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Abstract— The Galerkin finite element method is used to
examine the optimal drug delivery to brain tumors. The PDE
driven mathematical model is a system of three coupled reaidn
diffusion equations involving the tumor cells, the normal issue
and the drug concentration. An optimal control problem is
formulated keeping in mind the primary goals of the treatmert,
i.e., minimizing the tumor cell density and reducing the sie
effects of drugs. A distributed parameter method based on
application of variational calculus to a pseudo-Hamiltonan, is
used to obtain a coupled system of forward state equations an
backward co-state equations. The Galerkin form of the finite
element method is used due to its greater facility in numerially

representing complex structures such as those in the brain.

Finally, a two-dimensional circular disk test case is consiered
and partitioned into a set of rectangular finite elements in lar
coordinates, with bilinear basis functions in the interior, but
linear-quadratic basis function for elements adjacent to he
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distribution of drugs about the original tumor site. Wang et
al. [12], [13] have worked extensively on drug delivery to
tumors in three dimension for drugs like IgG and BCNU.
While this paper was motivated by a biomedical problem,
the treatment here will be mostly mathematical. We will
focus primarily on control for the optimal distribution of
the drug about the original tumor site. While a lot of
work targets study of solid tumors, our primary concern
would be the post operative treatmeing, the resection that
occurs after the surgeon has removed the bulk of the tumor.
The mathematical model used in this paper is taken from
Chakrabarty and Hanson [1], which was influenced by the
models of Gatenby et al. [3] and Mansuri [7]. Both of these
papers, while not dealing directly with brain tumors, have

models which closely resemble the growth of brain tumors.
Murray’s books [8], [9] are excellent references for diffet
types of growth mechanisms. Westman et al. [14] look at

. . three common kinds of tumor growth, viz., exponential,
Over the years, various kinds of cancerous growth hayggistic and Gompertz. In the next section we take a fairly

been studied from the mathematical point of view. One Sucheneralized model which could be used in the mathematical

kind is the growth of brain tumors. A brain tumor, like gy,qy of other biomedical phenomena. Further, an optimal
other cancerous cells, originates from a cell that praifes . ntrol problem is formulated keeping in mind the primary

and starts affecting the neighboring normal cells. As timggais of the treatment, i.e., minimizing the tumor cells and

progresses _the tumor_ cell becomes malignant and t_akFe%lucing the side effects of drugs. We defingpseudo-

life threatening proportions. Understanding the mectmasis jamiltonianand use the necessary conditions from calculus
that augment and abet the growth of tumors is necessagy yariations [4]. This leads to a coupled system of forward
for formulating an optimal treatment. The most commonly,te equations and backward co-state equations, but ine ma

occurring form of brain tumors are the gliomas, whichyst of this paper is to formulate a finite element numérica
account for a majority of the reported cases. Gliomas atgneme to solve for these two equations.

notoriously invasive and infiltrate the surrounding tissue

[9], [10]. Despite the availability of advanced diagnostic Il. MATHEMATICAL MODEL

tools like computerized tomography (CT) scan and magnetic |, the pDE drivengistributed parameter contrahodel of
resonance imaging (MRI), realistic treatment options havepakrabarty and Hanson [1], the tumor cell and normal cell
been limited. One major impediment in the treatment of braiﬂensity and the drug concentration at any position vegtor

tumors has been the inability of the drugs to penetrate thg,q ime; c [0,/], in theinterior Q of the domain, denoted
blood brain barrier (BBB|2]. The BBBis a desirable natural by 1 (x, £), 12 (x'7 t) ande(x, t) respectively, are taken as the

protection that exists in the human brain to prevent wat€fia variables. Defining the global state vector as
soluble toxic materials from entering the central nervous

boundary to exactly satisfy the no-flux boundary conditions

I. INTRODUCTION

system. The two most commonly used forms of drug delivery Y(x,t) = [ni(x,t) na(x,t) c(x,t)] ’ , 1)
are drugs conjugated with a polymer and delivery by optimal ) . .
the governing nonlinear vector PDE is given by
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D = [D;d; ]3x1,

B(Y) = —(a12Ya+r1 3Y3)ere] —(ag1Yi+k23Y3)ese,



U(x,t) = Us(x,t)es. (3) the optimal trajectoryZ*, be defined a$Z = Z — Z*. The

Here, D; > 0 is theith diffusion coefficient (could be inho- pseudo-Hamiltonian is expanded as follows,

mogeneous depending on _the prain matter [1@}),-(}/1-)_}/1- H(Z* + 6Z) = H(Z*) + 6H(Z*,6Z) + O((6Z)?).

is theith growth rate (logistic foi = 1:2 and exponentially

decaying fori = 3, but they can be purely exponential, The quadratic order terms, including the 2nd variation of
logistic or Gompertzian depending the type of growth stage}{ are neglected. In addition the functional dependence of
a;; are death rates due to competition,; are the death the higher derivatives in time and state of the extendee stat

: ; perturbations must be eliminated on lower order terms by
rates due to treatment and= u(x,) is the rate at which one or two integrations by parts, (using Green’s formula

the drug is being delivered and will be the control varlabl%]) Merging these identities, rearranging inner product
in an optimal control system. Alse; is theith unit vector. and collecting terms, the extended state equations yibkls t
The initial conditions and the no-flux boundary conditiongollowing intermediate form:

on the boundaryf? are, respectively,

T
R —(A+B Y*jg
Ill. THE OPTIMAL CONTROL PROBLEM tf
L . . . . /dt /dx ouU (U*—Uo)—ﬁ*)
The objective functional in the quadratic form of running

and terminal cost is given by, +/tfit/dx 5€T(Y;—DV2[Y"]
t T
0 Q

JY,U] = / dt / Y RY+(U-Uj) S(U—Uo)) ~(A+B) (YY" — U
dt/dI‘cinTD Nv [Y"]
2/{} x (YQY)(x,ty), (6) / o0 )
dt [ dr 6YT N-V. ) [D¢*
whereR = rieje], S = szezel, Q = qrere] + gzezeq / /a ) [De’]
and Uy = ong%X,t)eg. The goal is to minimize this ty .
functional with respect to the drug input rate relative to —/0 dt adF N V }D(n +£7)

some threshold rat&, 3 and the terminal costs af, i.e.,

min,, [J(u)]. Note that here; > 0 is the tumor burden cost + /dx (JXT "—Yo( ))) (x,0)
coefficient ands; > 0 is the drug delivery cost coefficient, Q

while ¢; > 0 andg¢s > 0 are the corresponding final costs. +/dx (5 ¢ ) (x,0)
We are trying to minimize the density of tumor cells and the Q

drug delivery quadratic control ter(d/s(x, t) — U 3(x, t))2. . .
Also the goal at the final time; is to minimize the final +/dx (5YT(€ +QY ))(X7 ts),

tumor density and more |mportantly the drug concentration @

so as to reduce the effects of toxicity. In addition, N0 asyhere A: B denotes the trace of the matridB or
sumption is made about the control constraints, even thou Y - (£5YH T —
there might be physical restriction on the amount of drug e double-dot product, e.gVy[A](Y"): (£(Y")" =
that can be administered. Using threagrange multiplier =1 Zk 1 Vy [A56l& Y

vectors, two of which are functions of space and time and one

is independent of time, and letting = (Y, U, &,n, x) be ;

an extended state vector, we define gseudo-Hamiltonian A. State Equations

as, The optimal state equation is recovered by setting the
coefficient of (6¢) T to zero:
= —/ dt/ Y RY+(U-U)) S(U—UO))

+§/Q (Y QY)(x t5)
ts on Q2 x (0,ty], with boundary conditions 082 x [0, ¢ ] from
/ dt/ dx & <Yt—DV [Y]

Y; = DVZ[Y*]+ (A+ B)(Y")Y* +U* (8)

the coefficient of(én) T, i.e.,
LA+B)(Y)Y - U) _DR-V)[Y ] (x.1) =0, ©)

/ dt/ drn' (- N Ve )[Y]) for (x,t) € 0Q x [0,t;] and with initial conditions on the
0 o9 interior 2 from the coefficient ofdx) 7, i.e.,

+/de(x (Y- Yo)) (x,0). @)

Thecalculus of variationss used to determine the functional
critical point necessary condition for the first variatief) pf  for x € 2. Due to the presence of the functioA§Y)Y and
the pseudo-Hamiltoniaf{(Z). Let the perturbatiodZ about B(Y)Y the forward PDE (8) will be nonlinear.

Y*(x,0) = Yo(x) (10)



B. Regular Optimal Control

that the assumption made in this paper is that the growth is

Since the control has been defined in (3) as only havirlggistic for the tumor and normal cells.

one component, only the coefficient 6t/; is set to zero
giving the corresponding regular control

Ui (x,t) = Ups(x,t) + &5 (x,t)/s3, (11)

onQx[0,¢],providedss # 0. Note that this control law only
requires solving for the 3rd component of the first co-state
vector£*(x,t), sincedU; =0 anddU; = 0.

C. Co-State Equations

Setting the functional coefficient ¢pY) ' to zero yields
the primary co-state backward PDE:

0 =& + Va[DE*] + (A+B)(Y")¢*
+Vy[A+B](Y*):(¢*(Y*)") = RY",

for (x,t) € Q x [0,tf). This PDE (12) is unidirectionally
coupled to the state PDE (8), except that only the 3rd
component;(x, t) is needed for the regular optimal control
input U5 (x,t) from (11). The boundary condition follows
from setting the functional coefficient @fY (x,¢) for x on
I'=09 to zero, so

(N-V,)[D€"](x, (13)

and the final condition for this backward PDE follows from
forcing the coefficient 0BY (x,t;) to be zero o,

§(xty) = QY (x,ty). (14)

The two other co-state vectors should not be needed, but
satisfy rather simple equations. The 2nd_co-state vector
equation follows as the zero coefficient GN-V,)[6Y ']

on the state boundaly =0s2,

n'(x,t) = —€"(x,t), (x,t) € 0N x[0,tr].

The 3rd co-state vector equation follows as the zero coeffi-
cient of state initial conditiodY (x, 0),

X* (X) = E*(X, O)v
IV. GALERKIN FINITE ELEMENT METHOD

In an earlier paper [1] we had worked usingCaank-
Nicolson implicit methodto study the problem numeri-
cally. However, using finite difference methods likeank-
Nicolson implicit methogndalternating directions implicit
methodhave serious drawbacks. Finite difference techniques
are more likely to have higher computational requirements,
i.e, they suffer from thecurse of dimensionalityFinite ele-
ment methods require a relatively smaller number of nodes as
compared to the finite difference methods while maintaining
the same level of accuracy. Also, the finite element method

(12)

=0, (x,t)€dx[0,t5)

x € Q.

1) The first step{ = 1) would be to make a guess about

the controlU; (x,t) ~U{" (x,t). We substitute it into
the forward state equations and use the finite element
method to solve for the stafé*(x,t) ~Y " (x, t) for

t > 0. Initially, Y*(x,0) = Yo(x). Let the Galerkin
approximation for the state be

M

Y, t) = Y(x,0) =Y Yi(t)-6p(x),  (15)

T
Il

along with a similar approximation for the optimal
control,

M
DEDBLYIORCY

h=

U*(x, (16)

—

where, [¢;(x)]amx1, IS @ set of M linearly indepen-
dent continuous basis functions, with the normalization
property ¢;(x;) = 4;;, at the element node;,
implying the |nterpolat|on property tha¥'*(x;,t) =

AJ( ) for j = 1:M finite element nodes.

2) Before applying the Galerkin approximation (15) to

the state equation (8), the equation must be put into
integral form onQ with respect to a test function
¢;(x) taken from the basis and then further prepared

for low order basis function by reducing the 2nd order
derivatives to 1st order derivatives by integration by
parts (Green’s formula [5]), so

- /ﬂ dxg;(x) (Y

LA+B)(Y)Y —U")
- /ﬂ dxd;(x) (677 +DV] [6;]V.[Y"]
—¢; (A+B)(Y)Y"+U"))
- /a er@.D(N.vw) Y’
_ /Q dx (631 + DV [¢5]V. Y]
—¢; (A+B)(Y)Y"+U")),

—DV3[Y"]

for ; = 1: M, where the exact no-flux boundary
condition has been used in the last step. Note that for
the Galerkin approximation to be compatible with this
no flux condition, the boundary basis functiopg(x)
would best satisfy this condition a9f2, or the no-flux
condition should be satisfied in the variational integral
form neglected in the exact formulation above.

can better handle irregular structure, such as the braiotum 3) Now, the Galerkin approximation (15) can be applied

Hanson [6] has worked extensively in this area and has
made a comparative study of different numerical methods
for stochastic dynamic programming. For the problem under
consideration, we use th@alerkin finite element methab

as to reduce the number of state nodes. The following steps
can be used to get an approximate numerical solution. Note

yielding

0 ~Z / dx (V40503 + D, (V1167110

—((A+B) (?) ?,;Jrﬁ,%) qu.%) ,



for ; = 1 = M. Futher reduction to finite element
integrals is accomplished by letting

/\/l]k = ‘/de%(x)(bfc(x) a7
be an element mass integral fprk = 1 : M,
0= [ax916]9 10 18)

be an element stiffness integral fﬁ');l% =1:M, and

T 0= /Q s (%) (%) () (19)

be a triple basis element integral fork,[ = 1 = M
arising from the purely nonlinear terms /(Y)Y and
B(Y)Y. Thus, the Galerkin equation becomes

M
0= Z (M]k (Y;;(t)— (a1e1elT+a2e2e2T

k=1

S G RO AHO) ARG
(029, (O k257, 0) Vap(B)es) )

for ; = 1 : M. This Galerkin ODE can be solved
by approximating the Galerkin basis integral coeffi-
cients(M; ;. K; i, T ;. ;) by exact symbolic methods

or numerical quadrature if there is sufficient element
complexity, and then the ODE can be solved by a
4th order Runge-Kutta method. The coefficients can be
computed for all double shots for fixed finite elements
off-line since they will be fixed. These coefficients can
be calculated on an element-by-element decomposition
and element results can later be reassembled to form
the global solution [11].

4) In the second shot of the double shot algorithm [1],

the final condition
E(E) (X, tf) =~ _Q?“) (X, tf)
M
=—Q Y Y (ty)ep(x),
k=1
for ¢ = 1 :L double shots, is used to start the back-

ward co-state solution. Similar to the state equation, a 5)

Galerkin approximation for the co-state equation (after
dropping the(¢) subscript) using the same basis is
given by

M
€ (x, 1) = &(x,1) = Y& (1) - d(x)

k=1

(21)

for ¢ < ty.

As with the state Galerkin variational formulation, the
variation formulation for the co-state equation (12) is

0= / x5 (%) (€ -+ V2[DE]+(A+B) (Y )E"
+Vy[A+B](Y*):(£*(Y*)T)—RY*)
- / dx (6 (€] + (A+B)(Y)E"
—I—Vy[A—I—B](Y*):(f*(Y*)T)—RY*)
VI ieValDe']) + [ ang; (R-9.) €1

A form with reduced order derivatives is derived by
eliminating the boundary integral by the no-flux con-
dition (13) and then the Galerkin approximations are
substituted for the state and cO-state, thus producing

ONZ/dx Sk

+Vy [A+BI(V):(€:(Y) ") -
—DEV 1 16;1Valoy])

except that the nonlinear terms are only symbolically
designated bW forj =1:M. Next by substituting

the Galerkin approximation folY in the nonlinear
terms, using the element Galerkin integral notation for
the massM i (A7), stn‘fness/C i (18) and the pure

nonlinear tnplefT i (19), the compact Galerkin ODEs
are obtained:

M

O:Z(M

k=1

~asy pes— RY4(1)) —K; 5 DE(1)

ijl<2a1

2(12

e DI

A+B)(Y)£k

RSA(];) $:04

» . .
G (5;;(75)4-@151,;;914-@252,;;92

(€ (Ve (22)

for j = 1:M. This Galerkin ODE (22) may be
computed by the 4th order Runge-Kutta using the same
Galerkin integral basis coefficients.

For each completed double shot for= 1: L, the co-
state approximatioﬁ(g) (x,1) = Z;;M:1 E,(Af)(t)gb,; (x) is
used to determine thegular optimal controlupdated
value third component

U (x,1) = Uy s(x, 1) + €7 (x, ) /3.

This process is repeated fér= 2 : L double shot
iterations until a convergence criterion for sufficiently



large L is reached, e.g., the relative criterion for the(¢;,0;, ;) x (r;,r;, ) for i=1 : M, + 1 and forj=1 : M, in

gl
control, the{l 3,4}JI0(J:aI numbering,
|05 e, t)-08 2 3, )| | <tola| [ U5 i, 1) oD gy = (B0 (T g
Y, Ar )’
and say,
[ ¥ 6 0)-¥ 00 1) <ol [ 1) 0D gy = (020 (T, (24)
WY, Ar )

for ¢ = 2:L until satisfied, provideqi|U§l’1)(x, t)|| #

0 and|[Y“~V(x,t)|| # 0, wheretol,, > 0 andtol, >

0 are some prescribed tolerances. (b(;,;)(r 0) — <9;+1—9> <T—r§.> . (25)
3 ’ -

V. TwO-DIMENSIONAL FINITE ELEMENT TEST A ar

CONFIGURATION

Consider a circular disk of radiu® with center at &9 (r, ) = (9 0; ) ( Tj) (26)
the origin. Transforming the rectangular space coordsate Ad Ar
(x,y)=r(cos(),sin(d)) to polar coordinates permits use of
a completely covering rectangular grid configuration in the
r@-plane and an accurate representation of no-flux boundar
condition since the normal derivative to the boundanRr is
the partial derivative with respect to The grid is contructed
of M, sectors of angular widtth=2x /M, and each sector

For the elements whej=M/, the basis functions for local
fodes1 and 2 are still valid, but those for- sy = R are
6\o%undary nodes, so we need at least a Imear-quadratic basis
function to preserve no-flux and conserve mass with the
quadratic part i, i.e.,

is further partitioned intd/,. subsectors of radial lengthr= M) 0;,,—0 Rer\2

R/M,. The nodes are given Hy;, r;)=((i—1)Ad, (j—1)Ar) B3 (r,0) = (T) 1- ( Ar ) ; (27)
for i=1 : M,+1 and j=1 : M,+1. Due to the one-to-

many properties of the transformation, al=r; =0 nodes @Mo) (L gy — 0—0; 1- R-r\* 28
are aliased to the first global node numbeigdwvhile all 4 (r,6) = Al Ar ’ (28)

6=0nr1=2m nodes are aliased to the corresponding global
node W_lth@ 61=0 and the same= r; fqr j=1: M,+1. 4o (a¢ (i,My) /Br (R,0) = 0 = (8¢$"MT)/87°)(R,9), satis-
Otherwise, the global node numbering is given by fying the no-flux boundary condition in the basis set for all
n,;:%Jr (G—1)%M, 6 values in[0, 27]. . _ .

R . The element version of the global mass matrix (17) is
fort=1 : My and forj=1 : M, +1, corresponding to
column @) ordering and aliasing foi=M,. The elements M(;_j)_/eﬂéw " drr¢( 5 (r,0)6), ”)(T 0)
are similarly numbered as b,

T
J

€ ;=1+(—1)* M, and produces the symmetri¢, ;) element matrix

2(4j-3) (4j-3) 2(2j-1) (2j-1)
(ArPAO|  2(45-3) (27-1) 2(2j-1)

for i=1 = M, and forj=1 : M,, while the element local node
numbering goes by{1,2,3,4} in the clockwise direction, -
going first along the-=r; edge, see Figure 1 showing the MBI =

relationship between local and global node numbering. 72 * * 0 2(45-1) (4jj1) ’
e 41 e M1 * * * o 2(45-1)
712 4 where the symmetric lower triangular components have been
A6 e; 3=i+(5—1)*Ms suppresseds{. Note that the corresponding element area is
]2 " 3 A = (Ar)2A0(2] — 1)/2. Using the rectangular-polar
€; Ar — M, gradientV ][]V [0;] = birdj.r 00050 /r% identity, the

element version of the global stiffness matrix (17) is
Figure 1: Typical finite element configuration ird-plane.

41 ) 1, 1, %,.A'
Though the configuration may seem complex, it greatly/C(’) / /dW’ ¢>( ’J)¢§, J)+¢>( 7)¢ ,97)/7"2)(7“7 0)
facilitates the deassembly and reassembly between the el-
ements locally to the global representation, while allayvin

and produces the symmetr element matrix
one system to define the approximating basis functions fo P y T(C,j)

all elements except for the elements adjacent to the no-flux A +2+1-2-1
boundary conditions. c@d) (2-DAG| + +2-1-2
For simplicity, bilinear basis functions are used for - 12 x % +2+41

the non-boundary elements, where for elemepj on ok % 42



I (L) 252 —2J —2j(j-1) —(?jjl) The system of optimal PDEs in six state dimensions is

L \A x 4252 +2J§J 1)-2j (j—l) reduced by Galerkin approximations of the state, co-stade a
2A0 * ox +2(3-1)% —2(5-1) control vectors to a system of six ODEs in time with three
* * * +2(j-1)2 fundamental element integral coefficient forms: the mass,
the stiffness and nonlinear coefficients. The finite element

(27 + 1) +(2f + 1) +(2j—1) —(2j—1) configuration is given for a circular disk geometry that can
1 —(2}'+1)—(2j’—1)+(2§'—1) be. ugeq to test the optlmal_ drug delivery computations.
W —(2j-3) +(2j-3)| This finite elgment configuration will pe more amenable to
. . . —(27-3) complex brain structures and three-dimensional geonsetrie

than the finite difference method of our earlier work.

where again the symmetric lower triangular components have Future directions will include:

been suppressed)( The triple basis coefficient (19) of the
nonlinear terms is @ x 4 x 4 array on each element,

/ / drrel (r,0)657 (r,0)659) (r, 0),

J)
7‘) 7

so it must be portrayed in parts for eathsay,

9(55—4) 3(55—4) 3(5j-3) (55-3)

« Application to multidimensional drug delivery domains;
« Application to general curvilinear coordinates for gen-

eral brain geometries;

« Application to heterogeneous brain structures such as

spinal fluid cavities, variable brain matter, vascular
system and the blood brain barrier.
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T(;;):(AT)QAO *  3(5j—4) (55-3) (55-3)
=517 790 * x  3(55422) (55+22)|
* * x  (5J422)
3(55-3) (55-3) 3(57+22) (55+22)
@5)_(Ar)?A6|  +  (57-3) (5j+22) (57+22)
2720 |k * 9(5j-9) 3(5j-9)| o
* * x  3(55-9)
. . . . [2]
3(55—4)3(55—4) (5j-3) (5j-3)
FGi)_(Ar)PA01x 9(5j-4) (5]-3) (5+22) -
w3720 * x  (55422) (55422) |
* * x  3(5422)

(4

(57-3) (55-3) (5}422) (5422) °

T(%.&'LM * (57+22) (574+22) 3(5)+22)
vt 20 * * 3(55-9) 3(55-9) | [6]
£k x 9(6j9)

Other element coefficient matrices, such as those for the
elements adjacent to the no-flux boundary, are omitted due
to lack of space. 8]

VI. CONCLUSION AND FUTURE DIRECTIONS (o]

The theory of Galerkin finite elements is used to develop?
approximations to the optimal control problem of canceigdru, ;
delivery to the brain governed by a coupled set of three
reaction diffusion PDEs. The three state variables are the
tumor cell density, the normal cell density and the cancét
drug concentration. The tumor and normal cells are highly
coupled through intrinsic and competitive interactiortsg t [13]
concentration is directly controlled by the drug deIivery[14
control rate. The optimally controlled distributed paraene
system is derived by a straight-forward calculus of vaoiagi
technique without resort to an extremely abstract formula-
tion, and that should be useful in other similar scientific or
engineering applications.

12] C-H. Wang and J. Li,

lllinois at Chicago for putting us in contact.
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