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Abstract

Considerthe optimal control of a manuficturingsystem
consistingof k stagesin which a single consumablegood
is producedin a randomjump ervironment. At eachstage
of the manufcturing processthere are n workstationsthat
can fail and be repaired. The workstationsare assumed
to have different operating parametersfor a given stage.
The meantime to failure for a given workstation, on a
given stage,is modeledas a function of the uptime of the
workstation. The uptime of the workstationsis a monotone
increasingfunction, which canbe resetto a lower level by
preventive maintenanceThis formulationcombinedfeatures
of flexible and multistagemanufcturingsystems.The goal
is to schedulghe productionof the consumablegoodsubject
to randomeffectsandpreventive maintenance.

1. Introduction

A flexible manufcturingsystem(FMS) is a collection
of workstationghat producea family of relatedpartsthatre-
quire similar operations.A key featureof a FMS is the way
in which raw materialsareroutedinto andfinishedpiecesare
routedout of the FMS. In modelsfor FMS, a focusis given
on how a given piecetravels throughthe system. This local
perspectieof how thepiecesmoveis notincludedin the mul-
tistagemanufcturingsystem(MMS) model. In a MMS the
focusis on the overall throughputof the manufcturingsys-
tem. Eachstageof aMMS maybeviewedasaFMS. Theflow
of piecesis modeledasa continuumandthe discretemodel
of theFMS becomes fluid like model. KimemiaandGersh-
win [9] describehedifferenceandsimilaritiesbetweerFMS
and MMS, while presentinga hierarchicalschemeor mod-
eling and providing an algorithmfor the operationalcontrol
of aFMS. A sunwey of mary typesof realflexible manufc-
turing systemss given by Dupont-Gatelmandg6]. Westman
and Hansonprovide LQGP (Linear deterministicdynamics,
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Quadratiacosts GaussiamndPoissordisturbancesandnon-
linearmodelsfor theproductionschedulingpf aMMS subject
to workstationfailureandrepair[12, 13, 15] aswell asstrikes
andnaturaldisasterg16, 8].

For a FMS, Olsder and Suri [10], first proposeda
stochastianodelutilizing a homogeneougimp Markov pro-
cesses to describehe evolution of the stateof theoperational
(or failed)workstations.They statethatthe usefulnes®f the
modelis limited by the ability to solve the Hamilton-Jacobi-
Bellman (HJB) partial differential equationof dynamicpro-
gramming.Thisis dueto the exponentialgrowth of computa-
tional andmemaoryresourcesieededo solve the HIB equa-
tion utilizing finite differencescommonlyreferredto asthe
Curse of Dimensionality [2]. BoukasandHaurie[4] present
amodelfor acontinuous-timestochastidlow controlfor pro-
ductionschedulingwith preventive maintenancef thework-
stations. In this formulation, the meantime betweenfail-
uresfor a givenworkstationis dependenbn the operational
ageof the machine,which is definedas the time sincethe
last restart(repair or preventive maintenance). The transi-
tion betweenthe statesof a given workstation(operational,
failed, preventive maintenanceformsanirreducibleMarkov
chain. For N workstationsthereare a total of 3V statesin
the Markov chainfor the descriptionof the operationaktate
of the FMS. The variablesfor the systemare the vectorfor
the cumulative productionsurplusand the operationalages
for all workstations A numericalmethodbasedn Kushners
methodis usedto approximatethe solutionfor the dynamic
programmingproblem, which requiresa discretemesh. In
this method,the meshselecteds finite and artificial bound-
ary conditionsareusedwhich introducesadditionalerror. In
theexamplepresentedor 2 workstationsand1 parttype,us-
ing 21 pointsfor the meshof the productionsurplusandop-
erationalages,the total numberof meshpointsis given by
(21%21%21) %32 = 83, 349. Theadditionof anotheworksta-
tion wouldyield aneedfor (21%21x21%21)%33 = 5,250, 987
meshpoints,clearlythe Curse of Dimensionality is presentn
this method,andthereforewould not be suitablefor a large
numberof workstations.



In this paper a hybrid modelof productionscheduling
for a manufacturingsystemis consideredhat is subjectto
randomdisturbancesThe modelincorporatedocal features
of aFMS with the global perspectie of a MMS. The goal of
themodelis generatehe optimal productionratesto achieve
the desiredproductiondemandor profile while compensat-
ing for workstationrepair, failure, and preventive mainte-
nance. The local aspectf a FMS are utilized to describe
the stateof the operationalvorkstationsn themanufcturing
systemsubjectto repair, failure,andpreventive maintenance.
This allows for a greaterealism,sinceeachworkstationcan
have differentcharacteristicsasopposedo homogeneouas-
sumptionsmadein mary othertreatmentgseefor example,
[12, 13, 15, 16, 8]). The global aspectof a MMS areused
to model the throughputof productionfor the manufctur
ing system. In the formulation for the manufcturing sys-
tempresentedh this paperthe curseof dimensionalityis not
present. The problemformulation usedis a LQGP problem
(see[12]) utilizing statedependenfoissonprocessegsee
[14]) to modelthefailure,repair andpreventive maintenance
for theworkstations.

The paperis arrangedas follows. In Section2., a
summaryof the LQGP Problemwith statedependenPoisson
noiseis given. In Section3., a LQGP problem[12] utilizing
statedependenPoissonprocesse$l4] is usedto formulate
the dynamicalsystemfor the manufcturingsystemand in
Sectiond., anumericalexampleis presented.

2. LQGP Problem Formulation

For completenessve review in partthe canonicalform
for the LQGP problemthat originally appearsn Westman
andHanson12], for the casewith stateindependenPoisson
noise,and[14] for statedependenfPoissonnoise. The lin-
eardeterministiadynamicalsystenmfor the LQGP problemis
governedby thestochastidifferentialequationSDE)subject
to GaussiarandstatedependenPoissomoisedisturbancess
givenby

dX = [A®)X + B(t)U+ C(t)|dt
+ G)AW(t) + [Hi(t) - X]dP1(X, t)
+ [Ha(t) - UldPa(X, t) + Hs(t)dPs(X, t),

@)

for generaMarkov processes continuoudime, with m x 1
statevector X(t), n x 1 control vector U(t), » x 1 Gaus-
siannoisevectordW (t), andg, x 1 space-timé?oissomoise
vectorsdPy(X(t),t), for £ = 1 to 3. Note that the term
[H1(t) - X(t)]dP1(X(t),t) is not linear in the state. The
dimensionsof the respectie coeficient matricesare: A(t)
ism x m, B(t)ism x n, C(t)ism x 1, G(t) ism x r,
while the H,(t) are dimensioned,so that [Hy(¢) - x] =
[k Huijr (8)Tk]mxqrr [Ha(t) - u] = [324 Haiji (8)uk]mxqe
andHs(t) = [H3ij(t)]mxgqs- Notethatthe space-timePois-
sontermsareformulatedto maintainthe linear natureof the
dynamicsput thefirst two areactuallybilinearin eitherX or
U anddP; for £ = 1 or 2, respecitiely.

The state dependent Poisson noise can be viewed as
a sequenceof eventsthat is representedy its ith couple

{T;(X(T3)), M;(X(T3))}, fori = 1 to k, whereT;(X(T3))
is the time for the occurrenceof theith jump with statede-
pendentmark amplitudeM;(X(T;)). This representatiomf
thePoissorprocesprovidesmorerealismandflexibility fora
widerrangeof stochasticontrolapplicationssincethearrival
timesandamplitudesmay dependof the stateof the system.
Additionally, this formulationallows for simpler dynamical
systemmodelingof complex randomphenomenahut thein-
clusion of statedependencén the Poissonnoisemeansthat
the problemis not strictly a LQGP problemin the dynamics
andsoit is assumedhat this statedependencés not domi-
nant.

The quadraticperformancendex or costfunctionalthat

is employedis quadratiowith respecto the stateandcontrol
costsjs givenby thetime-to-go or cost-to-go functionalform:

V[X, U, 1]

(XTSX)(tf) + /tf C(X,U,7)dr,

N = N

Cxut) = 3 [x"Q®t)x,+u R(t)u], )
wherethe time horizonis (t,t¢), with S(tf) = Sy is the
quadratic final cost coeficient matrix and C(x,u,t) is
quadraticrunning cost function. In orderto minimize (2)
requiresthat the quadraticcontrol cost coeficient R(t) is
assumedo be a symmetric positive definite n x n array
while the quadraticstatecontrol coeficient Q(t) is assumed
to be a symmetricpositive semi-definitem x m array The

LQGP problemis definedby (1, 2).

3. Manufacturing System L QGP Problem Formulation

Considera manufcturingsystemthatproduceshe sin-
gle consumableommoditythatrequiresalinearsequencef
k stagedo assemblehefinishedproduct.The planninghori-
zonfor themanugcturingsystemis [0, t ). Themechanisms
by which the input, loading stage, of raw materialsandthe
delivery of finishedproducts,unloading stage, are not con-
sideredas stagesin the manufcturingsystem. The model
presentedhereusesfeaturesof FMS for the active numberof
workstationdgn whichthemomentdor therepair, failure,and
preventive maintenancarefunctionsof the stateof the sys-
tem, in particularthe operationalagesfor the workstations.
For similar modelsfor FMS with variationsseeAkella and
Kumar[1] for atreatmenbf optimalinventorylevels,aswell
as Boukasand co-workers [4, 5] for a treatmentwhich in-
cludespreventive maintenancandmachineagestructure.

3.1. Local Workstation State Equations

Assumethat there are a total of N, workstationsfor
stagek. The descriptionof the stateequationgor the work-
stationds similarin natureto thatof a FMS. For workstation
i, let My; denotethe maximumnumberof piecesper unit
time thatcanbeproduced.Theworkstationdor agivenstage
are assumedo have differentoperationalproperties,there-
fore the modelmustaccountor eachworkstationseparately
All workstationswill producegoodsatthesameratecy,(t) for
a givenstagek, therebydistributing the workload acrossalll



workstations.The productionrate, ¢, (¢) is a utilization, that
is the fraction of time busy, which is a parameteof the sys-
tem andneedsto be determined.For eachworkstation:i on
stagek, four statevariablesareusedto describethe statusof

theworkstation they arethe operationabtatus oy (t), which

describeshefailureandrepairevents,the preventive mainte-
nancestatusyny; (t), theavailableproductioncapacityry; (),

andthe currentoperationabgefor the workstationa; ().

Eachworkstationis subjecto failureandcanberepaired
andpreventive maintenanceés utilized to reducethe number
of failures. The arrival rates,meantime till aneventoccurs,
is a function of the operationaltime. This implies that the
failure rate increasesastime goeson, which makes preven-
tive maintenancelesirable. It is assumedhat the costin-
curredfor preventive maintenanceandthe resultingloss of
productionjs muchlessthanthatof workstationfailure. The
operationaland preventive maintenancestatusesvolve ac-
cordingto a purely stochasticdifferential equationthat use
statedependenPoissorprocessesT he statedependenPois-
son processesllow for eventsto occuronly whenthey are
allowable,thusthereareno problemsat boundariesThe sta-
tus valuestake valueson the rangefrom [0, 1], which corre-
spondto the percentagef available productioncapacity(the
maximumpossibleratefor manufcturing).In thistreatment,
preventive maintenanceloesnot have to disablethe produc-
tion, but may just limit the throughputof the workstation. It
is assumedhatfor ary time ¢, thateachworkstationis either
operationalfailed, or in maintenancethatis a machinemay
not be listed in morethanone category. The available pro-
duction capacityreflectsthe changesn the statusvariables
andis usedto determinethe overall piececountthat canbe
produced.

The meantime betweerfailuresandthe repairduration
is exponentiallydistributed andis a function of the current
operationalage. The defining equationfor the operational
statusof workstation: on stagek is givenby:

doi(t) = APy (xki(t), t) — dPy; (xki(t), t), (3)
whered Pf; (x;(t), t) is usedto modelthefailure (F) process
for the workstationand P2 (x;(t), t) is usedto modelthe
repair (R) process.Preventive maintenancés performedon
deterministicschedulehatis basedn the operationahgeof
the workstation. The defining equationfor the maintenance
statuss givenby:

dmyi(t) = dPyg (xui(t), t) — “@
wheredPM (x;(t),t) is usedto model when the worksta-
tion undegoespreventive maintenancendd P} (xy; (t), t) is
usedto modelthe durationfor the maintenance.

dP;i\;I (xxi(t), 1),

The eventsfor workstationfailure andpreventive main-
tenancearemutually exclusive. Therefore the availablepro-
duction capacity can be determinedby using an indicator
functional, I;(t), givenby: Ii;(t) = Min[og; (), mk; (t)].
However, this functionaldoesnot fit in the LQGP problem
paradigm.To remedythis, a new statevariablefor the avail-
ableproductioncapacity r; (t), taking valueson theintenval

[0,1] is utilized that relies on the mutual exclusive proper
ties for workstationfailure and preventive maintenanceand
is givenby:

dr; (t) =

dok; (t) + dmp;(t). (5)

Thereforeattime t, workstation: of stagek hasa maximum
productioncapacityof piecegerunittime givenby My;(t) =
Myiryi(t)-

Thestatedependen®Poissorprocessem (3), (4), and(5)
consistof an arrival andamplitudeprocesseswhich depend
onthecurrentstateof the workstation.The sojourntimesfor
the failure processesdPF, (xx;(t), t), and repair processes,
dPE(xxi(t), t), aregivenby

1 Ty; — ari(t), rri(t) =1 ©)
b (Xki(t), 1) - 0, otherwise [’
v TE ok(t)=0 @
A (xi(t), £) B 0, ori(t) =1 [’

where T} and 7, are the meantimes betweenfailure and
repalr respeclsvely The amplitudesfor theseprocessesire

Z,cz = Z,m = 1. The sojourntimes for preventive main-
tenanceprocessesfP (xy;(t), t), andthe processesorre-
spondingto theduration,d PE (xy; (t), t), aregivenby
},(8)
Ty,

1 J—
A Geiilt), ) {o, } ©

whereTM andT}[) arethe meantimesbetweermaintenance
andits duration,respectrely. The amplitudefor the preven-
tive maintenance?%, shouldbe modeledasthe meanper
centof productioncapacitylost on the interval [0, 1], where
thevaluel is interpretedasfully disablingthe workstation.
The amplitudefor the durationof the maintenanceshouldbe

. —D M
the sameasfor themaintenanceZ,; = Z,, .

T;é\;[ — ari(t),

1 _ { ’l"ki(t) =1
)\%(x;ﬂ'(t), t) N 0,

otherwise

0 <mpi(t) <1
m;ﬂ(t) =1

The currentoperationabgeof a workstationis a mono-
toneincreasindgunctionof time andthenumberof piecespro-
ducedbasedntheproductionratecy(t). Theoperationabge
of the workstationis resetto a lower value,for simplicity 0,
uponthe completionof workstationrepairor maintenancés
givenby:

dari(t) = flex(t),t)dt — Hi (t)dPi; (xki(t), 1)

HE#)dPE (x1i(2), 1),

whereHP () and H{E (t) arethe coeficientsthatareusedto
reset(here,zeroout), theoperationahgedueto maintenance
andrepair, respectiely, with a;(7x;) = 0 wherery; is the
time of thelastreset.

(10)

3.2. Global Surplus State Equations

The goal of the global surplusstateequationss track
the productionfor eachstagek of the manufcturingsystem
to a specifieddemandfunction, di (t), which is expresseds
the numberof piecesper unit time. The statevariableused



for this trackingproblemis the surplusaggreyatelevel, s;(t),

which representshe surplus(if positive) or short@ll (if neg-
ative) of the productionof piecesthathave successfullycom-
pletedstage; of themanufcturingprocesswherei = 1to k.

Theidealfor the manugcturingsystemis to have s;(t) = 0

for all time ¢ in the productionhorizonfor every stagei. The
controluy (t), expresse@sthenumberof piecesperunittime,
is usedto adjustthe productionratesto compensatdor all

randomeffectsin the manufcturing systemsuchas work-

stationfailure, repair andpreventive maintenanceswell as
smalllocal effectsmodeledasa Gaussiamoisefor example
defective pieces.In theunconstrainedasethecontrolcanbe
selectedsothatthe productiongoalfor all time s satisfiedfor

all stagesthatis s;(t) = 0. However, theresultingproduction
ratesmay not be physicallyrealizable.

The stateequationfor the surplusaggreyatelevel for
stagei = 1 to k is givenby
dsi(t) = [Mri(t)ei(t) +ui(t) —
+  gi(t)dWi(t).

di(t)] dt
(11)

The changein the surplus aggreate level, ds;(t), is de-
termined by the number of pieces that have success-
fully completedi stagesof the manufcturing process
(M, r;(t)c;(t)dt), that are not defectve, and are not
consumedby ¢ + 1st stage (d;(t)dt). The first term,
M, r;(t)c;(t)dt, ontheright handsideof (11) representthe
quantity producedwhich dependson the numberof opera-
tional workstationsfor stagei. The termw;(t)dt is usedto
adjustthe productionrate. Theterm, g; (¢t)dW;(t), is usedto
modelthe randomfluctuationsin the numberof piecespro-
duced,for example defective pieces. The demandor con-
sumptionterm,d; (t)dt, is the consumptiorof the piecespro-
ducedby stage: by stage: + 1. The surplusaggreate
level, s;(t), for stagei is dependenon the numberof opera-
tional workstations.The processefor thefailure, repair and
preventive maintenancédor the workstationsis an embedded
Markov chain (seeTaylor andKarlin [11], for instance) for
thesurplusaggreyatelevel. Theseeventsareusedto describe
the sojourntimesfor the discontinuougumpsin the surplus
aggreyatelevel. Hence the surplusaggreyatelevel is a piece-
wise continuougprocessvhosediscontinuougumpsarede-
terminedby the stochastiprocessesf theworkstations.

Thedemandated;(t) is thenumberof partsneededer
unit time to insurethatthe manufcturingprocesss a contin-
uousflow of work, sothat the desirednumberof completed
piecesareproduced.Thedemandatemustalsotake into ac-
count,basedon pasthistory, aminimal buffer level sufficient
to compensatéor defectve piecesaswell asworkstationfail-
ures,andto insurethatthe properstart-upsurplusaggreate
levelsare presenffor the next planninghorizon. In orderfor
the manufcturingsystemto be well posedit is requiredfor
all time ¢ that0 < d;(t) < M wherethe minimum produc-
tion throughpufor thedifferentstagegmanufcturingbottle-

neck)whichis givenby M = Min [Zf\fl Mki] sothatthe
k

productiongoal of the manufcturingsystemis attainable.

3.3. Cost Functional

Thecostfunctionuseds the standardime-to-go or cost-
to-go form (2), thatis motivatedby a zero inventory or Just
in Time manufcturingdiscipline (seeHall [7] and Bielecki
and Kumar[3]) while utilizing minimum control effort. In
this formulation,the sahagecost,S(ts), is usedto imposea
penaltyon surplusor shortfall of productionat the endof the
planninghorizon. Theterm Q(¢) is usedto penalizeshortfll
andsurplusproductionduringthe planninghorizon,this term
is usedto maintaina strict regimenon whenthe consumable
goodsareto be produced Theterm R(t) is usedto enforcea
minimum controleffort penalty

3.4. Manufacturing Model Outputs

To solwve this problem, assumethe regular or uncon-
strainedcontrol and solve the nonlinearsystemof ordinary
differential equationsof the associated. QGP problem(see
[12]). This allows the plant managerof the manufcturing
systemto calculatethe desiredor ideal productionrate and
the physicallyrealizableproductionrate. With theseproduc-
tion rates,the plant manageican projectover the remaining
productionhorizonthe expecteddeviation from thefinal pro-
ductiongoal.

Letn;(t) denotethenumberof operationalvorkstations

on stagei andis given by n;(t) = 17r;(t), wherel is a

N x 1 vectorwhoseelementsarel. Theregularcontrolled

production level for stagei anticipatesfor the stochastic

effectsof workstationfailure,repair andmaintenancaswell
asdefective partsis givenby

} ) 12)

0’
Cieg(t) = { Ci(t)+

where «;°¢(t) is the regular control. Note that with the
assumptionof regular control, the surplus aggreate level
will always be forced to be zero, therefore the regular
controlled production level may not be physically realiz-
able. The constrainedcontrolled production level, ¢} (¢),
is the restriction of the regular controlled productionlevel
to be physically realizable and is given by ci(t) =
min[¢;*8(t), c/*** (t)], wherec*** (t), themaximumproduc-
tion rate is the minimum value of the maximum physical
productionrate, 1.00, and the piece productionlimitation
min[1, (c¢;_; )M, ;ri_1(t))/(M] r;(t))] wheni > 1, or
elsel.00 wheni = 1. The pieceproductionlimitation arises
from workstationfailure and maintenancewhich requires
thatpiecedrom stagei+1 mustbeavailableto stage for pro-
cessing.Theconstrainedontrolledproductionrateis usedto
setthe productionratefor theworkstations.

o ni(t) =0
ui *(t) ni(t) > 0

M; ri(t) ’

4. Numerical Exampleof LQGP MM S

For numericalconcretenessconsidera manufcturing
systemwith £ = 2 stageswith a planninghorizon of 80
hours. Let the initial surplusaggreyatelevel for all stages
be zero, the demandbe 162 piecesper hour for all stages
(d1(t) = da(t) = 185), thetotal numberof workstationsV;,
for eachstagebe 3 and2, respectiely, the Gaussiarrandom



fluctuationsof productionis assumedbsent(g;(t) = 0 for
1 = 1 and2). The operationatharacteristicfor the worksta-
tions are summarizedn the table belon. During preventive
maintenanceand workstationfailure no productionoccurs.
Therefore the momentdor the momentdor the statedepen-
denthssorprocessem (3), (4), (5), and(10) aregivenby

Z,m = Z,m = Z,m = Z,m = 1 with all covarianceseingO.

Assumethat when the operationalage of a worksta-
tion (10) is reseteither dueto a repair or preventive main-
tenancehe operationalageof the workstationis setto zero
and that the aging processis basedon the amountof time
operationalonly. This implies that, f(cx(¢),t) = 1, and
HP(t) = HE(t) = 7oi — t — agi(Thi), wherery; is thetime
of thelastresetanday; (7%;) is viewedasaparametethatrep-
resentghe ageof the workstationsincethe last reset,which
is zerofor all 7,; # 0 andis specifiedin the tablebelow for
T = 0, theinitial agesof theworkstations.

deterministiccoeficientsaregivenby

020x10  0O20x5  0O20x7
A(t) =
®) [ O2x10 Ma(t) Oaxr ]
O15%1
_ | O20x2 _ | 1sxa
B(t) - |: I2><2 :| I C(t) - dl(t) )
X X X da(t)
My, Mz M3 0 0
M = N A
A®) [ 0 0 0 Mx M

with J\?[i]- = M;;c;(t). Theonly nonzero stochastigrocess
andcorrespondingoeficient matrix givenby

Produc- Opera-
Work- tion tional MeanTimes
station | Capacity Age, (hours)
My; ai(0)

(ki) | (Be=) | (hours) | T | T | T | T
(1,1) 60 10 120| 6 70 1
(1,2) 70 60 140 | 8 90 2
(1,3) 75 80 140 | 7 90 2
(2,1) 120 10 120| 8 95 2
(2,2) 110 0 120| 6 85 2

dPR(X(t),t)
dPF(X(¢),t
dP3(X (1), ) = dPDEX8 t; ,
dPM(X(t),t)
Isxs —Isxs Os5x5 Os5x5 ]
O5x5 O5x5 VENE —I5xs
Hs(t) = Isxs —I5xs Isxs —Isxs |,
—Hi'(t) Osxs —H3(t) Osxs
O2xs O2xs O2x5 O2xs

—H3'(t) = —H3 () = diag

11 —t — a1 (111) ]
Ti2 —t — a12(T12)

T13 —t —a13(m3) |,
To1 — t — a21(721)

Too —t — a22(T22) |

This manugcturingsystemconsistsof 20 local and2 global
statevariablesfor a stateof dimension22. Definethe local
statevectorsas

.
013 021 022 ] )

o = 011

T
m mi1 Mmi2 M1z  M21  M22 ] 3

[
[
ro= |
[

(13)

<

T
11 21 T22 :| )

a

IS

-
11 a13 Q21 azz] .

Definethe global statevectorfor the surplusaggreyatelevel
ass(t) = [s1(t) sQ(t)]T . Thetotal stateandcontrol vectors

aregivenby

X(t) = [oft) m(t) rt) a@t) s@®) ],

ut) = [w() w) ]’ (14)
Thecostfunctionalusedis (2) wherethe coeficient matrices
aregivenby

| O20x20 020x2 _ | 11000 0
S(tf)_[02><20 S¢ ]’Sf_[ 0 18000]’

| O20x20 O20x2 __ | 9000 0
Q(t)_[02xzo Q> ]’Qz_[ 0 15000]’

22 0
R(t)=[ 0 22]'

By comparingthe coeficientsof (1) with the stateequations
for the manufcturingsystem(3), (4), (5), (10), and(11) the

wherediag[v] =

[vi0;,;]kxk 1S the diagonalmatrix represen-

tationof the k x 1 vectorv andthe statedependenPoisson
processe® € {R, F, D, M} aregivenby

dP{ (X (t),t)
deZ (X(t)a t)
dPP(X(t),t) | dP{3(X(%),1)
dPg’l (X(t)a t)
dPg‘Z (X(t)a t)

Considetthe samplepathtrajectorydescribedn thetablebe-

low.
Time | Workstation Type Duration
(hours) @i, (hours)
15 1,3) failure 7
30 1,2) maintenance 2
60 1,2) maintenance 2

Theconstrainec&ndregularcontrolledproductionratesfor theman-
ufacturingsystemaregivenin Figurel. Theseproductiorratesshav
the anticipationof workstationrepairandfailure. In Figure 2, the
percentelative erroris given. At thefinal time of the planninghori-
zonthe percentrelative erroris (0.11183, —0.87636) " . Onedraw-
backof the modelis thatit only considerseedforward effects. In
this example,more piecesare producedon stagel thenconsumed
on stage2. The plant managershouldadjustthe productionrates
to consumethe excessproductionfrom stagel, which would re-
sultin a 0.11183 percenterror for manufcturingsystem. There-
sultspresentedhererequired66 CPU secondsand68 wallclock sec-
ondsto completeon a SunUltra 5, with a memorydemandof 1.75
megabytes.
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Figure 1. Regularandconstrainectontrolledproductionratesfor
stagesl and2.
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5. Conclusions

The LQGP model is an extensionof the continuous
samplepathLQG modelfor optimalstochasticontroltheory
and is a benchmarkmodel for computationalstochastic
control for hybrid systemsin which discontinuouspaths
are permitted. Here we have relaxed the linear dynamics
assumptionof LQGP by allowing the space-timePoisson
noise to be statedependent. The somavhat generalform
of the Poissontermsleadsto nonlinearextensionsfor the
standardLQG Riccati equation. However, the Poisson
terms and the subsequentesults are more interestingfor
more realistic applications,which involve discreterandom
jumps in the samplepathsin continuoustime, but at the
cost of additional computationalcompleity.  Preventive
maintenanceanextendthelife of aworkstationandthereby
insurethe stability of a manufcturingsystem.Theinclusion
of preventive maintenancen this model, which resultsin
discontinuougumpsin the statevalue,addsmorerealismthat
is much more importantthan thosemodeledby continuous
state models, and then there are the additional jumps due
to the randomfailure and repair of manuficturing system
workstations. Our computationalprocedureswill lead to
systematic approximationsto the manufcturing system
modelformulatedherefor preventive maintenanceandother

randomcatastrophievents.
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