
Computational Stochastic Control:
Basic Foundations, Complexity and Techniques

Floyd B. Hanson
Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago,851 Morgan St., M/C 249
Chicago, IL 60607-7045, USA
e-mail: hanson@math.uic.edu

Abstract— Much research and education in control systems is
purely mathematical, but computational advances in stochastic
control problem solving can be used beyond the limits of
theoretical mathematics. Theoretical and computational math-
ematics are complementary. Computation is important where
the problem is mathematically intractable, highly dimensional
as in stochastic dynamic programming or urgently in need of
answers as in competitive financial predictions. Many advances
in solving large scale control problems have been gained
through technical improvements in computing hardware, but as
many advances have been made in the development of better
algorithms. Both analysis and computation are important in
solving problems. Both rely on mathematics, but rely on them
in different ways. An important part of educational training
is general preparation for problem solving since postgraduate
jobs are uncertain in the current world.

In this expository control education paper, some basic com-
putational considerations, high performance computers and
useful algorithms are surveyed. Much of the knowledge gained
in research has been transferred to classes in computation and
control, so that student instruction is at the leading edge, a
buffer against obsolescence. An important general lesson in
computational education is that the computation forms the
other half of mathematics, beyond regular mathematics courses.
Computation has its own algebra, oriented to finite precision
arithmetic, and its own numerically oriented analysis. The
view is that of an applied analyst and computational control
scientist explaining the field to those with a regular mathematics
background.

I. INTRODUCTION

There are great demands on students learning about
stochastic analysis and stochastic control theory, since the
courses are based on very broad mathematical foundations.
These foundations include probability theory, stochastic pro-
cesses, analysis for continuous and discontinuous functions,
measure theory, other advanced topics in functional analysis,
and differential equations. Stochastic analysis and control
needs to be made more accessible to students interested
in applications, as early as entry-level graduate studies.
Much of the material can be developed from more concrete
analysis and computation than from the abstract analysis.
Computational methods serve to strengthen the concrete
analysis by demonstrating solutions and other properties,
while permitting the solution of problems that are beyond the
help of abstract analysis. Abstract analysis plays a small role
in computations anyway, although important for foundational
issues.

When the student is ready for a more abstract approach
to studying the finer points of stochastic problems, the
student will be able to approach them with more intuition

and maturity. The concrete approach should be closer to
the spirit of applied mathematics and applied probability,
using systematic derivations of results through a chain of
justifying formulas, in the sense of Hilbert, without using
Hilbert spaces or measure theory. The level of explanation
should be understandable to a student who has had a good
undergraduate course in analysis or advanced calculus. In ad-
dition, computational methods enable the study of large scale
problems and lead to skills that enhance the employability
of the student in an uncertain job market.

The introductory study of stochastic control needs to be at
a more concrete level to facilitate the integration of theory
and computation. It is important to emphasize the lack of
smoothness in stochastic diffusions and the lack of continuity
in jump processes. This lack of continuity and smoothness
is important in explaining the differences between the chain
rule for stochastic processes and the chain rule for determin-
istic, continuous processes. An applied stochastic processes
and control of jump-diffusions text [14] is currently being
prepared that is accessible to entry level graduate students
in applied mathematics, computational sciences, engineering,
finance and other industries.

II. BASIC COMPUTATIONAL CONSIDERATIONS
BEYOND REGULAR MATHEMATICS

In many computational science applications there are
concepts from regular mathematics courses, such as calculus,
that may lead to blunders when applied to actual computa-
tional problems. The gap in knowledge is not just particular
to computational control, but is general and has more to
do with the different computer-oriented algebraic structures
than the idealistic structures of the regular mathematics.
Also, there are important goals in computation such as speed
and efficiency in computation, but are not in the regular
mathematics. For instance, in regular mathematics there is
an interest in convergence, existence and uniqueness, but in
computation just convergence is not good enough, since both
the rate of convergence in finite time are critical. Uniqueness
and existence follows from computational construction. The
accuracy of an approximate answer is also important. Thus,
there are important differences in mathematical structure,
speed, efficiency and accuracy. The intent of this section
is to present some of the basic ideas of the foundations of
numerical analysis to those who are not very aware of the
computational side of mathematics.

A. Finite Precision Representation

The most basic difference in algebraic structure is due to
the computer finite precision representation of real numbers.
The algebra of this fascinating piece-wise constant number
system attracted the attention of both pure and applied
mathematicians about four decades ago with Prager and
Davis at Brown University, Lax at New York University,
Forsythe at Stanford University and others. Much of their
influence was by way of unpublished course notes. For the
representation of real numbers on computers, the floating
point number system is finite, i.e., p < 1 digits, and
is primarily based upon the binary number system, i.e.,
base 2, at the machine level. Also, the representation is a
relative one with a normalization requiring the first digit to
be nonzero, i.e., one in binary, except for the number zero
which has a special representation. This normalization avoids
the presence of leading zeros and the exponent allows the
decimal point to float to represent numbers very small to
very large in magnitude.

Definition: A normalized, floating point representation
of the nonzero number x can be represented mathematically
as

float[x] = �f

1 +

pX
i=2

di=b
i

!
� b�e

P
q

j=1
ej�b

j�1

;

where usually b = 2, p is the number of digits in binary
precision, di is the ith binary digit (0 or 1 bit) but rounded
in binary from the input x, ej is the jth binary digit in the
exponent, q is the number of binary digits in the exponent,
�f is the sign of the fraction and �e is the sign of the
exponent.

The actual computer storage is much more complicated,
allowing for special numbers like NAN (Not A Number),
which represents an improper result. The normalized leading
binary digit d1 = 1 when x 6= 0 is not stored since it can
be uniquely recovered from the representation which can be
24 bits in single or float precision (roughly 7 decimal digits)
and 53 in double precision (roughly 16 decimal digits). There
are also extended and quadruple precision. The exponents are
bounded above and below by the amount of over-flow and
under-flow permitted in the precision.

The user representation is usually quite different since the
floating point number is represented in output in decimal
scientific notation as

float[x] ' �fD1:D2D3 : : : DP e�eE1 : : : EQ;

where the Di, for i = 1 : P , are the converted and
rerounded decimal digits, 1 � D1 � 9 if x 6= 0, but
0 � Di � 9, for i = 1 : P , the Ej for j = 1 : Q
are the corresponding decimal exponent digits, and e is the
computer scientific notation symbol marking the beginning
of the decimal exponent. More information on floating point
representation can be found in numerical texts [3] or on-line
[11].

B. Machine Epsilon

Due to the finite representation, there is a minimum
positive number called the machine epsilon, maceps, that
when added to one gives a result that is greater than one,
i.e.,

Definition: maceps = min[�j� > 0; float[1 + �] > 1].
Theorem: For floating point representation computations

with rounding in base b and precision p, maceps = b1�p=2.
On almost all current computing systems, the base is

binary, b = 2, and the usual precision should be double
in professional computations, so p = 53 in the IEEE 754
standard or maceps = 2�53 ' 1:11 � 10�16. As a result
of this finite precision, familiar algebraic laws such as the
distributive law no longer hold, except approximately.

C. Catastrophic Cancellation

If the limits of the floating point representation are un-
known to the user, then mistakes, big and small can be
made. If two calculations are performed by different order
of operations, then different results are possible, even if the
two different orders are mathematically equivalent. However,
the results usually differ in the order of magnitude of some
multiple of the machine epsilon, except in the case of
catastrophic cancellation. Catastrophic cancellation is when
many of the most significant digits are cancelled in floating
point calculations.

Derivatives: The best catastrophic example is the simula-
tion of a derivative by Newton’s quotient, QN ,

f 0(x) ' QN = (f(x+ h)� f(x))=h; jhj > 0;

by taking h sufficiently small, but not too small. If h is
too small then the machine epsilon property is operative,
i.e., float[x + h] = float[x], for 0 < jhj < maceps=jxj,
sgn(h) = sgn(x), jxj > 0, and the numerator is zero in
floating point precision. Hence, the instruction in the regular
calculus or analysis class to take h as small as you please
would be wrong and catastrophic in floating point arithmetic.
In general, the smaller the step size h, the greater are floating
point errors due to the piece-wise constant system and the
more cumulative errors present:

Folk Theorem: The rule of thumb in numerical compu-
tations is to take the step size not too small or not to big, i.e.,
to rely on roughly half the number of digits in the precision
p.

Floating point representation is piecewise constant, but the
pieces are quite small so that on a scale that is much larger
than the maceps, it is a reasonable linear approximation to
the real number system, i.e., float[x] ' x in the large.

D. Symbolic Computation: A Disclaimer

On many computers, symbolic computing systems such
as MapleTM and MathematicaTM are available and an ap-
proximation to infinite precision arithmetic can be simulated
on the computer, although all computers are finite. Thus,
the computation of a large number of digits in an answer
will take a correspondingly large amount of computer time.
Obviously, many of the comments about finite floating point
precision made here do not apply to symbolic computation.

E. Inefficient Linear Algebra Methods

Several linear algebra methods taught in regular linear
algebra courses are fine in theory, but very inefficient or
wrong in computational practice. The standard computational
method for solving systems of linear algebraic equations,
A � ~x = ~b given n vector ~b and coefficient matrix A, is
Forward Gaussian Elimination with Back Substitution. For
nth order systems, the number of floating point operations is
the order of 2n3=3. However, row pivoting and row scaling
or full row-column pivoting is necessary to make the method
robust in accuracy and stability. Closely related methods
are the variants LU (Lower and Upper triangular forms)
Decomposition, which are more efficient for production
problems since they only reduce the coefficient matrix A
once for many right hand sides.

Cramer’s Rule: Often students get the idea of using
Cramer’s rule to solve systems larger than n > 4, say, either
because they have only used it to solve small, toy homework
problems or because it is used in linear algebra theory
regardless of the dimension without practical qualifications.
It can be shown by the properties of the exponential series
it has exponential order computational complexity for nth
order system solution, i.e., O(e � (n + 1)!), floating point
operations [10].

Gauss-Jordan Elimination: In the theoretical linear al-
gebra courses the Gauss-Jordan diagonalization form of
Gaussian elimination is taught, but this is twice as costly
as Forward Gaussian Elimination with Back Substitution, so
this would be unwise for large scale industrial production
systems.

III. COMPUTATIONAL DETERMINISTIC
CONTROL VERSUS COMPUTATIONAL

STOCHASTIC CONTROL

This paper is about about computational stochastic control,
but computational deterministic control is mentioned briefly
for contrast.

A. Computational Deterministic Control

Deterministic control problems [15] can be cast as systems
of ordinary differential equations (ODEs) so many standard
numerical methods can be used. For example, if ~X(t) is the
state n-vector of the system in continuous time t, ~U(t) is
the control m-vector, the ODE equation for the dynamics is

d ~X(t)=dt = ~F (~X(t); ~U (t); t); (1)

where ~F (~x; ~u; t) is the plant function, possibly nonlinear,
and the objective is the minimal cumulative running costs
C(~x; ~u; t) on (t0; tf) plus terminal cost Zf (~x; t) at tf , i.e.,

V [~X; ~U]=

Z tf

t
0

C

�
~X(t); ~U(t); t

�
dt;+Zf

�
~X(tf); tf

�
: (2)

In the Hamiltonian formulation [15], the objective integrand
and the dynamics and combined and optimization is per-
formed on the Hamiltonian,

H(~X(t); ~U(t); ~�(t); t)�C(~X(t); ~U(t); t) + ~�T (t)~F (t)(~X(t); ~U(t); t);

where ~�(t) is the Lagrange multiplier. The optimal trajectory
triple critical point, (~x�(t); ~u�(t); ~��(t)) assuming sufficient
smoothness conditions, are given by Hamilton’s equations,
�
@H

@~�

�
�

=
d~x�(t)

dt
;

�
@H

@~x

�
�

= �
d~��(t)

dt
;

�
@H

@~u

�
�

= ~0;

a set of three vector ODEs using optimal control ~u�(t). The
side conditions depend on the application and are tabulated
nicely in [15]. The ~x�(t) satisfies an initial conditions at
t0 and ~��(t) satisfies a final conditions at tf . Except for
simple or analytical homework problems, usually numerical
discretization and backward-forward iterations are required
until the solution converges to prescribed accuracy. If there
are M discrete time nodes, Tj = t0 + (j � 1)�T for
j = 1 : M with �T = (tf � t0)=(M � 1), then the n
dimensional state vector ~x�(t) is discretized as ~x�(Tj) =
~Xj = [Xi;j]n�M or n �M discrete variables. For the three
vector solution the computational complexity or the order
of the computational cost is O(3n �M) per iteration, i.e.,
bi-linear in the dimension and number of time nodes, a
very manageable computational problem, even for today’s
powerful personal computers.

MATLABTM has a good number of control Toolboxes
to handle problems. There are also several good on-line
tutorials available, such as Control Tutorials for MATLAB
And Simulink [17]. Bernstein has several insightful essays,
e.g., Classical Control [2]. A longer list of on-line control
information is given on the Control Tools web-page [12].

B. Computational Stochastic Control

By contrast, computation for stochastic control is often
quite different and can concern partial differential equations
(PDEs) [14]. Many of these stochastic control computational
methods are formulated in terms of the PDE dynamic pro-
gramming of Bellman [1]. However, this PDE formulation
leads to exponential complexity numerically, called the Curse
of Dimensionality when compared to the bilinear complexity
in the deterministic case.

For the case where the added stochasticity is a stochastic
jump-diffusion, the dynamical system is a stochastic differ-
ential equation (SDE) and continuous time has the form:

d ~X(t) = ~F (~X(t); ~U(t); t)dt + ~G(~X(t); t)d ~W (t) (3)

+ ~J(~X(t); t)dP (t);

where ~G(~x; t) is the volatility array; d ~W (t) is the standard
differential diffusion process, normally distributed with mean
~0 and diagonal covariance Irdt, Ir is the rth order identity;
and ~J(~X(t); t) is the random jump amplitude associated with
the Poisson differential process dP (t) which has a common
mean and variance portional to the jump rate, i.e., �(t)dt.
The dP (t) and J are assumed independent given a jump,
while dP and ~J are independent of dW .

The object in the stochastic control case is taken to be
like the deterministic case (2) for comparison. The main
change is that the cost objective is a functional of the the
diffusion ~W (t) and jump P (t) processes through the state
~X(t) process and that the initial time t0 is replaced by t in

order to vary time for dynamic programming, so

V [~X; ~U;P; ~W; t]=

Z tf

t

C

�
~X(�); ~U(�); �

�
d�+Zf

�
~X(tf); tf

�
:

The conditional expectation is taken to smooth out the
stochastic fluctuations for a well-defined optimization. Then
the optimal expected total cost starting at time t is

v�(~x; t) = min
~u

"
E

P; ~W

h
V

h
~X; ~U; P; ~W; t

i��� ~X(t)=~x; ~U(t)=~u

i#
;

and the argument of the minimum being the optimal feedback
control vector ~u� = ~u�(~x; t). Upon application of Bellman’s
Principle of Optimality [1] and the stochastic chain rule (the
nonanalytic properties of P (t) and ~W (t) introduce extra
terms beyond the regular calculus chain rule), the PDE of
Stochastic Dynamic Programming is

0 =
@v�

@t
(~x; t) +

1

2
Trace

�
GGTrx

�
rT
x [v�]

��
+min

u

h
C(~x; ~u; t) + ~F T (~x; ~u; t)rx [v

�(~x; t)] (4)

�

Z
Q

h
v�(~x+ bJ(~x; q; t); t)� v�(~x; t)

i
�Q(q)dq

�
;

where 0 < t < tf , Q and q are the Poisson amplitude mark
random and realized variables on the mark space Q with
density �Q(q), and bJ(~x; q; t) is the jump amplitude kernel.
The final condition is v�(~x; tf) = Z(~x; tf). Eq. (4) is no
regular PDE, due to the presence of the control minimization.
Thus, the dual output of the dynamic program is the value
of the optimal cost v�(~x; t) and the optimal feedback control
vector ~u�(~x; t). Another difference is that the last term
in (4) is the Poisson jump integral which leads to global
dependence unlike the local dependence of the optimal cost
gradient rx[v

�(~x; t)] and diffusion term.
It is state-time vector solution set dependence

fv�(~x; t); ~u�(~x; t)g on ~x and t, that makes the stochastic case
more computationally complex than x(t) the deterministic
case. If time is fixed at a single discrete value Tk, where
k = 1 : Nt, the independent discretization of the n-
dimensional state ~x is ~X~j = [Xi;ji]n�1 where ~j = [ji]n�1,
ji = 1 : Nx for i = 1 : n and Nx is the common number
of state nodes, However, ~X~j only represents one point in
state space and there are a total Nn

x numerical nodes in n
dimensions. Thus, total numerical representation of v(~x; Tk)
is

V (k) = [V
(k)
j1;j2;:::jn

]Nx�Nx�����Nx
;

per time step k, so that the computational complexity is

CC(Nx; n) = O(Nn
x) = O(exp(n ln(Nx))); (5)

exponential in the dimension symbolizing the exponential
computational complexity of Curse of Dimensionality. This
is also the exponential order of the complexity for solving
multi-dimensional PDEs. For the optimal control vector
the order in n times this order, but that does not change
the exponential order complexity. Further, for second order
finite difference errors, the total error will be ET (Nx; n) =

O(N�2

x). So even if the order of the complexity is fixed, i.e.,
N = Nn

x , then

ET (N
1=n; n) = O

�
N�2=n

�
! O(1) (6)

as n ! +1 for fixed N , i.e., diminishing accuracy in the
limit of large dimension.

There are many other computational issues but there is
not enough space here to discuss them (see the chapter
[8]). Also, as with any PDE, the computational mesh ratio
must be selected carefully or the computational PDE method
will not converge. Another problem can arise when the
drift or the deterministic plant function ~F dominates the
stochastic terms so that the type of PDE changes from the
diffusion-like parabolic type to wave-like hyperbolic type,
leading to nonuniform numerical oscillations, which can be
handled by Upwinding, using forward or backward finite
differences [16]. When Poisson jump processes are used in
the stochastic dynamical model, then a globally dependent
jump integral can appear in the PDE of Stochastic Dynamic
Programming (4), so the numerical approximations may
require interpolation techniques [21]. Still another problem
is the proper handling of boundary conditions for stochastic
processes which require boundary reflections [16] using
auxiliary processes.

IV. HIGH PERFORMANCE COMPUTING
ADVANCES

High performance computing, using massively parallel
computers and vector supercomputers can alleviate but not
overcome the Curse of Dimensionality. Parallel and vector
computation can permit the solution of higher dimension
than was previously possible and thus permit more realistic
dynamic programming applications. Large scale problems of
great importance are called Grand or National Challenge
problems [9] of high performance computing. The avail-
ability of high performance parallel processors have made
it possible to compute optimal policies and values of control
systems for much larger dimensions than was possible earlier.
Today’s parallel computer clusters of networked personal
computers and workstations are making parallel computers a
less expensive [9]. Advances in algorithms have also played
a comparable role.

The 2002 panel on the Future Directions in Control,
Dynamics, and Systems [18] places a lot more emphasis on
control education and computation plays an integral role in
the investigation of control problems throughout the report.

A. High Performance Computers

Much of the initial motivation in computational stochastic
control for this author was the optimal harvesting of multi-
dimensional or multi-species natural resources with multiple
economics in a disastrous environment [5]. The control in
these models is the species commercial and recreational
harvesting effort, the harvest rates per unit species popu-
lation. These models used Poisson processes to simulate
species disastrous events, so were much more complicated

analytically than the smooth, local stochastic diffusion pro-
cesses. However, it was the multi-dimensional resources
problem that caused time consuming computations and made
local main-frame computing resources inadequate, requiring
the need for advanced computing facilities. The advanced
large scale computational demands required new and more
efficient numerical methods [7] that were quite different and
sometimes contrary to the standard methods for computation
on serial computers.

As the number of accessible vector and parallel pro-
cessors increased, solving stochastic dynamic programming
problems larger dimensions became feasible. Cray vector
supercomputers with a few and up to more than a dozen
processors, massively parallel Thinking Machines CM-2 and
CM-5 as well a massively parallel Cray T3D/T3Es have been
used on these problems. Much of the effort was making the
vector or parallel code more efficient by reducing data de-
pendencies, making the code more transparent to the compil-
ers, eliminating unnecessary overhead and other techniques.
Many of advanced computing techniques are summarized in
the chapter [8]. An important spin-off benefit was starting a
course on parallel processing and supercomputing in 1986 [9]
as technology transfer from this large-scale control research,
and also to help train graduate students in computational
stochastic control research.

B. Advanced Data Structures

Further, advanced parallel and vector optimizations are
dependent on the application data structures. For certain
applications, the code runs faster if arrays are accessed the
way they are stored in memory, e.g., by columns for Fortran
arrays or by rows in C arrays. In early applications [6], a
vector data structure was developed to represent the full n-
dimensional state space to make it relatively easy to change
code dimensions and also to vastly increase the parallel work
load balance by maintaining a large pool of work.

C. Scientific Visualization in High Dimensions

The stochastic dynamic programming output in n-
dimensions is the optimal cost scalar v�(~x; t) and the optimal
feedback control m-vector ~u�(~x; t). They both depend on
(n+1) space-time variables. In addition, these solutions can
depend significantly on k parameters, e.g., volatility, jump
rates and jump amplitudes. Hence, displaying the resulting
solution can be challenging beyond several dimensions. For
this reason, our research group developed a real implementa-
tion of multi-dimensional control problem output called I/O
view [19], an inner and outer world view. In the inner world
the optimal value or an optimal control component can be
displayed in a 3-dimensional surface projection versus two
other independent variables or parameters. In the outer world
three additional values of three other variables or parameters
can be selected.

V. ALGORITHMS ADVANCES

While there have been many algorithmic advances in
the recent decades, we will concentrate on control relevant
algorithmic advances.

A. Canonical Models

Many control problems can be reduced in analytical and
computational complexity if a canonical model is appropriate
and leads to a separation of variables decomposition with a
reduction of dimensionality.

LQGP Problem: One canonical problem, often used in
stochastic control, is the LQG problem which has linear (L)
dynamics, quadratic (Q) costs and Gaussian (G) or diffusion
noise. The LQGP or JLQG problem is an extension to
Poisson jump processes [20]. Both problems preserve the
dynamic programming features due to the Markov stochastic
properties. Our reseach group have developed refinements
and computational implementation of the LQGP problem
[20] for a stochastic multi-stage manufacturing system. The
form of the system leads to a separation of variables form
such that variables separate into an explicit quadratic func-
tion of the state, but with coefficients that implicitly depend
on time,

v�(~x; t) = 1

2
~xTS(t)~x+ ~DT (t)~x+E(t);

~u�(t) = �K(t)
h
S(t)~x+ ~D(t)

i
;

(7)

in the case of unconstrained control, where the K(t) is the
control gain matrix. The coefficients, matrix S(t), vector ~D
and scalar E(t), are uni-directionally coupled through matrix
ODEs and need to be determined.

CRRA Utility in Finance and Economics: A similar
separation of state and time dependence can be achieved in
an optimal portfolio with wealth consumption problems, if
a Constant Relative Risk Aversion (CRRA) utility is the cost
function, i.e., the running cost C is a power function U(w) =
w
=
, where w is the wealth state variable. The optimal
value of the investment portfolio separates into a known
function of the wealth, the CRRA utility, and an unknown
function of time, v0(t), i.e., v(w; t) = U(w)v0(t); again
reducing the dimensionality since the wealth w dependence
is given. The optimal control variables are the stock fraction
u�(w; t) and the consumption c�(w; t) also have a given but
more complicated form for jump-diffusions [13].

B. Markov Chain Approximations

Kushner and co-workers [16] have developed many nu-
merical approaches to stochastic control, with special em-
phasis on the Markov chain approximation method. The state
process ~x(t) is discretely approximated by a Markov chain
~�(n; h) with the time interpolation step �t(n; h) where n
is the discrete time index and h is the scale of the state
change, like �x. The interpolation time step �t(n; h) is
chosen so that the Markov chain is “locally consistent”
in probability with the stochastic process in continuous
time. When applied to the approximation of the optimal
value function, the coefficients are selected according to
transition probabilities between chain stages of the Markov
chain by choice of the step �t(n; h). The Markov chain
approximation is compared with the PDE finite difference
method in [8]. See the comprehensive book [16] for the
complete details.

C. Pseudo and Quasi Monte Carlo Methods

When the state space dimension is greater than four or
so, Monte Carlo methods can be more efficient than finite
difference or Markov chain approximation methods, since
these methods suffer from the curse of exponential complex-
ity (5) or diminishing accuracy (6). On the other hand, if
the problem as an integral over the state space and taking a
random state space sample using a pseudo random number
generator [4], then Monte Carlo Approximation for the N -
point sample average approximates the integral average over
state volume V . That is,Z

V

f(~x)d~x ' h f iN � 1

N

NX
i=1

f(~xi): (8)

The average probable error is EN = O
�
1=
p
N
�
; inde-

pendent of dimension n for identically distributed normal
random samples and N is sufficiently large. Compared to
the finite difference error in (6), the Monte Carlo approxi-
mation will be more accurate and faster converging for larger
dimensions.

There are many variations of the Monte Carlo method.
One is the Quasi-Monte Carlo Method, using a quasi-random
number generator [4]. It uses a systematic covering of state
space with an error that can approach O (ln(N)=N) ; a
smaller order than O(1=

p
N) for large N . Other techniques

[4] often used are importance sampling which uses a weight
function g(~x) that captures the important features of the
integrand f(~x) or stratified sampling which uses domain
decomposition to increase efficiency. In stochastic financial
engineering there are many results using Monte Carlo meth-
ods [4].

VI. CONCLUSIONS

Computational stochastic control has been briefly surveyed
from foundations in numerical analysis to some of the current
computational efforts in solving stochastic control problem
applications. The computational complexity of deterministic
and stochastic control have been compared, explaining the
greater complexity of stochastic control problems. Some
examples of advanced computers and algorithms are given to
illustrate how curse of dimensionality in stochastic dynamic
programming can be alleviated or avoided.

VII. ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation Grant DMS-02-07081 in Computational Math-
ematics. Any views expressed are those of the author and
do not necessarily reflect those of the NSF. Computational
research and education has been also supported by a large
number of national and local computing laboratories.

VIII. REFERENCES

[1] R. E. Bellman, Dynamic Programming, Princeton University
Press, Princeton, NJ, 1957.

[2] D. S. Bernstein, “A Student’s Guide to Classical Control,”
IEEE Control Systems Magazine, vol. 17, pp. 96-100, Au-
gust 1997.

[3] G. E. Forsythe, M. A. Malcolm and C. Moler, Computer
Methods for Mathematical Computations, Prentice-Hall, En-
glewood Cliffs, NJ, 1977.

[4] P. Glasserman, Monte Carlo Methods in Financial Engineer-
ing, Springer-NY, New York, NY, 2003.

[5] F. B. Hanson, “Bioeconomic model of the Lake Michigan
alewife fishery,” Can. J. Fish. Aquat. Sci., vol. 44, suppl. 2,
pp. 298-305, 1987.

[6] F. B. Hanson, “Stochastic Dynamic Programming: Advanced
Computing Constructs,” Proceedings of 28th IEEE Confer-
ence on Decision and Control, vol. 1, pp. 901-903, 1989.

[7] F. B. Hanson., “Computational dynamic programming on
a vector multiprocessor,” IEEE Trans. Automatic Control,
vol. 36(4), pp. 507-511, April 1991.

[8] F. B. Hanson, “Computational Stochastic Dynamic Pro-
gramming” in Stochastic Digital Control System Techniques,
within series Control and Dynamic Systems: Advances in
Theory and Applications, vol. 76, C. T. Leondes (Editor),
Academic Press, New York, NY, pp. 103-162, April 1996.

[9] F. B. Hanson, “Local Supercomputing Training in the Com-
putational Sciences Using Remote National Centers,” Future
Generation Computer Systems: Special Issue on Education in
the Computational Sciences, to appear, 21 pages in ms., 13
January 2003.

[10] F. B. Hanson, CAUTION: Cramer’s Rule is Computation-
ally Expensive, http://www.math.uic.edu/�hanson-
/cramers.html

[11] F. B. Hanson, Basic Floating Point Representation,
http://www.math.uic.edu/�hanson/mcs471-
/FloatingPointRep.html

[12] F. B. Hanson, Control Tools, http://www.math.uic.edu-
/�hanson/math574/math574tools.html

[13] F. B. Hanson, and J. J. Westman, “Stochastic Analysis
of Jump–Diffusions for Financial Log–Return Processes,”
Stochastic Theory and Control, Proceedings of a Workshop,
held in Lawrence, Kansas, October 18-20, 2001, Lecture
Notes in Control and Information Sciences, B. Pasik-Duncan
(Editor), Springer-Verlag, New York, pp. 169-184, July 2002.

[14] F. B. Hanson, and J. J. Westman, Applied Stochastic Processes
and Control for Jump-Diffusions: Modeling, Analysis and
Computation, SIAM Books: Advances in Design and Control
Series, 194 page draft, September 2003.

[15] D. E. Kirk, Optimal Control Theory: An Introduction,
Prentice-Hall, Englewood Cliffs, NJ, 1970.

[16] H. J. Kushner and P. Dupuis, Numerical Methods of Stochastic
Control Problems in Continuous Time, Springer-Verlag, New
York, 2001.

[17] W. C. Messner and D. M. Tilbury, Control Tutorials for
MATLAB And Simulink: User’s Guide, Addison-Wesley Publ.
Co., 2002.

[18] R. M. Murray, et al., “Future Directions in Control in an
Information-Rich World: A Summary of the Report of the
Panel on Future Directions in Control, Dynamics, and Sys-
tems,” IEEE Control Systems Magazine, vol. 23 (2), pp. 20-
33, April 2003.

[19] Pratico, C. J., F. B. Hanson, H. H. Xu, D. J. Jarvis and M.
S. Vetter, “Visualization for the management of renewable re-
sources in an uncertain environment,” Proc. Supercomputing
’92, pp. 258-266 & 843, November 1992.

[20] Westman, J. J. and F. B. Hanson, “The LQGP problem: a
manufacturing application,” Proceedings of 1997 American
Control Conference, vol. 1, pp. 566-570, June 1997.

[21] Westman, J. J. and F. B. Hanson, “Nonlinear State Dy-
namics: Computational Methods and Manufacturing Applica-
tion,” International Journal of Control, vol. 73, pp. 464-480,
April 2000.

