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Abstract
This paper treats the risk-averse optimal portfolio problem with consumption in continuous

time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset and
the volatility. The new developments are the use of the SVJD model with double-uniform jump-
amplitude distributions and time-varying market parameters for the optimal portfolio problem.
Although unlimited borrowing and short-selling play an important role in pure diffusion models,
it is shown that borrowing and short selling are constrained for jump-diffusions. Finite range
jump-amplitude models can allow constraints to be very large in contrast to infinite range models
which severely restrict the optimal instantaneous stock-fraction to [0,1]. The reasonable con-
straints in the optimal stock-fraction due to jumps in the wealth argument for stochastic dynamic
programming jump integrals remove a singularity in the stock-fraction due to vanishing volatility.
Main modifications for the usual constant relative risk aversion (CRRA) power utility model are
for handling the partial integro-differential equation (PIDE) resulting from the additional vari-
ance independent variable, instead of the ordinary integro-differential equation (OIDE) found for
the pure jump-diffusion model of the wealth process. In addition to natural constraints due to
jumps when enforcing the positivity of wealth condition, other constraints are considered for all
practical purposes under finite market conditions. Also, a computationally practical solution of
Heston’s (1993) square-root-diffusion model for the underlying asset variance is derived. This
shows that the nonnegativity of the variance is preserved through the proper singular limit of a
simple perfect-square form. An exact, nonsingular solution is found for a special combination of
the Heston stochastic volatility parameters.

Key words: optimal-portfolio problem, stochastic-volatility, jump-diffusion, finite markets,
jump-bankruptcy condition, double-uniform jump-amplitudes,
nonnegative-variance verification.

1 Introduction
The empirical distribution of daily log-returns for real financial investments differs in many ways
from the ideal pure diffusion process with its log-normal distribution as assumed in the Black-



Scholes-Merton option pricing model [10, 46]. One of the most significant differences is that ac-
tual log-returns exhibit occasional large jumps in value, whereas the diffusion process in Black-
Scholes [10] is continuous. Statistical evidence of jumps in various financial markets is given by
Ball and Torous [7], Jarrow and Rosenfeld [34], and Jorion [36]. Long before this statistical-jump
evidence, Merton [47] (also [48, Chap. 9]) published a pioneering jump-diffusion model using log-
normal jump-amplitudes. Other jump-diffusion models were proposed including Kou and Wang’s
log-double-exponential [39, 40] and Hanson and Westman’s log-uniform [26, 28] jump-diffusion
models or Zhu and Hanson’s log-double-uniform model [58, 59]. However, it is difficult to separate
the outlying jumps from the diffusion, although separating out the diffusion is a reasonable task as
shown by Aı̈t-Sahalia [1].

Another difference is that the empirical log-returns are usually negatively skewed, since the neg-
ative jumps or crashes are likely to be larger or more numerous than the positive jumps for many
instruments over sufficiently long periods, whereas the normal distribution associated with the log-
arithm of the diffusion process is symmetric and hence has zero skew. A third difference is that
the empirical distribution is usually leptokurtic, since the coefficient of kurtosis, i.e., the variance-
normalized fourth central moment [16], is bounded below by the normal distribution kurtosis value
of three. Qualitatively, this means that the tails are fatter than a normal with the same mean and
standard deviation, compensated by a distribution that is also more slender about the mode (local
maximum).

A fourth difference is that the market exhibits time-dependence in the distributions of log-returns,
so that the associated parameters are time-dependent. In particular, another significant difference is
the volatility, which is time-dependent and stochastic, i.e., we have stochastic volatility. Stochastic
volatility in the market, mostly in options pricing, has been studied by Garman and Klass [19], John-
son and Shanno [35], Ball and Torous [6], Hull and White [32], Wiggins [54], Stein and Stein [53,
see corrections in [5]], Ball and Roma [5], Scott [52], and Lord, KoekKoek and Dijk [41]. The
mean-reverting, square-root-diffusion, stochastic-volatility model of Heston [21] is frequently used.
Heston’s model derives from the CIR model of Cox, Ingersoll and Ross [13] for interest rates. The
CIR paper also cites the Feller [17] justification for proper (Feller) boundary conditions, process
nonnegativity and the distribution for the general square-root diffusions. In a companion paper to
the CIR model paper, Cox et al. [12] present the more general theory for asset processes. In their
monograph, Fouque, Papanicolaou and Sircar [18] cover many issues involving various models with
stochastic volatility. Andersen, Benzoni and Lund [2], as well as others, have statistically confirmed
the importance of both stochastic volatility and jumps in equity returns. In their often cited paper
on affine jump-diffusions, Duffie, Pan and Singleton [15] include a section on various stochastic-
volatility, jump-diffusion models. Bates [9] studied stochastic-volatility, jump-diffusion models for
exchange rates. Broadie and Kaya [11] devised an exact simulation method for stochastic-volatility,
affine-jump-diffusion models for option pricing in the sense of an unbiased Monte Carlo estimator.
Yan and Hanson [55, 56, 30] explored theoretical and computational issues for both European and
American option pricing using stochastic-volatility, jump-diffusion models with log-uniform jump-
amplitude distributions.

For the optimal portfolio with consumption problem, Merton [44, 45] (see also [48, Chapters
4-6]), in a prior pioneering paper, analyzed the optimal consumption and investment portfolio with
geometric Brownian motion and examined an example of hyperbolic absolute risk-aversion (HARA)
utility having explicit solutions. Generalizations to jump-diffusions consisting of Brownian motion
and compound Poisson processes with general random finite amplitudes are briefly discussed. Earlier
in [43] ([48, Chapter 4]), Merton also examined constant relative risk-aversion problems.

In the 1971 Merton paper [44, 45] there are a number of errors, in particular in boundary con-
ditions for bankruptcy (negative wealth) and vanishing consumption. Some of these problems are
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directly due to using a general form of the HARA utility model. These errors are very thoroughly dis-
cussed in a seminal collection assembled by Sethi [50] from his papers and those with his coauthors.
Sethi in his introduction [50, Chapter 1] thoroughly summarizes these errors and subsequent gener-
alizations. In particular, basic papers of concern here are the KLSS paper with Karatzas, Lehoczhy,
Sethi and Shreve [37] (reprint [50, Chapter 2]) for exact solutions in the infinite horizon case and
with Taksar [51] (reprint [50, Chapter 2]) pinpointing the errors in Merton’s [44, with [45] erratum]
work.

Hanson and Westman [23, 29] reformulated an important external events model of Rishel [49]
solely in terms of stochastic differential equations and applied it to the computation of the optimal
portfolio and consumption policies problem for a portfolio of stocks and a bond. The stock prices
depend on both scheduled and unscheduled jump external events. The complex computations were
illustrated with a simple log-bi-discrete jump-amplitude model, either negative or positive jumps,
such that both stochastic and quasi-deterministic jump magnitudes were estimated. In [24], they
constructed a jump-diffusion model with marked Poisson jumps that had a log-normally distributed
jump-amplitude and rigorously derived the density function for the diffusion and log-normal-jump
stock price log-return model. In [25], this financial model is applied to the optimal portfolio and
consumption problem for a portfolio of stocks and bonds governed by a jump-diffusion process with
log-normal jump amplitudes and emphasizing computational results. In two companion papers, Han-
son and Westman [26, 27] introduce the log-uniform jump-amplitude jump-diffusion model, estimate
the parameter of the jump-diffusion density with weighted least squares using the S&P500 data and
apply it to portfolio and consumption optimization. In [28], they study the time-dependence of the
jump-diffusion parameter on the portfolio optimization problem for the log-uniform jump-model.
The appeal of the log-uniform jump model is that it is consistent with the stock exchange introduc-
tion of circuit breakers [3] in 1988 to limit extreme changes, such as occurred in the crash of 1987, in
stages. On the contrary, the normal [47, 2, 24] and double-exponential jump [39, 40] models have an
infinite domain, which is not a problem for the diffusion part of the jump-diffusion distribution since
the contribution in the dynamic programming formulation is local appearing only in partial deriva-
tives. However, the influence of the jump part in dynamic programming is global through integrals
with integrands that have shifted arguments. This has important consequences for the choice of jump
distribution since the portfolio wealth restrictions will depend on the range of support of the jump
density.

However, there has been much less effort on the optimal portfolio with consumption problem
when stochastic volatility is included, and what is available tends to be very theoretical in na-
ture. Cox, Ingersoll and Ross [12] consider the very general optimal portfolio with consumption
problem for a very general state vector that could include stochastic volatility and a von Neumann-
Morganstern utility, and in the CIR model paper [13] considered the special case of the logarithmic
utility. Wiggins [54] considers the optimal portfolio problem for the log-utility investor with stochas-
tic volatility and using equilibrium arguments for hedging. Zariphopoulou [57] analyzes the optimal
portfolio problem with CRRA utility, a stochastic factor, i.e., stochastic volatility, and unhedgeable
risk.

In this paper, the log-double-uniform jump-amplitude, jump-diffusion asset model with a He-
ston model stochastic volatility is applied to the portfolio and consumption optimization problem.
In Section 2, the stochastic-volatility, jump-diffusion model is formulated as the underlying two-
dimension process for the optimal portfolio and consumption problem. In Section 3, the portfo-
lio optimization with consumption problem is formulated by stochastic dynamic programming and
jump-no-bankruptcy conditions are derived. In Section 4, the canonical solutions for CRRA power
and logarithmic utilities are derived using a implicit type of Bernoulli transformation. In Section 5,
the preservation of positivity of the optimal wealth from positive initial wealth is formally justified.
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In Section 6, the nonnegativity of the variance is verified using a proper singular limit of a perfect-
square form and an exact, nonsingular solution is given for special values of the Heston model [21]
stochastic-volatility parameters. In Section 7, conclusions are drawn.

2 Optimal portfolio problem and underlying SVJD model
Let S(t) be the price of a single underlying financial asset, such as a stock or mutual fund, gov-
erned by a Markov, geometric jump-diffusion stochastic differential equation with time-dependent
coefficients,

dS(t) = S(t)
(
µs(t)dt +

√
V (t)dGs(t) + νs(V (t), t, Q)dPs(t; Q)

)
, (2.1)

with S(0) = S0 > 0, where µs(t) is the mean appreciation return rate at time t, V (t) = σ2
s(t)

is the diffusive variance, dGs(t) is a continuous Gaussian process with zero mean and dt variance
(the usual symbol W is used here for wealth and B is used for the bond price), dPs(t; Q) is a dis-
continuous, standard Poisson process with jump rate λs(t), with common mean-variance of λs(t)dt,
and associated jump-amplitude νs(v, t, q) with IID log-return mark Q jump-mean µj(t) and jump-
variance σ2

j (t). The stochastic processes Gs(t) and Ps(t) are assumed to be Markov and pairwise
independent. The jump-amplitude νs(V (t), t, Q), given that a Poisson jump in time occurs, is also
independently distributed, at pre-jump time T−

k and mark Qk. In Eq. (2.1), the following short-hand
notation is used,

νs(V (t), t, Q)dPs(t; Q) ≡
(Ps+dPs)(t;Q)∑
k=Ps(t;Q)+1

νs(V (T−
k ), T−

k , Qk),

provided dPs(t; Q) ≥ 1, else the sum is defined as zero by convention, where T−
k is the kth pre-jump

time. The Qk are IID random variables with jump-amplitude mark density φQ(q; t) on the mark-space
Q.

There are many jump-amplitude distributions for the log-return that are used to define φQ(q; t).
Among them are the log-normal jump-amplitude distribution used by Merton [47] in his pioneering
jump-diffusion finance paper (see also Hanson and Westman [25]), the log-double-exponential distri-
bution used by Kou and coauthor [39, 40], and the log-uniform and log-double-uniform distributions
used by Hanson and coauthors [26, 27, 58, 59, 56]. Since it is difficult to determine what the mar-
ket jump-amplitude distribution is, the double-uniform distribution is the simplest distribution that
clearly satisfies the critical fat-tail property and allows separation of crash and rally behaviors by the
double composite property. So, let the log-double-uniform density be

φQ(q; v, t) ≡


0, −∞ < q < a(v, t)
p1(v, t)/|a|(v, t), a(v, t) ≤ q < 0
p2(v, t)/b(v, t), 0 ≤ q ≤ b(v, t)
0, b(v, t) < q < +∞

 , (2.2)

where a(v, t) < 0 < b(v, t), p1(v, t) ≥ 0 is the probability of a negative jump and p2(v, t) ≥ 0 is the
probability of a non-negative jump such that p1(v, t) + p2(v, t) = 1. Otherwise, a well-defined form
of the log-double-uniform distribution is

ΦQ(q; v, t) = p1(v, t)
q − a(v, t)

|a|(v, t)
I{a(v,t)≤q<0} +

(
p1(v, t) + p2(v, t)

q

b(v, t)

)
I{0≤q<b(v,t)}

+I{b(v,t)≤q<∞},
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where IS is the indicator function for set S. Since the double-uniform jump-amplitude distribution is
used here and elsewhere for the stock log-return variable and it is desirable to keep the mark variable
as simple as possible, let the mark variable be the jump in the log-return [22], i.e.,

Q ≡ Jump[ln(S)](t) = ln((1 + νs(V (t), t, Q))S(t))− ln(S(t)) = ln(1 + νs(V (t), t, Q))

or

νs(v, t, q) ≡ eq − 1, (2.3)

leaving the v and t dependence in a(v, t) and b(v, t)
The stock price SDE (2.1) is similar in prior work [24, 25], except that time-dependent coeffi-

cients introduce more realism here as used in [59].
The stochastic variance is modeled with the Cox-Ingersoll-Ross (CIR) [12, 13] and Heston [21]

mean-reverting stochastic volatility, σs(t) =
√

V (t), and square-root diffusion with parameters
(κv(t), θ(t), σv(t)):

dV (t) = κv(t) (θv(t)− V (t)) dt + σv(t)
√

V (t)dGv(t), (2.4)

with V (0) = V0 > 0, log-rate κv(t) > 0, reversion-level θv(t) > 0 and volatility of volatility
(variance) σv(t) > 0, where Gs(t) and Gv(t) are standard Brownian motions for S(t) and V (t),
respectively, with correlation Corr[dGs(t), dGv(t)] = ρ. It will be assumed that the volatility is
nonnegative, i.e., V (t) ≥ 0, but this will be qualified later. Equations (2.1) and (2.4) comprise the
underlying stochastic-volatility, jump-diffusion (SVJD) model. See also [9, 52, 18, 55, 56, 30] for
other applications.

The riskless asset with a variable interest rate yields variable deterministic exponential growth,

dB(t) = r(t)B(t)dt, (2.5)

where B(0) > 0 and r(t) is the interest rate.
The portfolio consists of the stock S(t) and the bond B(t) with instantaneous portfolio-fractions

Us(t) and Ub(t), respectively, such that Ub(t) = 1 − Us(t). The wealth W (t) satisfies the self-
financing condition, so that

dW (t) = W (t) ·
(
r(t)dt + Us(t) ·

(
(µs(t)− r(t))dt +

√
V (t)dGs(t)

+νs(V (t), t, Q)dPs(t; Q)
))

− C(t)dt,
(2.6)

where W (0) = W0 > 0, Ub(t) has been eliminated and C(t) is the instantaneous consumption.
The portfolio dS(t) system consists of the wealth equation in (2.6) plus an additional equation for
the variance (volatility) equation in (2.4) beyond the usual portfolio problem [43, 44]. The system
is subject to constraints that there be no bankruptcy, W (t) ≥ 0, that consumption cannot exceed a
certain fraction of wealth, i.e.,

0 ≤ C(t) ≤ C
(max)
0 (V (t), t) ·W (t) (2.7)

with 0 < C
(max)
0 (V (t), t) < 1, and that there be no negative variance, V (t) ≥ 0. Later, we will

find an additional constraint on the stock-fraction as a consequence of the effect of jumps on the
bankruptcy condition [59]. Note that our definition of bankruptcy W (t) < 0 corresponds to that of
Merton [44] and differs from the Karatzas et al. [37] definition W (t) = 0, since that just means no
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wealth while W (t) < 0 means that the investor is in debt. The instantaneous stock-fraction Us(t) is
assumed to be bounded above and below.

The optimization criterion or performance index is the optimal, conditionally expected, dis-
counted utility of final wealth plus the cumulative, discounted utility of running consumption,

J∗(w, v, t) = max
u,c

[
E

[
e−β(t; tf )Uw(W (tf )) +

∫ tf

t

e−β(t; τ)Uc(C(τ))dτ

∣∣∣∣ C]] , (2.8)

where C = {W (t) = w, V (t) = v, C(t) = c, Us(t) = u} is the conditioning, β(t; τ) =
∫ τ

t
β(y)dy is

the cumulative discount, β(t) is the instantaneous discount, Uw(w) is the utility of the final wealth w
and Uc(c) is the utility of the instantaneous consumption c. The consumption c and the stock-fraction
u are obviously the two control variables of the optimal portfolio problem and are derived as the
arguments of the maximization.

There are several side conditions deducible from the criterion (2.8). As the final time is ap-
proached, t → t−f , the final condition is obtained,

J∗
(
w, v, t−f

)
= Uw(w), (2.9)

for any final wealth level w > 0. As the wealth approached zero, w → 0+, so does the consumption,
c → 0+, since it is constrained as a fraction of wealth and by definition zero wealth is an absorbing
boundary with boundary condition, from the objective (2.8),

J∗
(
0+, v, t

)
= Uw

(
0+
)
e−β(t; tf ) + Uc

(
0+
) ∫ tf

t

e−β(t; τ)dτ, (2.10)

for any t in [0, tf ]. Merton [48, Chap. 6] states that for no arbitrage, zero wealth must be an absorbing
state.

3 Portfolio stochastic dynamic programming
Upon applying stochastic dynamic programming (SDP) to the stochastic optimal control problem
posed in the previous section, the PDE of stochastic dynamic programming in Hamiltonian form can
be shown to be

0 = J∗t (w, v, t) +H (w, v, t; u∗(w, v, t), c∗(w, v, t)) , (3.1)

where J∗t (w, v, t) is the time partial derivative of J∗(w, v, t) and the (pseudo) Hamiltonian is

H(w, v, t; u, c) ≡ −β(t)J∗(w, v, t) + Uc(c) + (r(t) + (µs(t)− r(t))uw − c) J∗w(w, v, t)

+1
2vu2J∗ww(w, v, t) + 1

2σ2
v(t)vJ∗vv(w, v, t) + κv(t)(θv(t)− v)J∗v (w, v, t)

+λs(t)

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
· (J∗(K(u, q)w, v, t)− J∗(w, v, t)) dq,

(3.2)

where

K(u, q) ≡ 1 +
(
eq − 1

)
u (3.3)

is the critical function for the natural jump bankruptcy condition [59] to guarantee no bankruptcy.
(See the applied derivations in Hanson [22, page 190, Exercises 3-4] in the case of discounting.) The
double-uniform density (2.2) has been used to obtain the explicit jump-integral formulation in the
last line of (3.2).
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3.1 Wealth jump no-bankruptcy constraint
The no bankruptcy condition requires that wealth be nonnegative, so this must apply to the prejump
wealth, w ≥ 0, and the postjump wealth, K(u, q)w ≥ 0. Hence, we must have

K(u, q) ≥ 0.

Since the variate and parameters of the market double-uniform jump-amplitude distribution satisfy
a(v, t) ≤ q ≤ b(v, t) and a(v, t) < 0 < b(v, t), then the lower bound on the critical function satisfies

K(u, q) ≥
{

K(u, a(v, t)), u > 0
K(u, b(v, t)), u < 0

}
≥ 0.

This leads to the natural jump-bankruptcy, stock-fraction control bounds to enforce the no-bankruptcy
condition upon reformulating the lemma in Zhu and Hanson [59] for dependence on stochastic-
volatility, v, in addition to dependence on time, t.

Lemma 3.1 Jump stock-fraction control bounds for non-negative wealth:

û
(min)
0 (v, t)≡ −1

νs(v, t, b(v, t))
=

−1

eb(v,t) − 1
≤u ≤ +1

1− ea(v,t)
=

+1

−νs(v, t, a(v, t))
≡ û

(max)
0 (v, t). (3.4)

Remarks 3.1:

• Here, [û
(min)
0 (v, t), û

(max)
0 (v, t)] naturally define the largest admissible stock-fraction control

space due to the no bankruptcy wealth constraint. When the mark space, [a(t), b(t)], is finite
such that −B+

a ≤ a(v, t) ≤ −B−
a < 0 < B−

b ≤ b(v, t) ≤ B+
b for some positive constants

B±
a and B±

b , then û
(min)
0 (v, t) and û

(max)
0 (v, t) are obviously finite, since 0 < 1 − e−B−a ≤

1− ea(v,t) ≤ 1− e−B+
a < 1 with similar bounds for the denominator eb(v,t) − 1.

• However, if the jump distribution is of infinite range like the log-normal and log-double ex-
ponential jump-amplitude distribution, then the admissible stock-fraction controls must be in
[0, 1], and short-selling as well as borrowing would be severely restricted. For the case of dif-
fusion only with stochastic volatility (SVD), this extra restriction does not apply due to the
absence of jumps.

3.2 Hamiltonian regular optimization conditions
Before attempting to solve the PDE of SDP, the Hamiltonian equations are used to get the critical
points that determine the regular controls, i.e., the optimal controls in absence of constraints. Thus,
the critical point for regular consumption control is found from(

∂H
∂c

)(reg)(
w, v, t; u(reg), c(reg)

)
= U ′c

(
c(reg)(w, v, t)

)
− J∗w(w, v, t) = 0,

so c(reg)(w, v, t) is given implicitly by

U ′c
(
c(reg)(w, v, t)

)
= J∗w(w, v, t) (3.5)

and c∗(w, v, t) = c(reg)(w, v, t) if c(reg)(w, v, t) ≤ w · C(max)
0 (V (t), t). The optimal consumption

control will generally be a composite bang-regular-bang control,

c∗(w, v, t) =


0, c(reg)(w, v, t) ≤ 0

c(reg)(w, v, t), 0 ≤ c(reg)(w, v, t) ≤ w · C(max)
0 (v, t)

w · C(max)
0 (v, t), w · C(max)

0 (v, t) ≤ c(reg)(w, v, t)

 . (3.6)
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The Hamiltonian condition for the regular stock-fraction control is(
∂H
∂u

)(reg)(
w, v, t; u(reg), c(reg)

)
= (µs(t)− r(t))wJ∗w(w, v, t) + vu(reg)(w, v, t)w2J∗ww(w, v, t)

+λs(t)

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
·
(
eq − 1

)
wJ∗w

(
K
(
u(reg)(w, v, t), q

)
w, v, t

)
dq = 0,

with sufficient differentiability of J∗ using (3.3). So, u(reg)(w, v, t) is given implicitly by

vw2J∗ww(w, v, t)u(reg)(w, v, t) = −(µs(t)− r(t))wJ∗w(w, v, t)

−λs(t)w

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
·
(
eq − 1

)
wJ∗w

(
K
(
u(reg)(w, v, t), q

)
w, v, t

)
dq

(3.7)

and u∗(w, v, t) = u(reg)(w, v, t) if u(reg)(w, v, t) is an admissible control, assuming that U(t) is an
admissible instantaneous stock-fraction control if

U
(min)
0 (v, t) ≤ U(t) ≤ U

(max)
0 (v, t), (3.8)

assuming specified bounds U
(min)
0 (v, t) and U

(max)
0 (v, t), are independent of w. Hence, the optimal

stock-fraction control will generally be a composite bang-regular-bang control,

u∗(w, v, t) =


U

(min)
0 (v, t), u(reg)(w, v, t) ≤ U

(min)
0 (v, t)

u(reg)(w, v, t), U
(min)
0 (v, t) ≤ u(reg)(w, v, t) ≤ U

(max)
0 (v, t)

U
(max)
0 (v, t), U

(max)
0 (v, t) ≤ u(reg)(w, v, t)

 . (3.9)

A good choice for the admissible bounds, U
(min)
0 (v, t) and U

(max)
0 (v, t), would be the natural stock-

fraction control jump bounds, û
(min)
0 (v, t) and û

(max)
0 (v, t), given in (3.4).

4 CRRA canonical solution to optimal portfolio problem
The constant relative risk aversion (CRRA) utility when γ < 1 is a power utility [48], but is a
logarithm when the power γ is zero,

U(x) =

{
xγ/γ, γ 6= 0
ln(x), γ = 0

}
. (4.1)

The range γ < 1 represents several kinds of risk aversion. The utility corresponding to the value
γ = 0, arising from the well-defined limit of (xγ − 1)/γ as γ → 0, is a popular level of risk aversion
associated with the Kelly capital growth criterion [38]. The negative range γ < 0 represents extreme
risk aversion, and the range 0 < γ < 1 represents a more moderate level of risk aversion. The value
γ = 1 signifies risk-neutral behavior and the remainder γ > 1 means risk-loving behavior.
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4.1 CRRA power case, γ < 1, but γ 6= 0

Setting both utilities to a common form, Uc(x) = U(x) = Uw(x), and noting the final condition (2.9)
now is J∗(w, v, t−f ) = U(w), the following CRRA canonical form of the solution is suggested for the
SVJD vector process,

J∗(w, v, t) = U(w)J0(v, t), (4.2)

when γ 6= 0 and γ < 1, where J0(v, t) is a function of the variance and time that is to be determined
based on the consistency of (4.2). The γ = 0 case requires an additional wealth-independent term
J1(v, t) and the risk-neutral γ = 1 case leads to a singular control problem. The original final
condition (2.9) yields the greatly reduced final condition J0(v, tf ) = 1. The solution derivative
J∗w(w, v, t) = wγ−1J0(v, t) is valid even when γ = 0 and leads to(

c(reg)
)γ−1

(w, v, t) = wγ−1J0(v, t).

This can be solved explicitly for the regular consumption control,

c(reg)(w, v, t) = wJ
1/(γ−1)
0 (v, t) ≡ wc

(reg)
0 (v, t) (4.3)

where c
(reg)
0 (v, t) = J

1/(γ−1)
0 (v, t) ≤ C

(max)
0 (v, t) and 0 ≤ C

(max)
0 (v, t) ≤ 1, the fraction of wealth

depending on investor preference. Note that the linear form (4.3) in w is consistent with the linear
bound (2.7) on the consumption C(t). In the presence of consumption control constraints, the general
optimal consumption control c∗(w, v, t) = w · c∗0(v, t) is calculated from the composite form (3.6)
using c(reg)(w, v, t) = w · c(reg)

0 (v, t).
Next using J∗ww(w, v, t) = (γ − 1)wγ−2J0(v, t) similarly leads to a reduced implicit formula for

the regular stock fraction control from (3.7),

u(reg)(w, v, t) ≡ u
(reg)
0 (v, t) =

1

(1− γ)v

(
µs(t)− r(t) + λs(t)I1

(
u

(reg)
0 (v, t), v, t; γ

))
, (4.4)

independent of the wealth w, where

I1(u, v, t; γ) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)(
eq − 1

)
Kγ−1(u, q)dq (4.5)

is a jump integral. Note that in the pure diffusion CRRA utility case with constant coefficients,
i.e., µs(t) = µ0, r(t) = r0, v = σ2

0 and λs(t) = 0, the regular control in (4.4) becomes Merton’s
fraction [43],

u(reg)(w, σ2
0, t) =

µ0 − r0

(1− γ)σ2
0

. (4.6)

In the presence of stock-fraction control constraints, the general optimal stock-fraction control

u∗(w, v, t) = u∗0(v, t) (4.7)

is calculated from the composite form (3.9) with bounds (3.8) using

u(reg)(w, v, t) = u
(reg)
0 (v, t).

It is easy to see from (4.4) that

u
(reg)
0 (v, t) = O(1/v) as v → 0+,
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since this implies, for γ − 1 < 0, asymptotic consistency by

Kγ−1
(
u

(reg)
0 (v, t), q

)
= O

((
u

(reg)
0

)γ−1

(v, t)

)
= O

(
v1−γ

)
= o(1) as v → 0+.

Using these reduced control solution forms leads to the CRRA reduced PIDE for SDP after some
algebra,

0 = J0,t(v, t)− β(t)J0(v, t) + (1− γ)J
γ/(γ−1)
0 (v, t)

+γ

(
r(t) +

1

2(1− γ)v

(
(µs(t)− r(t))2 − λ2

s(t)I
2
1 (u∗0(v, t), v, t; γ)

))
J0(v, t)

+λs(t) (I2(u
∗
0(v, t), v, t; γ)− 1) J0(v, t)

+
1

2
σ2

v(t)vJ0,vv(v, t) + κv(t)(θv(t)− v)J0,v(v, t),

(4.8)

where a second jump integral is

I2(u, v, t; γ) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
Kγ(u, q)dq, (4.9)

provided γ 6= 0.

4.2 CRRA logarithmic (Kelly criterion) case, γ = 0

In the logarithmic case, the canonical solution is no longer purely linear in the utility U(w) of wealth
as in (4.2) for the power case, but is affine in U(w) = ln(w),

J∗(w, v, t) = ln(w)J0(v, t) + J1(v, t), (4.10)

where J1(v, t) is a parallel solution form arising from partial derivatives of J(w, v, t) with respect
to ln(w). The final condition, J(w, v, tf ) = U(w) = ln(w), produces two parallel final conditions,
J0(v, tf ) = 1 and J1(v, tf ) = 0, since ln(w) and the constant 1 are independent functions of w.

Since the determination of the regular control functions involves only derivatives of J(w, v, t)
with respect to wealth w, the formulas in (4.3) and (4.4) are valid for γ = 0. So

c(reg)(w, v, t) ≡ wc
(reg)
0 (v, t) = w/J0(v, t)

and
u(reg)(w, v, t) ≡ u

(reg)
0 (v, t) =

1

v

(
µs(t)− r(t) + λs(t)I1

(
u

(reg)
0 (v, t), v, t; 0

))
.

However, the reduced SDP PIDE is not the same as in (4.8) when γ 6= 0. Two parallel reduced
PIDEs are obtained. The first is found by separately equating the cumulative coefficient of ln(w) to
zero by independence, yielding a linear PIDE in J0(v, t),

0 = J0,t(v, t)− β(t)J0(v, t) + 1 +
1

2
σ2

v(t)vJ0,vv(v, t) + κv(t)(θv(t)− v)J0,v(v, t). (4.11)

The second for the remaining terms yields another linear PIDE, but in J1(v, t),

0 = J1,t(v, t) + (r(t)− β(t))J1(v, t)− ln(J0(v, t))− 1

+

(
1

2v

(
(µs(t)− r(t))2 − λ2

s(t)I
2
1 (u∗0(v, t), v, t; 0)

)
+ λs(t)I2(u

∗
0(v, t), v, t; 0)

)
J0(v, t)

+
1

2
σ2

v(t)vJ1,vv(v, t) + κv(t)(θv(t)− v)J1,v(v, t),

(4.12)
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where

I2(u, v, t; 0) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
ln(K(u, q))dq, (4.13)

in this special case. Note that the parallel PIDEs are uni-directionally coupled, so that if (4.11) for
J0(v, t) is solved first, then (4.12) for J1(v, t) can be solved as a single PIDE using the solution
J0(v, t).

The static case of logarithmic utility of wealth or Kelly criterion is surveyed by MacLean and
Ziemba [42]. They note that several legendary investors have used the Kelly criterion. One is Edward
O. Thorp who was a prime promoter of the criterion in gambling and market investments. Another is
Warren Buffet, who is identified as a Kelly criterion investor from the performance of the Berkshire-
Hathaway fund.

4.3 Transformation to an implicit type of Bernoulli equation
In the pure stochastic diffusion case with constant coefficients, the PDE of SDP becomes a Bernoulli
ODE in time using the CRRA power utility [43, 44]. Using the classical Bernoulli transformation,
the nonlinear ODE can be transformed to a linear ODE suitable for very standard methods. In the
stochastic jump-diffusion case with time dependent coefficients and control constraints, the PDE of
SDP becomes a Bernoulli ODE complicated by implicit dependence through the jump integrals and
optimal controls [23, 25, 27, 28, 29, 59]. The Bernoulli transformation still has significant benefits
for the case γ < 1 and γ 6= 0, but additional iterations are needed to treat the implicit dependencies.
In the SVJD case, the stochastic volatility terms mean that the PDE of SDP remains a PDE, but with
some Bernoulli nonlinear properties that can be reduced to something simpler.

First, the coefficients of J0(v, t) are collected together, excluding a consumption term, in the
following form,

g1(v, t; γ) ≡ 1

1− γ

(
−β(t) + γ (r(t) + (µs(t)− r(t))u∗0(v, t)) +

γ

2
v(u∗0)

2(v, t)

+
λs(t)

1− γ
(I2(u

∗
0(v, t), t)− 1)

)
.

(4.14)

Next, the two optimal consumption terms are collected in a common coefficient for the nonlinear
Bernoulli term,

g2(v, t; γ) ≡

( c∗0(v, t)

c
(reg)
0 (v, t)

)γ

− γ

(
c∗0(v, t)

c
(reg)
0 (v, t)

) , (4.15)

where the following identity has been used,

(c∗0)
γ (v, t)− γc∗0(v, t)J0(v, t) ≡ g2(v, t; γ)

1− γ
J
γ/(γ − 1)
0 (v, t).

Finally, a Bernoulli-like PDE is obtained,

0 = J0,t(v, t) + (1− γ)

(
g1(v, t; γ)J0(v, t) + g2(v, t; γ)J

γ/(γ − 1)
0 (v, t)

)
+

1

2
σ2

v(t)vJ0,vv(v, t) + κv(t)(θv(t)− v)J0,v(v, t).

(4.16)
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This is a nonlinear diffusion equation with implicit coupling to c∗0(v, t), c
(reg)
0 (v, t) and u∗0(v, t).

For the problem in (4.16), the simplifying Bernoulli transformation is

y(v, t) = J
1/(1− γ)
0 (v, t) (4.17)

with inverse
J0(v, t) = y1− γ(v, t)

and the transformed PDE, having almost all linear terms without counting the implicit control and
variance dependence, is

0 = yt(v, t) + g1(v, t; γ)y(v, t) + g2(v, t; γ)

+
1

2
σ2

v(t)vyvv(v, t) +

(
κv(t)(θv(t)− v)yv(v, t)− γσ2

v(t)v

y(v, t)

)
,

(4.18)

assuming y(v, t) 6= 0 and with final condition y(v, tf ) = 1. It can be seen from (3.7) that the
regular stock-fraction control u

(reg)
0 (v, t) becomes unbounded as the volatility v → 0+, which should

be handled by a finite control space [U
(min)
0 (v, t), U

(max)
0 (v, t)] as indicated by the jump-bankruptcy

bounds [û
(min)
0 (v, t), û

(max)
0 (v, t)].

Since the PDE (4.18) can be solved by computational iteration at each time step, (4.18) can be
treated like an ODE in time by formally writing the transformed solution in quadratures using an
integrating factor,

y(v, t) = eg1(v, t; tf ; γ) +

∫ tf

t

eg1(v, t; τ ; γ)Ĝ2(v, τ ; γ)dτ, (4.19)

where

g1(v, t; s; γ) ≡
∫ s

t

g1(v, y; γ)dy (4.20)

and

Ĝ2(v, t; γ) ≡ g2(v, t; γ) +
1

2
σ2

v(t)vyvv(v, t) +

(
κv(t)(θv(t)− v)yv(v, t)− γσ2

v(t)v

y(v, t)

)
. (4.21)

The latter definition (4.21) includes the suppressed variance-derivative and consumption terms that
can be treated by iteration. Thus, the implicit solution for the variance-time function can be written
as

J0(v, t) =

(
eg1(v, t; tf ; γ) +

∫ tf

t

eg1(v, t; τ ; γ)Ĝ2(v, τ ; γ)dτ

)1−γ

(4.22)

with the full wealth-dependent solution given by

J∗(w, v, t) =
wγ

γ
J0(v, t).
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4.3.1 CRRA logarithmic case formal solution, γ = 0

For the γ = 0 case, the Bernoulli transformation (4.17) is the identity operator. So both solution forms
J0(v, t) and J1(v, t) satisfy unidirectionally coupled linear equations that are solved in sequence. As
for the general risk-averse case, the PIDEs (4.11) and (4.12) are prepared for better-posed time-
stepping iterations using integrating factors, so that for the coefficient of ln(w),

J0(v, t) = e−β(t; tf ) +

∫ tf

t

e−β(t; τ)Ĝ0(v, τ)dτ, (4.23)

since J0(v, tf ) = 1, where

Ĝ0(v, t) ≡ 1 +
1

2
σ2

v(t)vJ0,vv(v, t) + κv(t)(θv(t)− v)J0,v(v, t) (4.24)

includes the variance-derivative terms. Given J0(v, t), the wealth-independent term satisfies

J1(v, t) =

∫ tf

t

er(t; τ)− β(t; τ)Ĝ1(v, τ)dτ, (4.25)

since J1(v, tf ) = 0, where

r(t; τ) ≡
∫ τ

t

r(y)dy (4.26)

and

Ĝ1(v, t) ≡ − ln(J0(v, t))− 1 + 1
2v ((µs(t)− r(t))2 − λ2

s(t)I
2
1 (u∗0(v, t), v, t; 0)) J0(v, t)

+λs(t)I2(u
∗
0(v, t), v, t; 0)J0(v, t)

+
1

2
σ2

v(t)vJ1,vv(v, t) + κv(t)(θv(t)− v)J1,v(v, t),

(4.27)

which includes suppressed J0 and J1-variance-derivative terms. In summary, for γ = 0,

J∗(w, v, t) = ln(w)J0(v, t) + J1(v, t).

5 Optimal wealth trajectory without bankruptcy
To check whether the no bankruptcy condition W (t) ≥ 0 holds, the optimal controls for the stock-
fraction (4.4) and consumption (4.3) are substituted into the wealth SDE (2.6) obtaining a geometric
jump-diffusion,

dW ∗(t) = W ∗(t)
(
µ∗W (V (t), t)dt +

√
V (t)dGs(t) +

(
eQ − 1

)
dPs(t; Q)

)
, (5.1)

coupled with the stochastic volatility SDE (2.4), where

µ∗W (v, t) ≡ r(t) + (µs(t)− r(t))u∗0(v, t)− c∗0(v, t).

An exponential form of the solution for (5.1) can be found by (1) using the standard logarithmic trans-
form L(t) = ln(W ∗(t)) for the geometric jump-diffusion (5.1), (2) using the corresponding SVJD
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extension of Itô’s stochastic chain rule to remove W ∗(t) from the right-hand-side (see Hanson [22]),
and (3) integrating the simplified SDE, yielding

W ∗(t) = W0 exp

(∫ t

o

(
µ∗L(V (τ), τ)dτ +

√
V (τ)dGs(τ) + QdPs(τ ; Q)

))
, (5.2)

where
µ∗L(v, t) ≡ µ∗W (v, t)− v/2.

Assumptions 5.0: All relevant coefficients, i.e.,

S0, µs(t), λs(t), νs(v, t, q), a(v, t), b(v, t), p1(v, t), p2(v, t), V0, κv(t), θv(t), σv(t),
B0(t), r(t), W0, Us(t), C(t), C

(max)
0 (v, t), β(t), U

(max)
0 (v, t), U

(min)
0 (v, t) and γ,

are assumed to be bounded.

In particular, the practical bounds on the Gaussian noise are

|Gs(t)| ≤ BGt & |Gv(t)| ≤ BGt, (5.3)

for a large finite, positive constant BG and finite horizon t ≤ T .

The bounds on a(v, t), b(v, t), p1(v, t), p2(v, t) and C
(max)
0 (v, t) have already been stated. Both

U
(max)
0 (v, t) and U

(min)
0 (v, t) have been superseded by the jump forced stock-fraction control bounds

in (3.4), û
(min)
0 (v, t) and û

(max)
0 (v, t), respectively.

Since W0 > 0 has been assumed for the initial condition, we have, using (5.2) when γ < 1 and
γ 6= 0, the following lemma.

Lemma 5.0 Non-negativity of optimal wealth trajectory: Under the bounded coefficients as-
sumptions and the practical bounds (5.3), then

W (t) > 0. (5.4)

Practical Remarks 5.0: In particular, we assume that the Gaussian processes are for all practical
purposes bounded, i.e., |Gs(t)| ≤ BGt and |Gv(t)| ≤ BGt, since in real markets the noise is bounded
and the usual assumption of unbounded noise is only an artifact of the ideal mathematical models
of Wiener or Brownian motion. The bounds (5.3) mean that the Gaussian extremes of very small
probability are not realistic. It does not make sense for practical purposes to spend time examining
the importance, if any, of the most extreme deviations with the most small probabilities. There are
also the circuit breakers [3] of the NYSE that prevent, in installments, the most extreme market
changes like those in 1987. Again, note that the reasons for and consequently the results in (5.4) are
quite different from those in [37] and [51] for pure diffusions. Real markets have extremes, but they
are bounded extremes.

Thus, Lemma 5.0 shows there is no possibility of bankruptcy or zero wealth starting from positive
initial wealth for the CRRA power utility with γ < 1, including γ = 0.

6 Verification of nonnegativity of stochastic variance
Note that there could be a potential serious problem with the optimal stock-fraction control u∗0(v, t)
due to its dependence on the regular stock-fraction control (4.4),

u(reg)(w, v, t) ≡ u
(reg)
0 (v, t) =

(µs(t)− r(t))

(1− γ)v
+

λs(t)

(1− γ)v
I1

(
u

(reg)
0 (v, t), v, t

)
,
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which is singular when either v → 0+ or γ → 1−, but the finite bounds on u∗0(v, t) provide a cutoff
for these singularities. In addition, the practical Gaussian bounds (5.3) imply that 0 ≤ V (t) ≤ BV ,
for some positive constant BV and for all practical purposes.

On the other hand, the nonnegativity of the stochastic variance, V (t) ≥ 0, was settled long ago
for the square-root diffusion model by Feller [17] using very elaborate Laplace transform techniques
on the corresponding Kolmogorov forward equation to obtain the noncentral chi-squared distribution
for the process. He has given the boundary condition classification for the process in terms of the
parameters, which helps to determine which values would guarantee positivity preservation in the
range of nonnegativity preserving values. So, in the time-independent form notation here, positivity is
assured if 1 < 2κvθv/σ

2
v with zero boundary conditions in value and flux, while if 0 < 2κvθv/σ

2
v < 1

then only nonnegativity can be assured. See Cox et al. [13], Glassman [20], Jäckel [33], Broadie and
Kaya [11], and Lord et al. [41] for other qualifications and information, including various distribution
simulation techniques.

6.1 Transformation to perfect-square form
Using the general transformation techniques in Hanson [22] with Y (t) = F (V (t), t), it is possible to
find a general perfect square solution to (2.4). Using Itô’s lemma, the following transformed SDE is
obtained,

dY (t) = F,t(V (t), t)dt + F,v(V (t), t)dV (t) +
1

2
F,vv(V (t), t)σ2

v(t)V (t)dt, (6.1)

to dt-precision. Then a simpler form is sought with volatility-independent noise term, i.e.,

dY (t) =
(

µ(0)
y (t) + µ(1)

y (t)
/√

V (t)
)

dt + σy(t)dGv(t) (6.2)

with Y (0) = F (V0, 0), where µ
(0)
y (t), µ

(1)
y (t) and σy(t) are time-dependent coefficients to be deter-

mined. Equating the coefficients of dGv(t) terms between (6.1) and (6.2), given V (t) = v > 0, leads
to

F,v(v, t) =

(
σy

σv

)
(t)

1√
v
, (6.3)

and then partially integrating (6.3) yields

F (v, t) =

(
σy

σv

)
(t)
√

v + c1(t), (6.4)

which is the desired transformation with a function of integration c1(t). Additional differentiations
of (6.3) produce

F,t(v, t) =

(
σy

σv

)′
(t)
√

v + c′1(t) & F,vv(v, t) = −1

2

(
σy

σv

)
(t)v−3/2.

Terms of order v0dt imply that c′1(t) = µ
(0)
y (t), but this equates two unknown coefficients, so we set

µ
(0)
y (t) = 0 for simplicity. Equating terms of order

√
vdt and integrating imply(

2

(
σy

σv

)′
− κv

(
σy

σv

))
(t) = 0 =⇒

(
σy

σv

)
(t) =

(
σy

σv

)
(0)eκv(0, t)/2,
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where

κv(τ, t) ≡
∫ t

τ

κv(y)dy.

For convenience, we set σy(0) = σv(0). For order v−1/2dt, we obtain

µ(1)
y (t) = eκv(0, t)/2

(
κvθv −

1

4
σ2

v

)
(t),

completing the coefficient determination.
Assembling these results we form the solution as follows,

Y (t) = 2eκv(0, t)/2
√

V (t),

and inverting this yields the desired nonnegativity result:

V (t) = e−κv(0, t)
(

Y (t)

2

)2

≥ 0, (6.5)

due to the perfect square form, where

Y (t) = 2
√

V0 +

∫ t

0

eκv(0, s)/2


κvθv −

1

4
σ2

v
√

V

(s)ds + (σvdGv)(s)

 . (6.6)

This is an implicit form that is singular unless the solution V (t) is bounded away from zero, V (t) > 0.
More generally it is desired that the solution is such that 1

/√
V (t) is integrable in t as V (t) → 0+,

so the singularity will be ignorable in theory.

6.2 Proper singular limit formulation suitable for computation
However, as V (t) → 0+, the validity of neglecting higher order terms in the Taylor expansion under-
lying Itô’s lemma is questionable, unless the integral is treated as a singular integral and the method
of integration steps is properly specified.

First (6.5)-(6.6) are simply reformulated as

V (t) = e−κv(0, t)
(√

V0 +
1

2
Ig(t)

)2

, (6.7)

where

Ig(t) =

∫ t

0

eκv(0, s)/2


κvθv −

1

4
σ2

v
√

V

(s)ds + (σvdGv)(s)

 . (6.8)

Modifying the method of ignoring the singularity [14] to this implicit singular formulation, let

V (εv)(t) = max(V (t), εv)

where εv > 0 such that ∆t
/√

εv � 1 as some reference numerical increment ∆t → 0+ to ensure that
the time-step goes to zero faster than the cutoff singular square root denominator. Next (6.7)-(6.8)
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is reformulated as a recursion using some algebra for the next time increment ∆t and the method of
integration is specified for each subsequent time step, i.e.,

V (t + ∆t) = e−∆κv(0, t) lim
εv→0+

(√
V (t) +

1

2
e−κv(0, t)/2∆I(εv)

g (t)

)2

, (6.9)

where

∆κv(0, t) ≡
∫ t+∆t

t

κv(s)ds → κv(t)∆t

as ∆t → 0+. Similarly, a scaled increment of an integral is defined by

e−κv(0, t)/2∆I(εv)(t) ≡
∫ t+∆t

t

e−κv(s, t)/2


κvθv −

1

4
σ2

v
√

V (εv)

(s)ds + (σvdGv)(s)


→


κvθv −

1

4
σ2

v√
V

(t)dt + (σvdGv)(t)

 ,

(6.10)

such that ∆t
/√

εv → 0+ as ∆t → 0+. An Itô-Taylor expansion to precison dt or small ∆t confirms
that (6.9)-(6.10) yields the Heston [21] model, proving solution consistency. Thus, the square in (6.9)
formally justifies the nonnegativity of the variance and the volatility of the Heston [21] model, for a
proper computational nonnegativity-preserving procedure.

Note that the zero volatility limit is not a serious concern since the control constraints also provide
a cutoff for the volatility. Further, the logarithmic transformation used for the geometric Brownian
motion leads to singular derivatives of all orders, but the singularities are exactly cancelled out by
the linear property of the underlying SDE.

6.3 Nonsingular, explicit, exact solution
In any event, the singular term in (6.7)-(6.8) vanishes in the special parameter case, such that

κv(t)θv(t) =
1

4
σ2

v(t), ∀ t.

Hence, we obtain a nonnegative, nonsingular exact solution

V (t) = e−κv(0, t)
(√

V0 + 0.5

∫ t

0

eκv(0, s)/2(σvdGv)(s)

)2

, (6.11)

with the numerical form corresponding to (6.9)-(6.10),

V (t + ∆t) = e−∆κv(0, t)
(√

V (t) +
1

2

∫ t+∆t

t

e−κv(s, t)/2(σvdGv)(s)

)2

. (6.12)

Similarly, the chain rule for the integrating factor form exp(κv(0, t))V (t) for the stochastic
volatility (2.4) leads to a somewhat simpler integrated form,

V (t) = max

(
V (det)(t) +

∫ t

0

e−κv(s, t)
(
σv

√
V dGv

)
(s), 0

)
, (6.13)
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using the maximum with respect to zero to remove spurious numerical simulations in absence of a
perfect square form. In (6.13),

V (det)(t) = V0e
−κv(0, t) + θv(t)

(
1− e−κv(0, t)

)
is the deterministic part of V (t). Note that there is only a linear change of dependent variable ac-
cording to the stochastic chain rule [22] using the transformation Y (t) = exp(κv(0, t))V (t). So the
deterministic part is easily separated out from the square-root dependence and replaces the mean-
reverting drift term. The V (det)(t) will be positive for positive parameters.

However, as Lord et al. [41] point out, a sufficiently accurate simulation scheme and a large
number of simulation nodes are required so that the right-hand side of (2.4) generates nonnegative
values. Nonnegative values using the stochastic Euler simulation have been verified for Heston’s [21]
constant risk-neutralized parameter values (κv = 2.00, θv = 0.01, σv = 0.10) as long as the scaled
number of nodes per unit time N/(κvtf ) > 100.

Hence, since the variance by definition for real processes cannot be negative, practical consider-
ations suggest replacing occurrences of V (t) by max(V (t), ε), where ε is some numerically small,
positive quantity for numerical purposes to account for the appearances of negative variance values.

7 Conclusions
The optimal portfolio and consumption problem has been extended to stochastic-volatility, jump-
diffusion environments with the log-double-uniform jump-amplitude distribution. The jump-wealth,
no-bankruptcy condition has been reconfirmed with extra benefits due to the natural stock-fraction
jump constraints. The constraints help avoid stochastic-volatility and CRRA power exponent sin-
gularities in the wealth solution. For all practical purposes the wealth is not just non-negative but
also remains positive due to the geometric nature of the wealth process and the constraint singularity
protection if the initial wealth is positive.

There are some new, formal results for the nonnegativity of the variance for the Heston [21]
model, an implicit perfect square solution in the general parameter case and an explicit form for the
case where the speed of reversion times the level of reversion is one quarter of the square of the
volatility of the volatility coefficient.

Future directions are to convert jump-diffusion optimal portfolio problem computations to pro-
duce SVJD computations.
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