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Abstract— Previously, we have shown that the proper
method for estimating parameters from discrete, binned stock

log returns is the multinomial maximum likelihood estimation,
and its performance is superior to the method of least squares.
Useful formulas have been derived for the jump-diffusion
distributions. Numerically, the parameter estimation can be a
large scale nonlinear optimization, but we have used techniques
to reduce the computation demands of multi-dimensional
direct search. In this paper, three jump-diffusion models
using different jump-amplitude distributions are compared.
These are the normal, uniform and double-exponential. The
parameters of all three models are fit to the Standard and
Poor’s 500 log-return market data, constrained by the data
first and second moments. While the results for the skew and
kurtosis moments are mixed, the uniform jump distribution
has superior qualitative performance since it produces genuine
fat tails that are typical of market data, whereas the others
have exponentially thin tails. However, the log-normal model
has a big advantage in computational time of parameter esti-
mation compared with the others, while the double-exponential
is most costly due to having one more model parameter.

I. Introduction

Despite the great success of Black-Scholes model [2] in

option pricing, this pure log-normal diffusion model fails

to reflect the three empirical phenomena: (1) the large

random fluctuations such as crashes and rallies; (2) the non-

normal features, that is, negative skewness and leptokurtic

(peakedness) behavior in the stock log-return distribution;

(3) the implied volatility smile, that is, the implied volatility

is not a constant as in the Black-Scholes model.

Therefore, many different models are proposed to modify

the Black-Scholes model so as to represent the above three

empirical phenomena. Merton [9] introduced the jump-

diffusion model in financial modeling, using a Poisson

process for the jump timing and a log-normal process for the

jump-amplitudes to describe the market crashes and rallies.

Some models are proposed to incorporate the volatility

smile, for example, Andersen, Benzoni and Lund [1] have

made elaborate estimations to fit jump-diffusion models

with log-normal jump-amplitudes, stochastic volatility and

other features. Some models are proposed to incorporate the

asymmetric features of the stock log-return distributions.

Recently, Kou [8] proposed a jump-diffusion model with

a log-double-exponential process for the jump-amplitudes.

Since crashes and rallies are rare events, so the Poisson
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process is reasonable for the timing of jumps. However,

there is a problem in choosing the log-normal or log-

double-exponential process for the jump-amplitudes since

the exponentially small tails of the log-normal and log-

double-exponential distributions are contrary to the flat and

thick tails of the long time financial market log-return data.

Around the near-zero peak of the log-double-exponential

and the log-normal, the jumps are small, so are not quali-

tatively different from the continuous diffusion fluctuations.

Moreover, an infinite jump domain is unrealistic, since the

jumps should be bounded in a real world financial markets

and an infinite domain leads to unrealistic restrictions in

portfolio optimization [5].

So, Hanson and Westman [4] proposed one jump-

diffusion model with log-uniform jump-amplitude. Most

recently, Hanson, Westman and Zhu [7] showed that for

IID simulations the binned distribution is multinomial. They

estimated the market parameters for this log-uniform model

by subsequent multinomial maximum likelihood method to

fit financial market distributions such as the Standard and

Poor’s 500 stock index.

The main purpose of this paper is to compare the

performance of three jump-diffusion models whose jump-

amplitudes are the log-normally, log-uniformly and log-

double-exponentially distributed.

II. Some Theoretical Results

A. Stock Return Process, S(t)

The following stochastic differential equation (SDE) is
used to model the dynamics of the asset price, S(t):

dS(t) = S(t) (µddt + σddW (t) + J(Q)dP (t)) , (II.1)

where µd is the drift coefficient, σd is the diffusive volatility,

W (t) is the stochastic diffusion process, J(Q) is the Poisson

jump-amplitude, Q is its underlying Poisson amplitude

mark process, J(Q)dP (t) is just a symbol for the counting
PdP (t)

i=1 J(Qi), P (t) is the standard Poisson jump process

with joint mean and variance E[P (t)] = λt = Var[P (t)].

B. Stock Log-Return Process, ln(S(t))

The stock log-return ln(S(t)) can be transformed to
a simpler jump-diffusion stochastic differential equation
(SDE) upon the use of the stochastic chain rule [6],

d[ln(S(t))] = µlddt + σddW (t) + QdP (t), (II.2)

where µld ≡ µd − 0.5σ2
d is the log-diffusive (ld) drift and

for simplicity the log-jump-amplitude is taken as the mark

Q = ln(J(Q) + 1).



C. Log-Normal Jump Distribution

Let the density of the jump-amplitude mark Q be normal

φQ(q) = φn(q; µj , σ
2
j ), (II.3)

where φn(q; µj , σ
2
j ) is the normal density with mean µj

and variance σ2
j . The log-normal jump-amplitude jump-

diffusion model was used in [9], [1], [3] and others.
For the density for this jump-diffusion model with log-

normal jump-amplitude, Hanson and Westman [3] proved,
with corrections given here in terms of the distribution
truncated to the second order approximation in terms of
the Poisson distribution, the following corollary:
Corollary: The second order approximation to [x1, x2]
bin probability distribution for the linear jump-diffusion
log-return increment ∆[ln(S(t))] with log-normal jump-
amplitude is given by

Φnjd(x1, x2) ≃
P2

k=0 pk(λ∆t)Φn(x1, x2; µ+kµj , σ
2+kσ2

j )
P2

j=0 pj(λ∆t)
,

(II.4)

for −∞ < x < +∞, where Φn(x1, x2; µ, σ2) is the normal

distribution on the [x1, x2], µ ≡ µld∆t, σ ≡
p

σ2
d∆t, pk(Λ) =

e−ΛΛk/k! is the Poisson distribution with parameter Λ =

λ∆t and k jumps and ∆t is the corresponding trading time

increment in years.

This corollary is based upon the law of total probability

[6, Chapter 0] resulting in the sum over all k Poisson

jumps, the convolution theorem [6] yielding the density of

the log-jump-diffusion conditioned on there being k IID

jumps, and the fact that the convolution of two normals

is also normal [6]. For the purpose of comparison, we

use two terms of the expansion to provide more accurate

estimations since we are dealing with small but moderately

small time steps. The additional contribution of the third

order approximation is only 1.5% whereas the 2nd order

approximation contributed 23% to the 1st. Note that an

appropriate 2nd order renormalization is used to preserve

the distribution property.

1) Basic Moments M
(njd)
i of Log-Return Increments

∆[ln(S(t))] for Log-Normal Jumps for i = 1:4:

M
(njd)
1 ≡ E[∆[ln(S(t))]]=(µld+λµj)∆t.

M
(njd)
2 ≡ Var[∆[ln(S(t))]]=(σ2

d+λ(σ2
j +µ2

j ))∆t.

M
(njd)
3 ≡ E

h

(∆[ln(S(t))]−M
(jd)
1 )3

i

=(3σ2
j +µ2

j )µjλ∆t.

M
(njd)
4 ≡ E

h

(∆[ln(S(t))]−M
(jd)
1 )4

i

= (µ4
j +3σ4

j +6µ2
j σ2

j )λ∆t+3(σ2
d+λ(σ2

j +µ2
j ))

2(∆t)2.

D. Log-Uniform Jump Distribution

Let the density of the jump-amplitude mark Q be uni-
form

φQ(q) =
H(b − q) − H(a − q)

b − a
, (II.5)

where a < 0 < b and H(x) is the Heaviside unit step

function. The mark Q has moments, µj ≡ E[Q] = 0.5(b+a),

σ2
j ≡ Var[Q] = (b − a)2/12. The original jump-amplitude J

has mean E[J(Q)] = (exp(b) − exp(a))/(b − a) − 1.

For the distribution of the jump-diffusion model with log-
uniform jump-amplitude, the following corollary follows
from the density in [6, Chapter 5],
Corollary: The second order approximation to [x1, x2]
bin probability distribution for the linear jump-diffusion
log-return increment ∆[ln(S(t))] with log-uniform jump-
amplitude is given by

Φujd(x1, x2) ≃
P2

k=0 pk(λ∆t)Φ
(k)

ujd
(x1,x2)

P

2
j=0 pj(λ∆t)

, (II.6)

for −∞ < x < +∞, where Φ
(0)

ujd(x1, x2) ≡ Φn(x1, x2; µ, σ2),

Φ
(1)

ujd(x1, x2) =
1

b−a

„

(x2−x1)Φ(x2−b, x2−a; µ, σ2)

−(x1−b−µ)Φn(x1−b, x2−b; µ, σ2)

+(x1−a−µ)Φn(x1−a, x2−a; µ, σ2)

+
σ√
2π

„

e−
x2
1b
2 −e−

x2
2b
2 −e−

x2
1a
2 +e−

x2
2a
2

««

,

where x1a = (x1 −a−µ)/σ, x2a = (x2 −a−µ)/σ, x1b =
(x1−b−µ)/σ, x2b = (x2−b−µ)/σ,

Φ
(2)

ujd(x1, x2) =
0.5σ2

(b−a)2

„

(x2
2A−x2

1A)Φn(x2−C, x2−A; µ, σ2)

+(x2
1B−x2

2B)Φn(x2−B, x2−C; µ, σ2)

+(x2
1A+1)Φn(x1−A,x2−A; µ, σ2)

+(x2
1B +1)Φn(x1−B, x2−B; µ, σ2)

−2(x2
1C +1)Φn(x1−C, x2−C; µ, σ2)

+
1√
2π

(2X1C,2C −X1A,2A−X1B,2B)

«

,

where A = 2a, C = a+b, B = 2b, x1A = (x1−A−µ)/σ, x2A =

(x2−A−µ)/σ, x1C = (x1−C−µ)/σ, x2C = (x2−C−µ)/σ, x1B =

(x1−B−µ)/σ, x2B = (x2−B−µ)/σ, X1A,2A = x1Ae−x2
1A/2 −

x2Ae−x2
2A/2, X1B,2B = x1Be−x2

1B/2 − x2Be−x2
2B/2, X1C,2C =

x1Ce−x2
1C/2 − x2Ce−x2

2C/2.

For the distribution (II.6), the first and second order term

formulas, Φ
(i)

ujd(x1, x2) for i = 1 :2, have been reduced by

integration by parts to single normal distribution integrals to

minimize the computational costs, making it comparable for

the normal jump case in (II.4). Also, the terms are arranged

to minimize the effects of catastrophic cancellation.
1) Fourth Central Moment of Log-Return Increments

∆[ln(S(t))] for Log-Uniform Jumps:

M
(ujd)
4 =

`

µ4
j +1.8σ4

j +6µ2
jσ

2
j

´

λ∆t

+3
`

σ2
d+λ(σ2

j +µ2
j )

´2
(∆t)2.

Note that the formulas for the first three moments are the

same for both log-normal and log-uniform jumps.

E. Log-Double-Exponential Jump Distribution

Let the density of the jump-amplitude mark Q be double-
exponential

φQ(q) =
p1

µ1
exp

„

q

µ1

«

I{q<0}+
p2

µ2
exp

„

−q

µ2

«

I{q≥0}, (II.7)

where µ1 > 0 and µ2 > 0 are one-sided means, and
0 < p1 < 1 represents the probability of downward jumps
while p2 = 1− p1 is the probability of upward jumps. The



set indicator function is I{S} for set S. The mark Q has
moments,

µj = EQ[Q]=−p1µ1+p2µ2,

σ2
j = VarQ[Q]=p1

`

(µj +µ1)
2+µ2

1

´

+p2

`

(µj−µ2)
2+µ2

2

´

.

Similar to Corollary II.6, we get the following corollary:
Corollary: The second order approximation to [x1, x2] bin
probability distribution for the linear jump-diffusion, log-
return increment ∆[ln(S(t))] with log-double-exponential
jump-amplitude is given by

Φdejd(x1, x2) ≃
P2

k=0 pk(λ∆t)Φ
(k)

dejd
(x1,x2)

P2
j=0

pj(λ∆t)
, (II.8)

for −∞ < x < +∞, where

Φ
(0)

dejd(x1, x2) ≡ Φn(x1, x2; µ, σ2),

Φ
(1)

dejd(x1, x2) = Φn(x1, x2; µ, σ2)+p1(ρx2,ν1 − ρx1,ν1)

+p2(ρx1,ν2 − ρx2,ν2),

ν1 = µ − 0.5σ2/µ1, ν2 = µ + 0.5σ2/µ2,

ρx2,ν1 = e+(x2−ν1)/µ1Φn(−x2;−µ + σ2/µ1, σ
2),

ρx1,ν1 = e+(x1−ν1)/µ1Φn(−x1;−µ + σ2/µ1, σ
2),

ρx1,ν2 = e−(x1−ν2)/µ2Φn(x1; µ + σ2/µ2, σ
2),

ρx2,ν2 = e−(x2−ν2)/µ2Φn(x2; µ + σ2/µ2, σ
2),

Φ
(2)

dejd(x1, x2) = Φn(x1, x2; µ, σ2)

+µ1

„„

p12+p11

„

µ− σ2

µ1
+µ1−x2

««

ρx2,ν1

−
„

p12+p11

„

µ− σ2

µ1
+µ1−x1

««

ρx1,ν1

«

+µ2

„„

p12−p22

„

µ+
σ2

µ2
−µ2−x1

««

ρx1,ν2

−
„

p12−p22

„

µ+
σ2

µ2
−µ2−x2

««

ρx2,ν2

«

+
σ√
2π

(µ2p22 − µ1p11)
“

e−z2
1/2 − e−z2

2/2
”

,

p11 = (p1/µ1)
2, p22 = (p2/µ2)

2, p12 = 2p1p2/(µ1+µ2),

z1 = (x1−µ)/σ, z2 = (x2−µ)/σ.

1) Third and Fourth Moments of Log-Return Increments
∆[ln(S(t))] for Log-Double-Exponential Jumps:

M
(dejd)
3 = 6(p2µ

3
2−p1µ

3
1)λ∆t;

M
(dejd)
4 = 24(p2µ

4
2+p1µ

4
1)λ∆t+3(σ2

d+λ(σ2
j +µ2

j ))
2(∆t)2.

The first and second moments are the same for all three

models.

F. Skewness and Kurtosis

Negative skewness and leptokurtosis are considered to be

general properties of financial market distributions. There-

fore, M
(jd)
3 and M

(jd)
4 are needed to get the theoretical

skewness and kurtosis coefficient for these three models to

sufficient accuracy for a satisfactory comparison.

• Skewness coefficient: β
(jd)
3 ≡ M

(jd)
3 /

“

M
(jd)
2

”1.5

.

• Kurtosis coefficient: β
(jd)
4 ≡ M

(jd)
4 /

“

M
(jd)
2

”2

.

Sometimes, the kurtosis is represented as the excess kurtosis

coefficient by subtracting three from the kurtosis coefficient

so that the excess is zero for the normal distribution.

III. Parameter Estimations

The basic point of view, here, is that the financial markets

are considered to be a moderate size simulation of one of

these three jump-diffusion processes.

A. Empirical Data

We use Standard and Poor’s 500 (S&P500) stock index
in the decade 1992-2001 [12] as the sample of the financial
market since it is in general viewed as one big mutual fund
so that it is less dependent on the peculiar behavior of any
one stock. Let n(sp) = 2522 be the number of daily closings
S

(sp)
s for s = 1:n(sp), such that there are ns = 2521 log-

returns,

∆
h

ln
“

S(sp)
s

”i

≡ ln
“

S
(sp)
s+1

”

− ln
“

S(sp)
s

”

(III.1)

with empirical average values:

• Mean: M
(sp)
1 ≃4.015e-4.

• Variance: M
(sp)
2 ≃9.874e-5.

• Skewness coefficient: β
(sp)
3 ≃ −0.2913 < 0,where

β
(n)
3 = 0 is the normal distribution value and M

(sp)
3

is the 3rd central log-return moment of the data.

• Kurtosis coefficient: β
(sp)
4 ≃7.804 > 3,where β

(n)
4 = 3

is the normal distribution value and M
(sp)
4 is the 4th

central log-return moment of the data.

B. Multinomial Maximum Likelihood Estimation

In a previous paper [7], the multinomial maximum likeli-

hood estimation of model parameters is justified for binned

financial data, but applies to very general binned data. The

main idea for this method is the following:

• Step 1: Sort the sample data into nb bins and get the

sample frequency f
(sp)
b , for b = 1:nb.

• Step 2: Get the theoretical jump-diffusion frequency
with parameter vector x:

f
(jd)
b (x) ≡ ns

Z

Bb

φ(jd)(η; x)dη ,

where φ(jd)(η; x) is some jump-diffusion density in η

and Bb is the bth bin.
• Step 3: Minimize the objective function:

y(x) ≡ −
nb

X

b=1

h

f
(sp)
b ln

“

f
(jd)
b (x)

”i

, (III.2)

where the negative of the likelihood is minimized,

corresponding to the minimizing MATLAB function

fminsearch to get the optimal parameters x
∗ for the

three compared models, respectively. This MATLAB

function is an implementation of the Nelder-Mead

down-hill simplex direct search method [11]. The

Nelder-Mead is usually faster than other optimization

methods when it works. Some comparisons with our

multidimensional golden section search method for the

financial parameter estimation problem are given in

[7].



C. Jump-Diffusion Moment Estimation Constraints

For the jump-diffusion model with log-normal and log-
uniform jump-amplitude, there are five (5) free jump-
diffusion parameters: {µld, σ

2
d, µj, σ

2
j , λ}. For the model

with log-double-exponential jump-amplitude, there are six
(6) free jump-diffusion parameters: {µld, σ

2
d, µ1, µ2, p1, λ}.

So, to reduce this set to a reasonable number, the multi-
nomial maximum likelihood estimation is subjected to the
mean and variance constraints:

M
(sp)
1 = M

(jd)
1 and M

(sp)
2 = M

(jd)
2 . (III.3)

Two diffusion parameters, µld and σd, are eliminated by

µld =
“

M
(sp)
1 − µjλ∆t

”

/∆t, (III.4)

σ2
d = max

h“

M
(sp)
2 −

`

σ2
j + µ2

j

´

λ∆t
”

/∆t, ε
i

, (III.5)

subject to positivity constraints with sufficiently small

ε > 0. Although σ2
d normally should be positive, but not

necessarily for the first argument of the max in (III.5).

For the log-normal and log-uniform jump-diffusion model,

only three free parameters are left: x = {µj , σ
2
j , λ}. For

the log-double-exponential jump-diffusion model, four free

parameters are left: x = {µ1, µ2, p1, λ}with significantly

more computational estimation costs and it is subject to

an exponential form of catastrophic cancellation unless the

one-sided exponentials are appropriately collected.

IV. Numerical Results, Figures and Discussion

We use the MATLAB 7.0 [10] to program our codes.

The multinomial maximum likelihood estimation given

here is used to estimate the jump-diffusion parameters.

The numerical optimization was performed using the

fminsearch function [10]. For the normal distribution

integrals Φn(x1, x2; µ, σ2) or Φn(x1; µ, σ2), the use of the

fast and reliable MATLAB complementary error function

erfc was critical, since more standard integration functions

for unscaled arguments failed small variance σ2 tests due

to poor detection of the main probability mass. For the log-

normal and log-uniform model, the same starting point x0

is used. For the log-double-exponential model, the different

starting point x0 is used: initial µ1 and µ2 are from an initial

estimation of the µj and using p1 ≃ 0.6 > 0.5 and the λ∆t

value are the same as the log-normal or log-uniform.

The empirical data used in the estimation are the S&P500

daily closing log-returns from the decade 1992-2001. This

data is displayed here in Figure 1 with 100 equally spaced

bins. The ragged appearance of the histogram resembles

the random simulation of a density using a moderate, but

inadequate sample size. The crashes are represented by

the extreme negative tails and the rallies by the extreme

positive tails, but these extreme events are difficult to see

since they are rare events with small frequency counts, i.e.,

the extreme tails are sparsely populated, with the extreme

negative events more widely separated than the extreme

positive events. Note that extremeness is measured by the

values of the log-returns on the horizontal axes.

However, if the histogram frequencies are multiplied by

the centered value of the evenly spaced bin log-returns,
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Fig. 1. Histogram of S&P500 log-return frequencies for the decade 1992-
2001, using 100 centered evenly spaced bins.

then the extreme jumps are clearly visible. This moment-

histogram is called a hysteriagram [4] since it magnifies the

count of the larger jumps and corresponds to the extreme

reaction of investors. The hysteriagram for the S&P500 is

given in Figure 2 using the same data as in the previous

figure, using the same 100 evenly spaced bins.
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Fig. 2. Hysteriagram of S&P500 log-return frequencies multiplied by the
centered bin log-return values for the decade 1992-2001, using 100 evenly
spaced bins.

Figure 3 shows that the log-normal jump-amplitude fitted

model hysteriagram exhibits too thin tails that decay too fast

with the jump magnitude. From (II.4) the bin distribution

will be a Poisson sum of normal distributions, so will have

the thin Gaussian exponential tails.

Figure 4 shows that the log-uniform jump-amplitude fitted

model hysteriagram exhibits thicker tails that decay more

slowly with the jump magnitude, especially in the shoulders

of the hysteriagram. The convolution of the diffusion with

multiple jump uniform distributions in (II.6) help counter

the normal distribution tendency to having exponential thin
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Fig. 3. Hysteriagram of the predicted log-returns frequencies multiplied
by the centered bin log-return values for the log-normal jump-amplitude
jump-diffusion model, using 100 evenly spaced bins and the estimated
parameters.

tails, but not for very large values of the log-returns. The

positive tails are thicker since the extreme positive jumps are

more closely spaced than the negative jumps. The uniform

model mainly compensates for the non-normal data with

significant lumps in the shoulders of the jump-diffusion

distribution.
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Fig. 4. Hysteriagram of the predicted log-returns frequencies multiplied
by the centered bin log-return values for the log-uniform jump-amplitude
jump-diffusion model, using 100 evenly spaced bins and the estimated
parameters.

Figure 5 shows that the log-double-exponential jump-

amplitude fitted model hysteriagram exhibits too thin tails

that decay too fast with the jump magnitude that is very

similar to the log-normal jump-amplitude model. The con-

volution of normal and exponential distributions in (II.8),

like the normal jump-amplitude model, can only lead to

exponential thin tails.

From Table I, we can have a quantitative estimate of the
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Fig. 5. Hysteriagram of the predicted log-returns frequencies multiplied
by the centered bin log-return values for the log-double-exponential jump-
amplitude jump-diffusion model, using 100 evenly spaced bins and the
estimated parameters.

derived distribution parameters {µd, σd, µj , σj , λ}. Since

the trading days per year are about 250 days, it is not likely

that the jumps rate is more than 100 per year because the

finance market should be kept stable, so, λ ≃ 64 for the

log-uniform is more reasonable. The near-zero peaks of the

normal and double-exponential lead to jump rates that are

double or more than the uniform jump rate. Note that the

jump rate includes all size jumps, including those hidden

under the log-normal diffusion. In the table the overall jump

mean µj is given for the purpose of comparison, but for

the double-exponential, the negative jump mean is −µ1 =
-6.88e-3 and the positive jump mean is µ2 = +6.35e-3. For

the double-exponential, the probability of negative jumps is

p1 = 0.504 and that for positive jumps is p2 = 0.496.

The overall jump-diffusion parameters {µd, σd, µj , σj , λ}
have somewhat different distributions among the three jump

models, with the diffusive means and volatilities being the

closest among the parameters. The uniform distribution

gives more weight to the negative jumps with the largest

−µj = 12.18e-4 and largest σj ≃ 1.52e-2.

TABLE I

Comparison summary of derived distribution parameters for the

log-normal, log-uniform and log-double-exponential jump-diffusion

models, respectively.

Model µd σd µj σj λ

Normal 0.191 0.088 -7.09e-4 1.19e-2 121.

Uniform 0.184 0.100 -12.18e-4 1.52e-2 64.0

Dbl-Exp 0.170 0.085 -3.21e-4 0.94e-2 202.

Table II shows the differences of the variance-normalized

higher moments of skewness β3 and kurtosis β4 between

the estimate value and the observed values. The absolute

skewness difference is the lowest for the log-uniform jump

model, while the absolute kurtosis difference is the lowest



for the log-double-exponential jump model.

On the other hand, the skewness difference is the worst

for the log-normal jump model and the kurtosis difference

is the worst for the log-uniform jump model, but the log-

normal is only 5% lower than the log-uniform. Of course,

the numerical calculations of the third and fourth moments

are of doubtful computational reliability for data. The final

multinomial maximum likelihood values using the negative

of minimum values are essentially the same for all models,

since the same stopping criterion was used.

TABLE II

The skewness and kurtosis coefficients for the three models are

compared to S&P500 values, respectively, and Multinomial Maximum

Likelihood (MML ≃ −min[y(x)]).

Model β3 %diff. β4 %diff. MML

Normal -0.147 -49.5 5.98 -23.4 1107.

Uniform -0.219 -24.7 5.57 -28.7 1106.

Dbl-Exp -0.183 -37.6 6.80 -12.8 1108.

S&P500 -0.291 0.0 7.80 0.0 —

Table III shows that the log-normal model takes some-

what more iterations and function evaluations than the log-

uniform model does, but the log-normal model parameter

estimate takes about 60% of the time to execute. One reason

is that the log-normal requires only similar normal distri-

bution calculations for each jump count k in (II.4), while

the others require more complex combinations of normal

distributions, powers and exponentials. The extra parameter

needed for the double-exponential means the iteration count,

the function evaluation count and the timings are much

greater. However, the computational effort for both the

uniform and double-exponential models have been greatly

reduced by using integration by parts and more to get single

integrals. If the parameter estimation is done off-line for an

application instead of on-line then the computational saving

would not be too much of an advantage.

TABLE III

Comparison summary of computational performance measures:

Jump Number Number Function Timings
Model Parms. Iters. Evals. (sec)

Normal 3 131 238 4.7

Uniform 3 71 128 7.8

Dbl-Exp 4 205 343 21.

Combined Legend for Table I, Table II and Table III:

• Maximum Number of Iterations: 400.
• Using same fminsearch tolerances: tolx = 5e-7

and toly = 5e-7.
• Using a dual G5@2GHz CPU computer processor with

MATLAB 7.0.

V. Summary and Conclusions

From the above theoretical and data analysis, we can get

the following conclusions:

• The log-uniform model is the qualitatively best overall

among the three models, in terms of genuinely repre-

senting the fat tail property, better approximation to the

empirical skewness and more reasonable jump rates of

real-world market distributions.

• The log-normal model runs faster than the other two

models due to simpler normal bin integrals. On the

other hand, the integration by parts technique has been

used to reduce the computational effort for the log-

uniform and log-double-exponential models. However,

the deficiencies of the log-normal model demonstrates

that the distribution that is better analytically is not

necessarily a better model for financial markets.

• The results for the log-normal and log-double-

exponential jump amplitude models are qualitatively

similar, having exponentially small tails and near-zero

peaks in the jump distribution making small jumps

more likely.

• However, all three models give reasonable quantitative,

although somewhat mixed, results.

• For the future research and considerations.

1) To improve the log-uniform and other jump mod-

els, the stochastic volatility will be considered

with other factors.

2) To consider the option price and optimal port-

folio applications, approximate solutions to these

problems will be obtained.
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