackbusch [8] used where, j; = 1:M; nodes per state for statés= 1:3.

for solving parabolic equations withpposite orientations For the forward state equation we have the forward time

or to what Gunzberger [6] calls thene-shotmethod. See discretizationt — t;, = kAt, for k = 0: K time steps
whereAt is the forward time step sizé; = 0 andtx = t;.

Gunzberger [6] also for a more rigorous justification WithNext consider the vector state/co-state PDE system in the
Sobolev spaces in the more general abstract case, but Hfwenient general notation:

model here is quite concrete. . i i
At this point one must be cautioned that the numerical Y. = F(x,t,Y (x,1),U"(x,1)),
method suffers from th€urse of Dimensionalitjor PDEs 0= & +G(x & (x1), Y (x,1)),

in higher_space d_ime_ns_ions as _the number of nodes groysy, appropriate vector functionB(x, ¢,y,u) for (8) and
exponentially, which limits the size of the problem that cang (x, ¢, £,y) for (18). In this coupled set of vector equations,
be numerically computed. However, Hanson [10] has usdtie state is discretized at the forward midpoint in time

parallel and other supercomputer processors with relatdd(%;, tk+o.5) =~ Yj ko5 and the co-state at the backward

numerical procedures on many control problems for big?idpoINt £(x;, tk—0.5) = éél k-0 The space-time partial

logical applications to reduce the effects of the curse (ﬁerivatives ofY*(x,¢) an 75*(){’ t) are discretized by the
g pp sual central finite differences of second order at these

dimensio.nality. o . respective midpoints. Consequently, the forward and back-
In reality, the problem is highly nonlinear as are manward numerical schemes are given by

problems in biology and we need numerical approximations
i ificati : YOO = v 4 ARy
of the solution as well as modifications of standard linear Jkt+1 ik §,k+0.5

numerical methods. The main problem here is the fact that NN =€) + AatGY, 5,

VIl. D OUBLE SHOT, FORWARD-BACKWARD



respectively, fory= O:nc corrections with each time stédp if it is necessary to avoid using artificial external points.
until External points can be avoided by judicious use of forward
(1,8) < (:0) (1.0) and backward differences of second order, matching the

Hyl,j,k+1 _Yl,j,k+1H<t01y Yl,j,/c+lH accuracy of the Crank-Nicolson central differences. In the
simplest case of rectangular grids, the discretized no flux

is satisfied for allj, for k = 0:K—1, and for¢ = 1:L o ndary conditions (15,19) with second order accuracy are
double shots. The Crank-Nicolson temporal mid-point is

i N N 4
approximated by averag¥ ;'\, ; = 0.5 (YJ(1+)1 +Yj(,lg) ; 0~ —(3Y(} — 4V, + Y%, )/ (2INAX]),
WhereYJ.(f,z is the final correction for each time stépmiven 0 = (3¢)7) — €\, + €50 1)/ (2INAX]),
shot?.

Similarly, the backward temporal mid-point is approxi-respectively, whereN = N;j,, Ax = [Azi]sx1 > 0, D
mated by¢{%.% 5 = 0.5 %‘Yk’” + 5}‘,271) , wheregf,g is the is not needed, and, e.gv,\” , =Y (x; — [N-Ax|N, t;) .
final correction for each — 1 time step given shot. These For non-rectangular domains, interpolation would be ndede
averages can be used to construct finite differences for the convert evaluations to defined spatial nodes or else

derivatives, with a similar form fous{’) ., for £ = 0:L  domain compatible grids should be used, e.g., for circular
and other terms. For each double slidbeyond the first, or spherical grid boundarie®y = e, , where herer is the
the state starts fronY ) = Yoj0 = Yo(x;,0) Using the (adius andN . Ax — Ar .
update During each/th double shot, an extrapolation or predic-
Uty = uogn + &5 0 /sa, for k= 0:K—1, tion and corrections of the state and co-state are used to
account for the usual nonlinearities in the biological mede
10], stopping when the changes are sufficiently small. The
Ibrall method is a sequential double shot method since one
shot is used to gev|? and a subsequent shot it used to

except wher? = 1 and the initial guess/{’), =uo;.x , is
used. For each updated forward state shot is completed, t
the backward co-state shot starts fraff}, =QY.". using

the whole state sey ") for k = 0:K.

, 0
This process is repeated f6£ 2:L double shot iterations gets; -
until a convergence criterion for sufficiently large is Alternately, a parallel two shot method could be used to

reached, e.g., the relative criterion for the control, get an approximate solution by integrating for bMﬁ,ﬂ and
Rg}fg in the forward direction using a guess initial condition
' for ¢ atto = 0, with several genuine shooting method

and shots until some/* shot where|l¢\’, + QY || < tole,
[V 6 31 o, 1) sctol, [ (x,1) |

U89, 01-U8 3, ) <tolu | [ U5 (x, 1)

i.e., the final co-state value is small enough using some
sufficiently small toleranceol; to approximate the final
where the norm is over all, t), for ¢ = 2:L until satisfied, condition (20).
provided||US ™V (x, )| # 0 and||Y,“ "V (x,t)|| # 0, where
tol, > 0 andtol, > 0 are some prescribed tolerances. VIIl. TESTRESULTS

The treatment of the nonlinear terms is to make their
approximation compatible with the linear properties of the The double shot forward and backward algorithm out-
Crank-Nicolson implicit method, so using an exptrapolatoriined in the previous two sections has been tested on one

predictor-corrector technique superimposed with space dimensiony, example with three state dimensions
A(YO  VY®  ~oA(YT? Yot {Y{*=N;{,Y;=N3, Y3 =C*}, plus the drug input control
( J’HO"’) BRHOS ( J’“O‘“) Bk+05 Uz;. The numerical parameter data come from the BCNU

1

B (YJ-(,Z13+0.5) Y 05~ B (Yﬂﬂ)s) YN drug simulations for the brain of Wang et al. [18] and the
. . ._brain tumor modeling of Swanson [16] and Murray [15],
for v = 0:nc corrections in the case of the state equation . - . .
; . o . with some difficult to find parameters from Mansuri [13] or
wherey = 0 is the initial value prediction wheh = 0 but is :
the extrapolated value (e.gr."" - ~05(3Y" — v ) from reasonable estimates from other areas. For example,
2 kH0.5 7 Jok o Tkl diffusion diagonal vector iD =[4.2e-3,1.e-15,0.22] cfn

from the two prior times ¥ and k—1) whenk > 0. The . e T L
. . . per day (normal tissue diffusion is assumed to be insignif-
number of corrections for eachis made small by selecting . . -
icant), the quadratic cost coefficients ate=0.1=¢q; =gs

At sufficiently small to satisfy accurate relative stoppingand 5 0.2, the net growth coefficients are —[1.2¢
3 = U.4, =1L -

criterion similar to that for the control and state giventie t . "
: L . 2,8.6e-7,11.3] per day, the carrying capacities for tumor
last section. Note that these approximations of the noatine .
. S . (v+1,0) k1 and normalk, tissues are scaled to one for the normal
functions are explicitly linear in the new valoe.”." .., so : : -
3,k+0. value and the interaction coefficienfs; 2, az 1, k2 3} are

the very eff|C|en_t Thomas tr!dlagona}l ellmlnat|on_a|golmt_h a\ll given the arbitrary value 1.0e-4, but 5 — 0.5, The
can be used with Crank-Nicolson in the one-dimensional... . . ,
initial states are given to be uniformly one for the normal

case. Similar quasi-linear approximations with predmlotissue, while the tumor density was assumed to be a spatial

and correction are used for the backward co-state equatio . : :
The no flux boundary conditions for both the state an?a_ussmn with spread 0.02 about a mean of 0.0 with a

co-state present some extra complexity, since the ceritral dveight of 1.0e-3. The initial drug concentration has a
ferences of Crank-Nicolson are not suitable at the bounda@aussian spread of 0.02 about a mean 0.0 with weight



0.15, while the threshold drug controj(x,t) is similarly
distributed, but with weight 1.0.

The results (obtained using MATLAB) are plotted only

which gives rise to additional tumor sites and also the side
effects produced by the drug. A study of the increase of
memory requirements and execution time if the dimension
of state-control space increases is very important when

for the tumor densityNV; = N;(z,t) in Figure 1 on the
symmetric intervalz € [-1.0,+1.0] in centimeters over a

using this model with actual real life data. We hope to

ty = 5 day treatment. For this simple one space dimensicgxamine all these aspects of the problem in future works.

test example, we see that the optimal distribution of the
tumor using an optimal distribution of the drug delivery
results in the 29.4% reduction of the total tumor densit
integral over this simulated five day drug treatment trial
The running time on a 2GHz processor was 168 second

s Optimal Relative Tumor Density n ;(x,t)
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Fig. 1. Tumor densityV; (z,t) versus the one-dimensional spatial coor-
dinatex with time ¢ at the rounded quartile valug®, t,1=0.25t  , t,,5q = [7]
0.5t7,tq3=0.75ts,ts}, wheret; = 5 days. The targeted tumor density
rapidly decays in this simulated 5 day trial.

IX. CONCLUSION [8]

The main interest of this paper was to provide the necl?
essary foundation to study the mechanism of drug delivery
to the brain. We have set up a fairly realistic distributed10]
parameters model which takes into account the spatial
dependence of the state variables. The main focus of the
paper was to develop an algorithm to determine the optimé&it]
drug delivery to brain tumors using an optimal distributio 12]
of the drug about the original tumor site. Here, a one-
dimensional test case is used. This paper leaves room {&8]

many new directions for this extremely complex problem.[14]

A. Future Directions [15]

One such direction would be running a simulation for, .
more than one space dimension to implement the algorithm,
perhaps using supercomputing tools. Of course this would]
require more realistic medical data. Also, the effects o[t18
using symmetric initial data needs to be examined by
considering non-symmetric initial distributions. Theesffs [19]
of brain geometry and the diversity of the brain structure
such as fluid cavities, vascular systems and brain matter
needs to be explored. Another important aspect that can
be examined is the effect of stochasticity, most notably t
Gaussian and Poisson type of noise. The physical basis for
such stochasticity would be the phenomenon of metastasis,
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