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Abstract

The Linear Quadratic Gaussian Poisson (LQGP) problem de-
notes an optimal control problem with linear dynamics and
quadratic costs with both Gaussian and Poisson noise distur-
bances. The LQGP problem provides a benchmark model
with sufficient complexity while permitting formal solutions
for testing both theoretical and computational methods. The
problem is examined and is illustrated with a flexible, multi-
stage manufacturing system application.

1. Introduction

The linear dynamics, quadratic performance, Gaussian noise
and Poisson noise or LQGP problem, has its dynamics gov-
erned by the stochastic differential equation (SDE)

dX�t� � �A�t�X�t� �B�t�U�t� �C�t��dt

� G�t�dW�t� � �H1�t�X�t��dP1�t� (1)

� �H2�t�U�t��dP2�t� �H3�t�dP3�t��

for general Markov processes in continuous time, with m� 1
state vector X(t), n � 1 control vector U(t), r � 1 Gaussian
noise vector dW(t), and q� � 1 space-time Poisson noise vec-
tors dP��t�, for � � 1 to 3. The dimensions of the respective
coefficient matrices are: A�t� is m � m, B�t� is m � n,
C�t� is m � 1, G�t� is m � r, while the H��t� are dimen-
sioned, so that �H1�t�x� � �

P
kH1ijk�t�xk �m�q1 , �H2�t�u� �

�
P

kH2ijk�t�uk�m�q2 and H3�t� � �H3ij�t��m�q3 . Note that
the space-time Poisson terms are formulated to maintain the
linear nature of the dynamics, but the first two are actually
bilinear in eitherX orU and dP� for � � 1 or 2, respectively.
This is necessary so that a modification of the LQG analysis
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(see Bryson and Ho [5] or Lewis [11]) will work from the
dynamic programming point of view. It is assumed that the
SDE (1) is interpreted in the sense of Itô.

The LQGP problem with linear dynamics in the form of (1)
has its origins in an early set of lecture notes by Wonham [13]
on random differential equations. A similar formulation, but
including jumps in the system parameters along with Poisson
disturbances such as in (1), is discussed by Mariton [12] in
his monograph on optimal control of linear systems with ran-
dom jumps in system parameters. The latter problem with
quadratic costs is more often is referred to as the Jump LQG
or JLQG problem. The LQGP problem could also be con-
sidered as a JLQG problem, since Poisson term introduces a
discrete jump in the state, superimposed on the continuous,
yet nonsmooth Gaussian noise contribution. However, the
JLQG problem covers noise other than Poisson and there is
quite a difference between the Markov chain noise introduced
through system parameters and disturbances introduced as a
term in the dynamics as in (1). The more general and cur-
rent name for combinations of discrete (e.g., Markov chains
or Poisson noise) and continuous systems is hybrid systems.

The machinery for these generalizations is found in Hanson
and Ryan [9] and related papers, where a concrete, constructive
proof is given for the equivalency between the state mean and
the quasi-deterministic mean derived form the infinitesimal
mean and variance for general continuous time Markov noise
with linear amplitudes.

In Section 2, the moments of the SDE (1) are derived and the
quadratic performance index is described in Section 2.1. In
Section 3, the dynamic programming formulation is used to
derive the formal optimal solution in Section 3.1. In Section 4,
a computational example for a multistage manufacturing sys-
tem is considered.



2. Infinitesimal Conditional Moments

The Gaussian white noise term, dW�t�, consists of r indepen-
dent, standard Wiener processes dWi�t�, for i � 1 to r. These
Gaussian components have zero infinitesimal mean and diag-
onal covariance. We have left the Gaussian noise coefficient
independent of both state and control vectors for simplicity,
but G�t� could well be generalized like those of the Poisson
noise coefficients, �H1�t�x� and �H2�t�u�.

The space-time Poisson noise terms, dP��t� � �dP��i�t��q��1,
consist of q� independent differentials of space-time Poisson
processes each. They are related to Poisson random mea-
sure, P��i�dzi� dt�, formulation (see Gihman and Skorohod
[7]): dP��i�t� �

R
Z��i

ziP��i�dzi� dt�� where zi is the Poisson

amplitude random variable of the dP��i�t� processes, for � � 1
to 3 while i � 1 to q�. These have mean

Mean�dP��t�� � Λ��t�dt

�Z
Z��i

zi���idzi

�
q��1

� Λ�Z�dt� (2)

where Λ��t� is the diagonal representation of the Poisson rates
���i�t�, Z��t� is the vector mean and ���i�zi� t� is the density
of the f�� igth amplitude mark component, and covariance

Covar�dP��t�� � Λ��t�dt

�Z
Z��i

�zi � Z��i�
2���idzi

�
q��1

(3)

� Λ��t����t�dt � ����i���i�i�j �q��1

with ���t� denoting the diagonalized variance of the mark
distribution for P��t�. It is further assumed that all of the in-
dividual component terms of the Gaussian and Poisson noises
are independent, i.e., Covar�dW�t�� dPT

� �t�� � 0r�q� .

The jth jump of the f�� igth space-time Poisson process at
time t��i�j with amplitude z��i�j causes the following jump
from t���i�j to t���i�j in the state:

�X��t��i�j� �

��� �H1�t��i�j�X�t���i�j��iz��i�j � � � 1
�H2�t��i�j�U�t���i�j��iz��i�j � � � 2

�H3�t��i�j��iz��i�j � � � 3

��� � (4)

From the above statistical properties of the stochastic pro-
cesses, dW and dP�, it follows that the conditional infinitesi-
mal expectation of the state is

Mean�dX�t� j X�t� � x�U�t� � u� (5)

�
�
A�t�x �B�t�u � C�t� � �H1�t�x�Λ1Z1�t�

� �H2�t�u�Λ2Z2�t� �H3�t�Λ3Z3�t�
	
dt�

and the conditional infinitesimal covariance,

Covar�dX�t� j X�t� � x�U�t� � u� (6)

�
�
�GGT ��t� � �H1�t�x��Λ1�1��t��H1�t�x�

T

��H2�t�u��Λ2�2��t��H2�t�u�
T � �H3Λ3�3H

T
3 ��t�

	
dt�

The conditional infinitesimal moments (5) and (6) are funda-
mental for modeling applications.

2.1. Quadratic Performance Index
The performance index is an essential component in modeling
a physical reality since it is used to determine the optimal con-
trol policy. The quadratic performance index is the quadratic,
cost-to-go form:

V �X�U� t� �
1
2

XT �tf�S�tf �X�tf� (7)

�
1
2

Z tf

t

�
XTQX � UTRU

	
���d��

where the time horizon is tf � t. The cost matrices Q and S
are symmetric, positive semi-definitem�mmatrices andR is
a symmetric, positive definite n�nmatrix. Equations (1) and
(7) comprise the LQGP problem. A nontrivial terminal cost
matrix S is essential for a nontrivial solution for this problem.
The quadratic performance index (7) was selected to extend
the results of the LQG problem.

3. Dynamic Programming Formulation

The optimal, expected performance, v�x� t�, is defined as

v�x� t� � Min
u�t�tf �

� Mean
P�W�t�tf �

�V �X�U� t� j X�t� � x�U�t� � u��� (8)

Applying the principle of optimality to the optimal, expected
performance index, (8,7), and the chain rule for Markov
stochastic processes in continuous time yields the partial dif-
ferential equation of stochastic dynamic programming:

0 �
�v

�t
�x� t� � Min

u


 �
A�t�x �B�t�u � C�t�

�T
rxv�x� t�

�
1
2

�
GGT

�
�t� : rxr

T
x v�x� t� �

1
2

xTQ�t�x �
1
2

uTR�t�u

� Σi�1�i

Z
Z1i

�
v�x � �H1x�izi� t�� v�x� t�

	
�1�i�zi� t�dzi (9)

� Σi�2�i

Z
Z2i

�
v�x � �H2u�izi� t�� v�x� t�

	
�2�i�zi� t�dzi

� Σi�3�i

Z
Z3i

�
v�x � �H3�izi� t�� v�x� t�

	
�3�i�zi� t�dzi



�

where A : B �
P

i

P
j Ai�jBj�i � Trace�ABT �. The last

three terms of (9) represent the total contribution of the jump
in the state from the Poisson processes. The backward partial
differential equation (PDE) (9) is known as the Hamilton-
Jacobi-Bellman equation and is subject to the final condition,
v�x� tf � �

1
2x

TS�tf �x.

3.1. Formal LQGP Solution
To solve (9), assume a modification solution of the form for a
LQG problem (for the usual LQG, see Bryson and Ho [5] or
Lewis [11]):

v�x� t� �
1
2

xTS�t�x � DT �t�x �E�t�

�
1
2

Z tf

t

�
GGT

�
��� : S���d�� (10)



The modification of the assumed solution form takes into the
account that the Poisson mark distribution is not centered,
i.e., non-zero mean amplitudes, so a linear term with time
dependent coefficient DT �t� and a state-control independent
term E�t� have been included. The final condition of (9) is
satisfied, provided that D�tf � � � and E�tf � � 0, since
symmetric, quadratic form coefficientS�t� has been chosen as
a backward extension of the final value S�tf � for t � tf .

The regular, unconstrained optimal control,u� � ureg, is given
by:

ureg�t� � �bR�1�t� bBT �t�
�
S�t�x � D�t�

	
� (11)

Assuming regular control, the coefficients for the optimal ex-
pected performance (10) are given by,

0m�m � Ṡ�t� �
�
ATS � SA�Q

	
�t�

� eΓ1�t��
h
S bB bR�1 bBTS

i
�t�� (12)

0m�1 � Ḋ�t��
h�
A� �Λ1Z1�

THT
1

�T
D
i
�t�

�
h
S
�

C �H3Λ3Z3

�
�S bB bR�1 bBT D

i
�t�� (13)

and

0 � Ė�t� �
h�

C �H3Λ3Z3

�T
D
i
�t�

�
1
2

h�
HT

3 SH3

�
: Λ3ZZ3 �DT bB bR�1 bBT D

i
�t� (14)

where

Γ1�t� �
��
�HT

1 �iS�H1�j : Λ1ZZ1

�
�t�
	
m�m

(15)

� 2
h�

Λ1Z1

�T
HT

1 S
i
�t��

Γ2�t� �
��
�HT

2 �iS�H2�j : Λ2ZZ2

�
�t�
	
n�n

� (16)

ZZ��t� � ���t� �
�

Z�Z
T

�

�
�t� �

�
���i�i�j � Z��iZ��j

	
q��q�

for � � 1 to 3 with bR�t� � R�t� � eΓ2�t�, bB�t� � B�t� �

��Λ2Z2�
THT

2 ��t�, and eΓ� � �Γ� � ΓT� �. Since the matrix
R is positive definite, R�1 exists and then so does bR�1.
Note (12) appears to have Riccati-like quadratic form, but
in general is highly nonlinear through the S dependence of bR.
If H� � �H��i�j�k�m�q��m�

, then HT
� � �H��j�i�k�q��m�m�

.
Note that the quadratic coefficient of the solution form, S�t�,
appears in the above coefficient definitions (15,16). This added
complexity of the space-time Poisson distribution means added
realism for the model.

The optimal control in (11) is a feedback control. However,
this feedback control is not purely linear in the state x as it
would be without the nonzero mean Poisson amplitude, but is
an affine function of the state, i.e., a linear function plus state
independent part. If there are control constraints, then the

assumed form of the solution becomes more complicated than
the general quadratic LQGP form in (10). For example, in the
case of component-wise or hypercube constraints, Umin�i�t� �
ui�t� � Umax�i�t�, the optimal control takes on a piecewise
form: U�i �t� � min�Umax�i�t��max�Umin�i�t�� ureg�i�t���.

Due to uni-directional coupling of these matrix differential
equations, it is assumed that the nonlinear matrix differen-
tial equation (12) for S�t� is solved first and the result for
S�t� is substituted into equation (13) for D�t�, which is then
solved, and then both results for S�t� and D�t� are substi-
tuted into equation (14) for the state-control independent term
E�t�. Since S�t� is a symmetric matrix by being defined with
a quadratic form, only a triangle part of S�t� need be solved,
or n � �n � 1��2 component equations. Thus, for the whole
coefficient set fS�t��D�t�� E�t�g, only n � �n� 1��2� n� 1
component equations need to be solve, so that for large n the
count is O�n2�2�, asymptotically, which is the same order of
effort in getting the triangular part of S�t�.

4. Multistage Manufacturing System Example

Consider a simple multistage manufacturing system (MMS)
that produces a single consumable good. In each of thek stages
of the manufacturing process a component or sub-assembly of
the final product is added. Assume that the production flow
follows a linear sequence, i.e., a part that has completed i stages
is the input material for stage i� 1. The initial, loading stage
is where all of the raw materials for all stages are input into the
system. The final, unloading stage is the mechanism by which
the final product is delivered to the consumer. For simplicity,
the loading and unloading stages are not considered as part of
the MMS. This model is similar to a flexible manufacturing
system (FMS), but its perspective is global instead of local.
Each stage can be viewed as an FMS. Kimemia and Gershwin
[10] describe the similarities and differences between FMS
and MMS, while presenting an algorithm for FMS control. A
survey of many types of real flexible manufacturing systems
is given by Dupont-Gatelmand [6].

At time t in the planning horizon while in stage i, there areni�t�
operational workstations. For each stage i, all workstations are
assumed to have identical properties and produce at the same
rate ci�t� with a capacity of producingMi parts per unit time.
The production rate ci�t� is the utilization, i.e., the fraction of
time busy, of the workstations at stage i and is bounded by
0 � ci�t� � cmax�i�t�, where cmax�i�t�, is the minimum of 1
and ci�1�t��Mi�1 �ni�1�t���Mi �ni�t��, due to the physical
and production limitations, respectively. Each workstation is
subject to failure and can be repaired. The mean time between
failures and the repair duration are exponentially distributed.
For similar models with variations see Akella and Kumar [1]
for a treatment of optimal inventory levels, as well as Boukas
and co-workers [3, 4] for a treatment that includes preventive
maintenance and machine age structure.



The total number of workstations at stage i is Ni. Hence,
ni�t� can be viewed as a birth and death process confined to
the interval 0 � ni�t� � Ni. The defining equation for the
number of operational workstations is given by

dni�t� � dPR
i �t�� dPF

i �t�� (17)

where dPR
i �t� and dP F

i �t� are Poisson processes used to
model the repair (birth) processes and the failure (death) pro-
cesses, respectively.

The state of the manufacturing system is described by the
number of operational workstations, ni�t�, and by the surplus
aggregate level, ai�t�. The surplus aggregate level represents
the surplus (if positive) or shortfall (if negative) of the pro-
duction of pieces that have successfully completed i stages of
the manufacturing process. The state equation for the surplus
aggregate level for stage i � 1 to k is given by

dai�t� �
�
Mici�t�ni�t� � ui�t�� di�t�

	
dt� gi�t�dWi�t�� (18)

The change in the surplus aggregate level, dai�t�, is deter-
mined by the number of pieces that have successfully com-
pleted i stages of the manufacturing process (Mini�t�ci�t�dt),
that are not defective, and are not consumed by stage i � 1
(di�t�dt), and by the status of the workstations. The term
ui�t�dt is used to adjust the production rate, ci�t�, where the
control ui�t� is expressed as the number of pieces per unit
time. The last term, gi�t�dWi�t�, is used to model the random
fluctuations in the number of defective pieces.

The regular control production rate is defined as: creg�i�t� �
V SPRi�t��ureg�i�t���Mini�t��, where the virtual static pro-
duction rate is defined as: V SPRi�t� � di�t���Mini�t��.
The control is bounded so that the production rate is valid
which leads to similiar expression for the constrained control
production rate.

The cost functional to be minimized is a quadratic cost-to-go
form given by (7) withQ�t� � 0 where the state or plant vector

is given by: X�t� �
�
a�t� n�t�

	T
. The salvage cost matrix

S is a symmetric, positive semi-definite 2k � 2k matrix. The
salvage cost is based on the idea of Just In Time or stockless
production (see Hall [8]). This means that a penalty is imposed
if we have a surplus or shortfall of production at the end of the
planning horizon in any stage of the manufacturing system.
Further motivation for the salvage term is given by Bielecki
and Kumar [2], who show that, for an unreliable manufacturing
system, the optimal policy is a zero inventory policy.

For numerical concreteness, consider a MMS with k � 3
stages with a planning horizon of 40 hours. Let the initial
surplus aggregate level for all stages be zero. Let the demand
be di�t� � 285 pieces per hours for i � 1 to 3. The Gaussian
random fluctuations of production will be assumed absent, i.e.,
gi�t� � 0 for i � 1 to 3. Let the total number of workstations,
Ni�t�, for each stage be 3, 5, and 4, respectively. The salvage
cost and the instantaneous quadratic cost coefficient matrices

are given by:

S�tf� �



S1�tf� 03�3

03�3 03�3



� S1�tf� �

�
1�2 0 0
0 1�9 0
0 0 2�6

�

and

R�t� �

�
1�3E4 0 0

0 0�8E4 0
0 0 0�6E4

�
�

The individual characteristics for an individual given worksta-
tion is summarized in the table below.

Production Mean Time Mean Time
Stage Capacity, Mi between Failure to Repair
i (pieces/hour) 1	�Fi (hours) 1	�Ri (hours)
1 117 25.0 2.5
2 71 21.5 4.0
3 88 30.0 1.5

In the case of unconstrained control, the regular control is
given by:

ureg�t� � �R�1�t�BT �t�
�
S�t�x � D�t�

	
� (19)

The quadratic matrix coefficient of the optimal value becomes
a genuine Riccati matrix equation,

02k�2k � Ṡ�t� �AT �t�S�t� � S�t�A�t�

� S�t�B�t�R�1�t�BT �t�S�t�� (20)

the equations for the linear and state-independent coefficients
become

02k�1 � Ḋ�t� � S�t�
�
C�t� �H3Λ3�t�Z3�t�

	
� AT �t�D�t�� S�t�B�t�R�1�t�BT �t�D�t� (21)

and

0 � Ė�t� �
h�

C �H3Λ3Z3

�T
D
i
�t�

�
1
2

��
HT

3 SH3

�
: Λ3ZZ3

	
�t� (22)

�
1
2

�
DTBR�1BT D

	
�t��

where

A�t� �



03�3 diag�M�diag�c�t��
03�3 03�3



� B�t� �



I3�3

03�3



�

C�t� �



�d�t�
03�1



� H3�t� �



03�3 03�3

I3�3 �I3�3



�

and

dP1�t� � 0� dP2�t� � 0� dP3�t� �



dPR�t�
dPF �t�



�

with diag�c�t�� � �Σj�i�jcj �k�1 being the diagonalization of
the vector whose components are given by ci�t� for i � 1 to
k.



The figures are for the second stage in the manufacturing pro-
cess with [3,4,*] active workstations. In Figure 1, regular
control and constrained control production rates, c2�t�, exhibit
the anticipation of workstation repair and failure, whereas the
maximal, virtual static production rate does not. The con-
strained control production rate saturates at 100% capacity,
while the unconstrained, regular control production rate ex-
ceeds 100% capacity. In Figure 2, the projected surplus ag-
gregate level, a2�t�, becomes negative when the constrained
control production rate, c2�t�, saturates at 100% of capacity.
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Figure 1: Virtual static, regular control and constrained control
production rates, c2�t�, for stage 2 with [3,4,*] active
workstations.
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Figure 2: The surplus aggregate level, a2�t�, for stage 2 with [3,4,*]
active workstations.

5. Conclusions

These results are of great interest because the LQGP problem
is a theoretical model and a canonical computational model
having several exact analytical results, except for solving the

LQGP nonlinear equation (12), and the auxiliary equations
(13,14). Also, the problem will be useful for severe testing of
physical devices in computer experiments, investigating large
fluctuations in financial markets, as well as many other appli-
cations, because the Poisson random component is useful for
modeling large random fluctuations,whereas Gaussian noise is
useful for relatively milder background fluctuations. Also, the
stochastic differential equation formulation used here makes
the construction of models analogous to that for other dynamic
systems. The multistage manufacturing system application is
a good test of our methods.
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