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Abstract

Much research in control systems is purely mathematical, but ad-
vances in stochastic control problem solving can be used beyond the
limits of where theoretical mathematics can help. Theoretical and
computational mathematics are complementary. Computation is im-
portant where the problem is mathematically intractable, of high di-
mension as in stochastic dynamic programming or solving the prob-
lem is urgent as in competitive financial engineering predictions.
Many advances in solving large scale control problems have been
gained through technical improvements in computing hardware, but
as many advances have been made in the development of new and
better algorithms, the theoretical side of computation. Both analysis
and computation are important in solving problems. Both rely on
mathematics, but rely on them in different ways. An important part
of educational training is general preparation for problem solving
since the postgraduate job is uncertain in the current world.

In this expository paper, a selection of basic computational consid-
erations, high performance computers and some useful algorithms
are surveyed. Some of the computational methodology in both al-
gorithms and advanced computers arose from the author’s own re-
search. Much of the knowledge has been transferred to classes in
computation and control, so that student instruction is at the leading
edge, a buffer against obsolescence. An important general lesson in
computational education is that the computation, if done properly,
forms the other half of mathematics, beyond the topics of regular
or traditional mathematics courses. Computation has its own alge-
bra, oriented to finite precision arithmetic, and its own analysis that
is numerically oriented. The view is that of an applied analyst and
computational control scientist explaining the field to those with a
regular mathematics background.
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1. Introduction

There are great demands on students learning about stochas-
tic analysis and stochastic control theory, since they are based
on very broad mathematical foundations. These founda-
tions include probability theory, stochastic processes, analysis
for continuous and discontinuous functions, measure theory,
other advanced topics in functional analysis, and differential
equations. Stochastic analysis and control need to be made
more accessible to students interested in applications and ear-
lier than usual, as early as entry-level graduate studies. Much
of the material can be developed from more concrete analysis
than from the more abstract analysis. Computational methods
serve to strengthen the concrete analysis by demonstrating so-
lutions and other properties, while permitting the solution of
problems that are beyond the help of pure analysis.

When the student is ready for a more abstract approach to
studying the finer points of stochastic problems, the student
will be able to approach them with more intuition and matu-
rity. The concrete approach should be closer to the spirit of
applied mathematics and applied probability, using system-
atic derivations of results through a chain of justifying for-
mulas, in the sense of Hilbert, without using Hilbert spaces.
The level of explanation should be understandable to a stu-
dent who has had a good undergraduate course in analysis or
advanced calculus. In addition, computational methods en-
able the study of large scale problems and lead to skills that
enhance the employability of the student.

The introductory study of stochastic control needs to be on a
more concrete level to facilitate the integration of theory and
computation. It is important to emphasize the lack of smooth-
ness in stochastic diffusions and the lack of continuity in jump
processes. This lack of continuity and smoothness is impor-
tant in explaining the differences between the chain rule for
stochastic processes and the regular chain rule for determin-
istic, continuous processes. Many of the author’s students are
applied mathematics, computational science and engineering,
so that a concrete presentation to these diverse and applied
type of students. An applied stochastic processes and control
of jump-diffusions text [29] is currently being prepared.
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2. Basic Computational Considerations Beyond Regular
Mathematics

In many computational science applications there are con-
cepts from regular mathematics courses, such as calculus, that
may lead to blunders when applied to actual computational
problems. The gap in knowledge is not just particular to com-
putational control, but is general and has more to do with the
different computer-oriented structures that are a part of com-
putational mathematics than the idealistic structures that are
part of the regular mathematics. Also, there are differing com-
putational goals such that speed and efficiency are important
considerations, but they are not in the regular mathematics
courses. For instance, in regular mathematics there is an in-
terest in convergence to an answer, but in computation just
convergence is not good enough, since both the rate of con-
vergence and convergence in finite time, due to finite stopping
tolerances, are critical. The accuracy of an approximate an-
swer is also important. Thus, there are important differences
in mathematical structure, efficiency and accuracy. The in-
tent of this section is to present some of the basic ideas of
the foundations of numerical analysis to those more familiar
with the foundations of mathematical analysis and who are
not very aware of the computational side of mathematics.

2.1. Finite Precision Representation
The most basic difference in mathematical structure is due to
the computer representation of real numbers. The mathemat-
ics of this different number system attracted the attention of
both pure and applied mathematicians about four decades ago
with Willy Prager and Philip Davis at Brown University, Pe-
ter Lax at New York University, George Forsythe at Stanford
University and others. Much of their influence was by way of
unpublished course notes. Computer representation is quite
different from the continuous representation in regular anal-
ysis and this difference is fascinating. For the representation
of real numbers on computers, the floating point number sys-
tem is finite, i.e., p < 1 digits, and is based upon the binary
number system, i.e., base 2, at the machine level. Also, the
representation is a relative one with a normalization requir-
ing the first digit to be nonzero, i.e., one in binary, and zero
is an exception with special representation. This normaliza-
tion avoids the presence of leading zeros (wasting storage)
and the exponent allows the decimal point to float in the rep-
resentation preserving the order of magnitude of a number.
Thus, floating point numbers can be very small or very large
in magnitude.

A normalized, floating point representation of the nonzero
number x can be represented mathematically as

float[x] = �
 
1 +

pX
i=2

di
bi

!
� b�

0
P

q

j=1
ej�b

j�1

;

where b = 2, p is the number of digits in binary precision, di
is the ith binary digit (0 or 1 bit) but rounded in binary from
the input x, ej is the j binary digit in the exponent, q is the
number of binary digits in the exponent, � is the sign of the

fraction and �0 is the sign of the exponent. The actual com-
puter storage is much more complicated, allowing for special
numbers like NAN, or Not A Number, which represents an
improper result. The normalized leading binary digit d1 = 1
when x 6= 0 is not stored since it can be uniquely recovered
from the representation which can be 24 bits in single or float
precision (roughly 7 decimal digits) and 53 in double preci-
sion (roughly 16 decimal digits). There are also extended and
quadruple precision. The exponents are bounded above and
below by the amount of over-flow and under-flow permitted
in the precision. The user representation is usually quite dif-
ferent since the floating point number would be represented
in output in scientific notation as

float[x] ' �D1:D2D3 : : :DP e�0E1 : : : EQ;

where the Di, for i = 1 : P , are the converted and rerounded
decimal digits, 1 � D1 � 9 if x 6= 0, but 0 � Di � 9,
for i = 1 : P , the Ej for j = 1 : Q are the correspond-
ing decimal exponent digits, and e is the computer scientific
notation symbol marking the beginning of the exponent. Con-
version approximations going back and forth between binary
(base 2) and decimal (base 10) provide another difference be-
tween computational mathematics and regular mathematics,
however slight. More information on floating point repre-
sentation can be found in numerical texts [10, 30] or on-line
[32, 23].

2.2. Machine Epsilon
Due to the finite representation, there is a minimum positive
number called the machine epsilon, maceps, that when added
to one gives a result that is greater than one, i.e.,

Definition:

maceps = min[�j� > 0; float[1 + �] > 1]:

Thus, maceps is the smallest positive floating point number
next to zero.

Theorem: For floating point representation computations
with rounding in base b and precision p,

maceps =
1

2
b1�p:

On almost all current computing systems, the base is binary,
b = 2, and the usual precision should be double in profes-
sional computations, so p = 53 in the IEEE 754 standard or

maceps = 2�53 ' 1:11022� 10�16 = 1:11022e� 16:

As a result of this finite precision, familiar algebraic laws such
as the distributive law no longer hold, except approximately.

2.3. Catastrophic Cancellation
If the limits of the floating point representation are unknown
to the user, then mistakes, large and small, can happen. If two
calculations are performed by different orders of operations,
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then they can lead to different results, even if the two different
orders are mathematically equivalent. However, the results
should differ in the order of magnitude of some multiple of
the machine epsilon, except in the case of catastrophic can-
cellation. Catastrophic cancellation is when many of the lead-
ing or most significant digits are cancelled in floating point
calculations.

2.4. Derivatives
The best example is the simulated computation of a derivative
by Newton’s quotient,

f 0(x) ' QN =
f(x+ h)� f(x)

h
; jhj > 0;

by taking h sufficiently small, but not too small. If h is too
small then the machine epsilon property is operative,

float[x+ h] = float[x]; 0 < jhj < maceps=jxj;
sgn(h) = sgn(x); jxj > 0;

and the numerator is zero in floating point precision. Hence,
the instruction in the regular calculus or analysis class to take
h (or �) as small as you please would be wrong in floating
point arithmetic. In general, the smaller the step size h, the
greater are floating point errors and the more cumulative er-
rors present:

Folk Theorem: The rule of thumb in numerical computations
is to take the step size not too small or not to big, i.e., to
rely on roughly half the number of digits in the precision p,
excluding problems with catastrophic cancellation.

Floating point representation is piecewise constant, but the
pieces are quite small so that on a scale that is much larger
than the maceps, it is a reasonable linear approximation to the
real number system, float[x] ' x in the large.

2.5. Symbolic Computation: A Disclaimer
On many computers, symbolic computing systems such as
MapleTM [2] and MathematicaTM [2] are available and an ap-
proximation to infinite precision arithmetic can be simulated
on the computer, although all computers are finite. Thus, the
computation of a large number of digits in an answer will take
a correspondingly large amount of computer time. Obviously,
many of the comments about finite floating point precision
made here do not apply to symbolic computation. Even when
the symbolic system is used for strictly numerical purposes,
the results are not as predictable as the results from the IEEE
754 floating point standard [31]. Even though symbolic com-
puting systems are based on the same computing platforms,
the symbolic floating point scheme has been characterized as
strange, to say the least. (See the on-line notes of William Ka-
han [32] at the University of California at Berkeley, the pri-
mary advocate for floating point and general computational
correctness.)

2.6. Inefficient Linear Algebra Methods
Several linear algebra methods taught in regular linear alge-
bra courses are fine for use in theory, but very inefficient in

computational practice. The standard computational method
for solving systems of linear algebraic equations, A � ~x = ~b
given n vector ~b and coefficient matrix A, is Forward Gaus-
sian Elimination with Back Substitution. For nth order sys-
tems, the number of floating point operations is the order of
2n3=3. However, row pivoting and row scaling or full piv-
oting of both rows and columns is necessary to make the
method robust with regard to accuracy. The necessity of
these refinement can easily be demonstrated by a few float-
ing point counter examples. Closely related methods are the
variants LU (Lower and Upper triangular forms) Decomposi-
tion, which are more efficient for production problems since
they only reduce the coefficient matrixA once for any number
of right hand side vectors ~b(k).

Cramer’s Rule: Often students get the idea of using
Cramer’s rule to solve systems larger than n > 4, say, either
because they have only used it to solve small, toy homework
problems or because it is used in linear algebra theory regard-
less of the dimension without qualifications for practical ap-
plications. It can be shown by the properties of the expo-
nential function series and Stirling’s asymptotic formula for
the factorial function n! that the computational complexity in
terms of floating point operations for computing the necessary
determinants to solve an nth order system by Cramer’s rule is
of exponential order. That is, the number of floating point op-
erations for the full solution is asymptotic to e � (n+ 1)! for
the full solution [22].

Gauss-Jordan Elimination: In the theoretical linear algebra
course the diagonalization form of Gaussian elimination is
taught, but this is twice as costly as Forward Gaussian Elimi-
nation with Back Substitution. For large scale systems or for
production problems in industry, this greater cost would be
unwarranted.

3. Computational Deterministic Control versus
Computational Stochastic Control

This paper is about about computational stochastic control,
but computational deterministic control will be mentioned
briefly to provide some contrast to stochastic control prob-
lems.

3.1. Inefficient Linear Algebra Methods
For deterministic control problems (see [42, 33]), many can
be cast as systems of ordinary differential equations so many
standard numerical methods can be used. For example, if
~X(t) is the state n-vector of the deterministic system in con-
tinuous time t, ~U(t) is the control m-vector, the differential
equation for the dynamics is

d ~X(t)

dt
= ~F ( ~X(t); ~U(t); t); (1)

where ~F (~x; ~u; t) is called the plant function which could be
nonlinear, and the object is to achieve the minimal cumulative
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running costs C(~x; ~u; t) on (t0; ff ) plus terminal cost func-
tion Zf (~x; t) in the objective,

V [ ~X; ~U ] =

Z tf

t0

C
�
~X(t); ~U(t); t

�
dt; (2)

+Zf

�
~X(tf ); tf

�
:

In the Hamiltonian formulation [33], the optimization is com-
bined with the dynamics and is performed on the Hamiltonian
function

H( ~X(t); ~U(t); ~�(t); t) � C( ~X(t); ~U(t); t) (3)

+~�T (t)~F (t)( ~X(t); ~U(t); t);

where ~�(t) is the adjoint vector, also called a Lagrange multi-
plier. The triple critical point, (~x�(t); ~u�(t); ~��(t)) assuming
sufficient smoothness, conditions, for the optimal trajectory
are called Hamilton’s equations,
�
@H

@~�

�
�

=
d~x�(t)

dt
;

�
@H

@~x

�
�

= �
d~��(t)

dt
;

�
@H

@~u

�
�

= ~0; (4)

forming a set of three vector ordinary differential equations
for the optimal trajectory under the optimal control ~u�(t). The
side conditions depend on the application and are tabulated in
Kirk [33]. The state vector ~x�(t) satisfies an initial condi-
tions at t0 and ~��(t) satisfies a final conditions at tf . Except
for simple or analytical homework problems, usually numeri-
cal discretization and iterations are required until the solution
(~x�(t); ~u�(t); ~��(t)) converges to some prescribed accuracy.
If there are M discrete time nodes, Tj = t0 + (j � 1)�T
for j = 1 : M with �T = (tf � t0)=(M � 1), then the n
dimensional state vector ~x�(t) is discretized into ~x�(Tj) =
~Xj = [Xi;j ]n�M or n �M discrete variables. For the three
vector solution the computational complexity or the order of
the computational cost is

O(3n �M)

per iteration, i.e., bi-linear in the dimension and number of
time nodes, a very manageable computational problem, even
for today’s powerful personal computers.

In addition, MATLABTM [41] has a good number of con-
trol Toolboxes to handle problems. There are also several
good on-line tutorials available, such as Tilbury and Mess-
ner’s [47, 40] Control Tutorials for MATLAB And Simulink.
Bernstein has several insightful essays on Classical Control
[6] and Concrete Control Education [7]. A longer list of
on-line control information is given in the author’s Control
Tools web-page [24]. There are early surveys on computa-
tional methods for optimal control problems by Larson [37],
Dyer and McReynolds [9], and Polak [43] for instance.

3.2. Computational Stochastic Control
By contrast, computation for stochastic control is often quite
different and can concern partial differential equations [38,
46]. Numerical methods using approximations of Markov
chains for stochastic control problems in continuous time

have been throughly explored by Kushner [34] and Kush-
ner and Dupuis [35]. The author has a chapter on high per-
formance computing techniques for stochastic dynamic pro-
gramming [20]. Many of these stochastic control computa-
tional methods are formulated in terms of dynamic program-
ming, originally formulated by Bellman [4]. However, the
PDE formulation leads to exponential complexity numeri-
cally, called the Curse of Dimensionality [5].

For the case where the added stochasticity is a stochastic dif-
fusion, the dynamical system is called a stochastic differential
equation (SDE) and can have the form in continuous time as

d ~X(t) = ~F ( ~X(t); ~U(t); t)dt+ ~G( ~X(t); t)d ~W (t) (5)

+ ~J( ~X(t); t)dP (t);

where ~G(~x; t) is the volatility array function and d ~W (t) is the
vector differential of the standard diffusion or Wiener process
with mean ~0 and covariance Irdt, the r component processes
are pairwise independent for simplicity, Ir is the r�r identity
matrix, and ~J( ~X(t); t) is the Poisson random jump amplitude
associated with the Poisson differential process dP (t) hav-
ing a common mean and variance of �dt. It is assumed that
dP (t) and J are independent except that dP (t) must jump
to trigger the random amplitude. They are both independent
of dW (t). Note that d ~W (t) and dP (t) should be written as
differentials rather than as derivatives since the covariances
imply that ~W (t) is not a smooth function and P (t) is not
continuous in this ideal model. The object in the stochastic
control case is taken to be essentially the same as in the deter-
ministic case (2) for the purposes of comparison. The main
changes are that the cost objective is now a functional of the
the diffusion ~W (t) and jump P (t) processes that come with
the dependence on the state ~X(t) process and that the initial
time t0 is replaced by t in order to vary time, so

V [ ~X; ~U; P; ~W; t] =

Z tf

t

C
�
~X(�); ~U (�); �

�
d�

+Zf

�
~X(tf ); tf

�
:

The conditional expectation or mean needs to be taken to
smooth out the stochastic or random fluctuations to form a
more well-defined optimization. Then the optimal or mini-
mal, expected total cost at time t is

v
�(~x; t) = min

~u

�
E

P; ~W

h
V

h
~X; ~U; P; ~W; t

ii��� ~X(t)=~x;

~U(t)=~u
i
;

and the argument of the minimum being the optimal feedback
control vector ~u� = ~u�(~x; t). Upon application of Bellman’s
Principle of Optimality [4] and the chain rule for Markov
stochastic processes (the discontinuities of P (t), the nons-
moothness of ~W (t) and the infinitesimal covariances intro-
duce extra terms not in the chain rule of deterministic, regular
calculus), the Partial Differential Equation of Stochastic Dy-
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namic Programming is

0 =
@v�

@t
(~x; t) +

1

2
Trace

�
GGTrx

�
rT
x [v�]

��
+min

u

h
C(~x; ~u; t) + ~F T (~x; ~u; t)rx [v

�(~x; t)] (6)

�

Z
Q

h
v�(~x+ bJ(~x; q; t); t)� v�(~x; t)

i
�Q(q)dq

�
;

where 0 < t < tf , q is the space-time Poisson amplitude
mark variable on the mark space Q, Q is the corresponding
the mark random variable with density �Q(q), and bJ(~x; q; t)
is the realized vector jump amplitude. The final condition is

v�(~x; tf ) = Z(~x; tf ):

This is no regular partial differential equation (PDE), due to
the presence of the minimization operation, which means that
the output of the dynamic program is not just the value of the
optimal cost v�(~x; t), but also the optimal feedback control
vector ~u�(~x; t). Another difference is that the last term in (6)
is the Poisson distributed jump integral which leads to global
dependence unlike the point-wise or local dependence of the
optimal cost gradientrx[v

�(~x; t)].

It is this state-time vector valued functional form of the so-
lution set, fv�(~x; t); ~u�(~x; t)g, given independent variables ~x
and t, that makes the stochastic case quite different from the
deterministic case of vector functions of time. If time is fixed
at a single discrete value Tk, where k = 1 : Nt, the inde-
pendent discretization of the n-dimensional state vector ~x is
replaced by ~X~j = [Xi;ji ]n�1 where ~j = [ji]n�1, ji = 1 : Nx

for i = 1 : n and Nx is the number of state nodes, sim-
ply taken to be the same for each component (otherwise, Nx

could be the geometric mean of n node counts Ni). However,
~X~j only represents one point in state space and there are a
total Nn

x numerical nodes or points in n dimensions. Thus,
total numerical representation optimal cost v(~x; Tk) is

V (k) = [V
(k)
j1;j2;:::jn

]Nx�Nx�����Nx
;

per time step k, so that the computational complexity is

CC(Nx; n) = O(Nn
x ) = O(exp(n ln(Nx))); (7)

exponential in the dimension with an exponent coefficient de-
pending on the logarithm of the common number of nodes,
symbolizing the exponential computational complexity of
Bellman’s Curse of Dimensionality. This is also the expo-
nential order of the complexity for solving multi-dimensional
PDEs. For the optimal control vector the order in n times this
order, but that does not change the exponential order depen-
dency. Further, for second order finite difference errors, the
total error will be

ET (Nx; n) = O(N�2

x ): (8)

So even if the order of the complexity is fixed, i.e., N = N n
x

is a constant, then Nx = N1=n and

ET (Nx(N); n) = O
�
N�2=n

�
! O(1) (9)

as n ! +1 for fixed N and accuracy, i.e., diminishing ac-
curacy in the limit of large dimension.

There are many other computational issues but there is not
enough space here to discuss them. Many of these are covered
in the author’s computational stochastic dynamic program-
ming chapter [20] or in Kushner and Dupuis’ numerical book
[35]. Most importantly, as with any PDE, the computational
mesh ratio must be selected carefully or a computational PDE
method will not converge. In the Markov Chain Approxi-
mation of Kushner [34, 35] convergence conditions are au-
tomatically satisfied by choosing normalizing discretization
coefficients to conserve probability of the Markov chain. An-
other problem can arise when the drift or the deterministic
plant function ~F dominates the stochastic terms so that the
type of PDE changes from the diffusion-like parabolic type
to wave-like hyperbolic type, leading to nonuniform numer-
ical oscillations. The method to handle these oscillations is
called Upwinding, in which the finite difference scheme is se-
lected, forward or backward, in the directions of the gradient
of the value function (see Kushner and Dupuis [35] for use in
control applications). When Poisson jump processes are used
in the stochastic dynamical model, then a globally dependent
jump integral can appear in the PDE of Stochastic Dynamic
Programming (6) among the locally dependent diffusion and
drift derivative terms. Hence, the numerical approximations
may require interpolation and integration techniques (see for
instance our papers [49] and other jump or jump-diffusion pa-
pers). Still another problem is the proper handling of bound-
ary conditions for stochastic processes which are quite dif-
ferent than those in the deterministic case due to things like
boundary over-shoots, but Kushner and Dupuis [35] have de-
veloped a systematic method using an auxiliary stochastic
process to enforce the proper boundary behavior for the orig-
inal stochastic processes.

4. High Performance Computing Advances

High performance computing, using massively parallel com-
puters and vector supercomputers can alleviate but not over-
come the Curse of Dimensionality. Parallel and vector com-
putation can permit the solution of higher dimension than was
previously possible and thus permit more realistic dynamic
programming applications. Large scale problems of great im-
portance are called Grand or National Challenge problems
[15] of high performance computing. The availability of high
performance vector supercomputers and massively parallel
processors have made it possible to compute optimal poli-
cies and values of control systems for much larger dimensions
than was possible earlier. Today’s parallel computer clusters
of networked personal computer and workstation are making
parallel computers a commodity item [21] reducing costs by
a factor of ten or more for large scale systems. Advances in
algorithms have also played a comparable role.

The 1988 report of the Fleming panel on the Future Direc-
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tions in Control Theory [11] confirmed the need for advanced
scientific computing, both parallelization and vectorization,
in control problems. The National Computing Initiative [1]
called stochastic dynamic programming computationally de-
manding. The 2002 Murray panel on the Future Directions in
Control, Dynamics, and Systems [12] places a lot more em-
phasis on control education and computation plays an integral
role in the investigation of control problems throughout the
report.

Another effort in this area has been in France. Quadrat and his
coworkers [3] at INRIA developed an expert system, called
Pandora, and produced a multitude of results for stochastic
differential equations with Gaussian noise, provided that dis-
counting is constant and the problem can be transformed to
a stationary one. It was based on the numerical methods of
Kushner [34]. However, it appears that it is no longer avail-
able, disappearing when the computer workstation it was de-
veloped on disappeared.

4.1. High Performance Computers
Much of the initial motivation in computational stochastic
control for this author was the optimal harvesting of multi-
dimensional or multi-species natural resources with multi-
ple economics in disastrous environments [16]. The control
in these models is the species harvesting effort, the harvest
rate per unit species population. These models used Pois-
son processes to simulate disastrous processes, so were much
more complicated analytically than the locally dependent and
smooth stochastic diffusion processes discussed above since
the jumps lead to globally dependent functional jump terms.
However, it was the multi-dimensional resources problem that
caused time consuming computations and made local main-
frame computing resources inadequate, requiring the need for
advanced computing facilities. The large scale computational
demands required new and more efficient numerical methods
[19] that were quite different and sometimes contrary to the
standard methods for computation on serial computers.

Starting with a moderate number of parallel processors and
Cray vector supercomputers with a few processors, solv-
ing stochastic dynamic programming problems in several di-
mensions became feasible with reasonable turn-around time.
Larger Cray vector supercomputers permitted the solution in
even higher dimensions, but the size of the problems that
could be run on the massively parallel Thinking Machines
CM-2 and CM-5 surpassed those on the Crays. Much of the
effort on these machines was making the vector of parallel
code more efficient by reducing data dependencies, making
the code more transparent to the compilers, eliminating un-
necessary overhead and other techniques. Many of these ad-
vanced computing techniques are summarized in the chapter
on computational stochastic dynamic programming [20], so
the reader is referred there for more details. An important
spin-off benefit was starting a course on parallel processing
and supercomputing in 1986 [18, 21] as technology transfer
from this large-scale control research, and also to help train
the author’s graduate students in this computational stochas-

tic control research. The course related papers [18, 21] give
even more detail on advanced parallelization and vectoriza-
tion techniques. The current class is using low cost, large-
scale parallel clusters of networked computer systems [21].

4.2. Advanced Data Structures
Further, advanced parallel and vector optimizations on ad-
vanced computers are dependent on the data structure. For
certain applications, the code runs faster if arrays are accessed
the way they are stored in memory, e.g., Fortran arrays are
stored linearly by columns while C code is stored linearly by
rows, in absence of memory partitioning. In some early ap-
plications [17], the author developed a vector data structure
to represent the full n-dimensional state space to make it rel-
atively easy to change code from one dimension to another
and also to vastly increase the work load balance of vector
registers and parallel processors by maintaining a large pool
of work. This technique was also used later by Kushner and
Jarvis [36].

4.3. Scientific Visualization in High Dimensions
The stochastic dynamic programming output in n-dimensions
is the optimal cost scalar v�(~x; t) and the optimal feedback
control m-vector ~u�(~x; t). They both depend on (n + 1)
space-time variables. In addition, these solution functions
may depend significantly on k parameters, some of which
may be associated with stochastic processes like volatility,
jump rates and jump amplitudes. Hence, displaying the re-
sulting solution can be challenging once the total dimen-
sion of the system, counting both dependent and independent
variables and parameters, goes beyond three dimensions (the
practical limit for projection onto two-dimensional media).
For this reason, our research group has developed a refine-
ment and real implementation of multi-dimensional control
problem output called I/O view [44, 25] or inner and outer
world view. In the inner world the optimal value or an opti-
mal control component can be displayed in a 3-dimensional
surface projection versus two other independent variables or
parameters. In the outer world three additional values of three
other variables or parameters can be selected. This system
was originally designed for optimal resource management so
that the resource manager could optimally select values of
variables to manage the resource system. However, the vi-
sualization system can be used to visualize almost any multi-
dimensional output.

5. Algorithmic Advances

While there have been many algorithmic advances in the re-
cent decades, we will concentrate on control relevant algo-
rithmic advances.

5.1. Canonical Models
Many control problems can be reduced in analytical and com-
putational complexity if a canonical or standard model is ap-
propriate and leads to a separation of variables type of decom-

6



position.

LQGP Problem: One canonical problem, often used in
stochastic control applications, is the LQG problem which
has linear (L) dynamics, quadratic (Q) costs and Gaussian (G)
or diffusion noise. The extension of the canonical problem
to Poisson jump processes, which preserves and generalizes
the Markov nature of the stochastic diffusion of the LQG,
is called the LQGP problem. It is also known as the JLQG
problem, emphasizing the jump character. We have devel-
oped refinements and computational implementation of the
LQGP problem in [48] for a stochastic multi-stage manufac-
turing system. The form of the system leads to a separation
of variables form such that variables separate into an explicit
quadratic function of the state vector, but with coefficients
that implicitly depend on time,

v�(~x; t) =
1

2
~xTS(t)~x + ~DT (t)~x+E(t); (10)

~u�(t) = �K(t)
h
S(t)~x+ ~D(t)

i
;

in the case of unconstrained control, where the gain matrix
K(t) is derivable from the original LQGP quadratic cost co-
efficient and linear control coefficient. Hence, only time co-
efficients need to be determined. These coefficients are the
matrix S(t), the vector ~D and the scalar E(t). They satisfy
a uni-directionally coupled set of matrix ordinary differen-
tial equations. These equations are nontrivial [48] due to the
complexity of the jump processes used in the application. The
benefit is essentially a reduction in the computational curse of
dimensionality since the form of the state space dependence
is explicitly given.

CRRA Utility in Finance and Economics: A similar sepa-
ration of state and time dependence can be achieved in an op-
timal portfolio with wealth consumption problems, if a Con-
stant Relative Risk Aversion (CRRA) utility is the cost func-
tion, i.e., the running cost C is a power function U(w) =
w
=
, where w is the wealth which is the state variable in the
problem. The optimal value of the investment portfolio sep-
arates into a known function of the wealth, the CRRA utility,
and an unknown function of time, F (t), i.e.,

v(w; t) = U(w)F (t); (11)

again avoiding the dimensionality and additional dependence
due to the state space. The optimal control variables are the
stock fraction u�(w; t) and the consumption c�(w; t). These
have complicated forms, especially for jump-diffusions and
these forms can be found in our computational jump-diffusion
finance papers [26, 27, 28]. The original portfolio model is
due to Merton [39].

5.2. Markov Chain Approximations
Kushner and co-workers [34, 35, 36] have described many
numerical approaches to stochastic control, with special em-
phasis on the well-developed Markov chain approximation
method. The state process ~x(t) is discretely approximated

by a Markov chain ~�(n; h) with the time interpolation step
�t(n; h) where n is the discrete time index or stage and h
is the scale of the state change, like �x. The interpolation
step �t(n; h) is chosen so that the Markov chain is “locally
consistent” with the stochastic dynamic process in continu-
ous time. When applied to the approximation of the control
problem value function, the coefficients are selected accord-
ing to transition probabilities between chain stages or steps of
the Markov chain by proper choice of the interpolation step
�t(n; h) for the application problem. Weak convergence fol-
lows from this construction of the Markov chain and, as al-
ready mentioned, numerical convergence follows. A method
comparison of the Markov chain approximation of Kushner
and co-workers with the PDE finite difference methods of
Hanson and co-workers if given in [20]. See the compre-
hensive book of Kushner and Dupuis [35] for the complete
details.

5.3. Pseudo and Quasi Monte Carlo Methods
When the state space dimension is greater than four or so,
Monte Carlo methods can be more efficient than finite differ-
ence [20], finite element [8], or Markov chain approximation
methods [35], since these methods suffer from the curse of
exponential complexity (7) or diminishing accuracy (9). On
the other hand, if we could cast the problem as an integral
over the state space and take a random state space sample us-
ing a pseudo random number generator (there being no such
thing as a real random number, see [45] for instance), then
the Pseudo Monte Carlo Approximation, or Monte Carlo Ap-
proximation for theN -point sample average approximates the
integral average over state volume V . That is,Z

V

f(~x)d~x ' h f iN � 1

N

NX
i=1

f(~xi): (12)

The average probable error is

EN = O
�
1=
p
N
�
; (13)

according to the Central Limit Theorem, independent of di-
mension n, assuming that the picks in the sample are iden-
tically distributed normal random variables and N is suffi-
ciently large. Compared to the finite difference error in (9),
the Monte Carlo approximation will be more accurate and
faster converging for larger dimensions, provided the number
of sample points can be kept reasonable.

There are many variations of the Monte Carlo method. One is
the Quasi Monte Carlo Method, using a quasi random number
generator [45]. It uses a deterministic and systematic covering
of state space, i.e., even more deterministic than the pseudo
random number generator using linear congruential generator
simulations, but has an error that can approach

O (ln(N)=N) ;

a smaller order than that of (13), since ln(N) �
p
N for

N � 1. Other techniques [45] often used are importance
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sampling which uses a weight function g(~x) that captures the
important features of the integrand f(~x) or stratified sampling
which uses domain decomposition to increase efficiency. In
stochastic financial engineering there are many results using
Monte Carlo methods, but there is little stochastic control,
other than Black-Scholes type hedging [39]. For instance, see
Glasserman and co-workers papers on importance and strati-
fied sampling [13, 14].

6. Conclusions

Computational stochastic control has been briefly surveyed
from foundations in numerical analysis to some of the cur-
rent computational efforts in solving stochastic control prob-
lem applications. The computational complexity of determin-
istic and stochastic control have been compared, explaining
the greater complexity of stochastic control problems. Some
examples of advanced computers and advanced algorithms
are given to illustrate how Bellman’s curse of dimensional-
ity in stochastic dynamic programming can be alleviated or
avoided.
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