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Abstract— A reduced European call option pricing formula
by risk-neutral valuation is given. It is shown that the European
call and put options for jump-diffusion models are worth
more than that for the Black-Scholes (diffusion) model with
the common parameters. Due to the complexity of the jump-
diffusion models, obtaining a closed option pricing formuh like
that of Black-Scholes is not viable. Instead, a Monte Carlo
algorithm is used to compute European option prices. Monte
Carlo variance reduction techniques such as both antitheti and
control variates are used. The numerical results show thatttis
is a practical, efficient and easily implementable algoritim.

|. BACKGROUND

The model the dynamics of the asset prig&) is the
stochastic differential equation (SDE) :

dS(t) = S(t) (udt + odW (t) + J(Q)AN (L)), )

where Sy = S(0) > 0, u is the drift coefficient,o is
the diffusive volatility, W (¢) is a Wiener process/(Q)

is the jump-amplitude@) is an underlying amplitude mark

process such thap = In(J(Q) + 1), N(¢) is the standard

Poisson jump counting process with joint mean and varian

E[N(t)] = M = Var[N(¢)]. The jump term in (1) is
a symbol for S(1).J(Q)AN(t) = SN S(T;7)J(Qx) |
where T}, is the kth jump time, Q. is the kth mark and
S(T];) = hmtTTk S(t)

Let the jump-amplitude mark density be uniform:

sol =52 { o 42"} @

else

wherea < 0 < b. The mark@ has meary; = Eq[Q] =
0.5(b+ a) and variancer; = Varg[Q] = (b — a)?/12. The
jump-amplitudeJ has mean

J = EJ(@Q)] = (exp(b) —exp(@))/(b—a) = 1. (3)

Note that in absence of any special explanatiah,will
denote the mean of random variable that is, X = E[X].
For more details, see [8] and [10].

By the Itd chain rule [9] for jump-diffusions, the log-retu
procesdn(S(t)) satisfies the constant coefficient SDE

dIn(S(t)) = (u — 0?/2)dt + odW (t) + QAN (1) ,
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which can be immediately integrated and the logarithm
inverted to yield the stock price solution

S(t) = Spexp((u — 0?/2)t + aW (t) + QN(t)), (4)

WhereQN(t):ZfCV:(tl) Qy, but is zero if N(t) =0, and the
Qi here are independent identically uniformly distributed
jump-amplitude marks See the jump-diffusion book [9,
Chapter 5].

Our objective is to derive a reduced formula and practical
algorithm for the discounted, expected European call optio
price C(Sy, T'), a function of the current stock pricg, the
option expiration timé’, the strike price(, the stock volatil-
ity o, the risk-free interest ratg but for jump-diffusions also
depends on the jump rateand the mean jump amplitude
In contrast to the Black-Scholes [3] hedge for constructing
a portfolio to eliminate the diffusion in the case of a pure
diffusion process, Merton [17] argued that such hedging was
not possible in the case of the jump-diffusion model, but the
risk-neutral part of the Black-Scholes strategy could gnes
%Re no arbitrage strategy to ensure that the discounted,
expected return would be at the market ratd his strategy
can be formulated in terms of a change of the drift of jump-
diffusion to a risk-neutral drift at rate or more abstractly in
terms of an equivalent change of measure to a risk-neutral
measure, sayM. Consequently, the European call option
price can be formulated as the discounted expectation of the
terminal claimmax[S(T') — K, 0],

C(So,T) = e "B pm[max[S(T) — K,0]] . (5)

It is sufficient to know that such a risk-neutral measuretsxis
See the readable accounts in Baxter and Rennie [2] or Hull
[12]for the pure diffusions, else Cont and Tankov [6] for the
more general jump-diffusion cases. For statistical ewigen
of jumps in various financial markets see Ball and Torous
[1], Jarrow and Rosenfeld [13] or Jorion [14].

II. RISK-NEUTRAL CONSTANT-COEFFICIENTSDE

By the equation (4), the expected stock price at expiration
time T is found in the following theorem:

Theorem 2.1: The Expected Stock Priceis
E[S(t)] = SoeT)t, (6)

Proof: Using the stock price solution (4), the IID property
of Qi given a jump inN(t) and iterated expectations,



changed to the risk-neutral growifdt, or equivalently the

(h=o2/2)tps | oW () sND q, original probability measure needs to be changed to the
E[S(#)] = Soe E {e e ] risk-neutral measuré. Using risk-neutral valuation of the
N payoff for the European call option in (5) with the stock
= Speh—o%/Dty, [ef’W(t)] En.o [H eQi] price solution (4) and risk-neutral drift,
- . C(So,T) = e "TEpq[max(S(T) — K, 0)]
—Tr 0 ]i}b oo
= Soe(/ifo'z/2)teo'2t/2EN7Q |:H eQi] _ e szk(/\T)/ / (SoeDJ(z,sk)_K)
i=1 mk:o ka J Zo(sy)
N(t) 2
o724
= Soe'utEN |:EQN [H eQT‘ N(t)]:' € ¢Sk (Sk)dZdSk
i=1 1 & oo =
- R - R = \/T Zpk()\T)Egk|:/ N (SOEDJ(Z,Sk)_TT
= Spett ZpkE[H €9 | = Gpett Zpk HE [eQ} T k=0 Zo(Sk)
k=0 i=1 k=0 =1 —Ke_TT) 6_22/2d2:|
= Soe" > pEFJ(Q) + 1] )
k=0 B . WhereDJ(z,sk)E(1’—/\J—02/2)T+0\/Tz+sk, Zo(s)=
_ gyett i e (At (J+1)) _ SpeletA I (In(K/Sp) — (r—A\J —02/2)T — 5)/(c\/T) is the at-the-
‘ k! ‘ ’ money value of the normal variable of integration and

e Sk = ZleQi is the sum ofk jump amplitudes, such that

i istributi = oM \)k
where the Poisson distribution, (At) = e~ (At)"/k! has 5 50 uniformly distributed 11D random variables over the
been used. [ interval [a, b] but S, =>"7_, Q; =0. Splitting up the integral

Assume the source of the jumps is due to extraordinaggrm, |et
changes in the firm’s specifics, such as the loss of a court

suit or bankruptcy, but not from external events such as A(s) = L Spe~ A+ /DT +oVTats =2*/2,
war. Thus, such jump components in the jump-diffusion V2T J Zo(s)
model represent only non-systematic risks. The marketksto = SpetMTo (d1 (SOeS_UT))

return correlationbeta of the portfolio for non-systematic

risk is constructed bydelta hedging as in Black-Scholes and

and is zero (see [17]). Under this assumption, the jump- 1 oo T2
diffusion model (1) is arbitrage-free. In the risk-neutral B(s) = Ner Ke e dz
world, E[S(t)] = Spe™, s0 Spe#)t = §pert and solving “ols) B}

for u, yields the risk-neutral appreciation rate,= (i, = = Ke "o (dz (SOGS_MT)) ;

r—MJ. In the more general case with time-dependent co- )
efficients, the expected instant rate is the risk-free rag aWhered (z)=(In(z/K)+(r+o /2)T)/(oVT) andds(x) =

E[dS(t)/S(t)] = (u(t) +E[J(Q, )| A(t))dt = r(t)dt, leading dy(x)—o+/T are the usual Black-Scholes normal distribution

to the risk-neutral mean rate relationshipt) = i, (t) =  @rgument functions, while (y)= [* e~ /?dz/v/27 is the
r(t)—E[J(Q, )] A(D). standardized normal distribution. Therefore,

Back to the constant coefficient case and substitytiag > ~ ~
r—M into (1), we get the risk-neutral SDE under the risk- C (S0, T) :Zpk()‘T)Egk [A(Sk)—B(Sk)]
neutral measuré as the following: k=0

dN(t) B > ) - S 0y
dS(t)/S(t) = (r=AJ) dt+odW (t)+ Y J(Qx) = I;)pk(/\T)Esk[SoeS MT@(dl(goes MT))
AN (t) k=1 —Ke_TT(b(dQ(SOegk_ij))}.

dt+odW (t) + J —J
rdtedio ; (7@0=7) Alternatively,
+J (AN (t) = \dt),

where the jump terms are separated into the zero-mean forms € (%0, T) = kZ_Op’“()‘T) (7)

of the compound Poisson process. .
‘Eg [C(BS)(SOeSkf)‘JT,T;K, 02,7’)} ,
I1l. RISK-NEUTRAL OPTION PRICE SOLUTIONS k
The risk-neutral property means that the asset growghere

at the market risk-less rate, herein a constant market ,(Bs) 2 N —rT,

) ; . C T K, 0% r)=x®(d —Ke "' ®(d
environment, so that the expected, discounted price of an (= o7, r)=wd(di (w)) - Ke (da ()
assetS(t) satisfiesE[e~""S(t)] = S(0). In order to achieve or briefly CB9)(x,T), is the Black-Scholes formula [3],
this, the mean growth rat&[dS(t)/S(t)] = (1 —AJ)dt is  but with the stock price argument shifted by a jump factor



exp(g‘k—/\jT). The above equation agrees with Merton’sand by the 1ID property oti(BS), the standard deviation

formula (16) in [17]. os =B /\/n, where
The next step is to compute
g [059 (S0e5 T, 7,1 o)) 759 = e [C(E9) (500297, 7)] = [var e,

However, producing a simple analytical solution is difficul but may be estimated by the unbiased sample variance
since the probability density of the partial sudig for the

log-uniform model is very complicated, so this problem will 1 & N2
. . . . (BS) _ c(B9) _ ¢
be solved by high-level simulation techniques. S R\ Z i n) -
=1

A. Put-Call Parity .
T ] ] . In order to reduce the standard deviation by a factor
Put-call parity is founded on basic maximum function of ten the number of simulations has to be increased one
properties (Merton [16], Hull [12] and Higham [11]), SO iShyndredfold. However, there are alternative approaches to

independent of the particular process and reduce the size of(B5) by variance reduction techniques.
C(So,T) + Ke~™T = P(So, T) + So 8) Thus, the Monte Carlo simulations will be used with
antithetic variate and control variate variance reductemtn-
or solving for the European put option price, nigques. Let

_ —rT ~ _ _ _
P(So0,T) =C(S0, T) + Ke™"" — So, 9) X, — %(C(BS)(SOeST;—)\JT’ T) _’_C(BS)(SOeSf“)—)\JT’ T))
in absence of dividends.
=0.5(cP 4P

K2

IV. AMONTE CARLO ALGORITHM
Eor 1 = 1:n is the thetic-antithetic averaged, Black-Scholes

From (7), the European call option price formulae can b .
(7) urop ption pri ! risk-neutral, discounted payoff and

equivalently written as
C(So,T) = Eg(T)[C(BS) (Soeg(T)fAJTvT)}’ (10) Y; =05 (exp(gi) + exp (31(“)))

WhereéA‘(T):ZJ-\i(lT)Qi, Q; are uniformly distributed 11D is the thetic-antithetic averaged jump factors and a vadan

= ~ _ reducing control variate. The control adjusted payoff is
random variables fronja, b]. Note if S(T') = S(T') - XT"J, g : pay

then exp(S(T')) is an exponential compound Poisson pro- Zi(a) = X; —a- (Y; —exp(\TJ)) ,
cess with the exponential martingale property[osi] that

Efexp(S(T))]=exp(S5(0))=1. The Monte Carlo method may where (Y; —exp(AT'J)) is the control deviation andv is

be a good choice to compute it numerically. For the treatmef’ adjustable control parametgr. The sample mgaﬁi@i)
of Monte Carlo methods, see, e.g., [5], [7] or [11]. produces the Monte Carlo estimator (5o, T): Zx(a)=
Let N; be a sample point taken from the same Poiss im1Zi(@)/n=>"0, Xi/n—a i (Yi—exp(ATJ))/n=

distribution asN ('), so thatN; for i = 1:n sample points “n~ oYy — exp(ATJ)), an unbiased estimation since

; ; : : E[Z,(a)] = C(Sy,T) using [ID mean propertieg[X,,] =
form a set of IID Poisson variates. Given &) jump, let o - 1 - -
the U; ; for j=1:N; be jump amplitude sample points, so;E[Xi] h_C(SO’?)ftf?’h(loé ?ndE[Y"] = E[Yi] = exp(ATJ)
that they are IID uniformly generated on [0, 1], then rom the proot o m. z.L.

The variance of the sample meai, («) is
N; N;

Si=> (a+(b—a)li;)=aN;i+(b—a)d Ui,
j=1 j=1

for i = 1:n will be a set of IID random variables following from IID property of theZ;(«). However,

on [a, b] having the same compound Poisson distribution

with uniformly distributed jump amplitudes &7"). Based

upon (10), an elementary Monte Carlo estimated($,, T')

0%n ()= Var [Zn(a)|=Var[Z;(a)]/n,

Var[Z;(a)]=Var[X;] —2aCov[X;, Y;]+a*Var[V;].

So, the optimal parameter* to minimize Var[Z;(«)] is

is
Cp = 1 ZC(BS) (Soe@—,\JT T) _! ZC.(BS) o =Cov[X;, Y] /Var[Yi]. (11)
n 4 ’ n &’ ’ . . .
i=1 i=1 Using this optimal parameter*,
such that theCi(BS) are |ID random variables based c§g COV2[XZ_ Yi)
Then, by the strong law of large numbers, Var[Z;| = Var[Z;(a")] = Var[X;] — Tm
Cn — C(So,T) with probability one as n — oo, = (1- p§<i7n) Var[X;],



where px, .y, is the correlation coefficient betweeX; and  exp(3())]=0.5(exp(AT".J)—2 exp(2AT J )+exp( AT (exp(a+
Y;. We also know that b) — 1))).

1 g g g Proposition 4.1: An unbiased estimator fat* is
Var[X,] = Z(Var €79 +2Cov [cP),clP)]

. R 1
+Var[c<ass>D a = H;Xﬁq ZZXY s

11]1

; (1+pc(BS) C(aBS)) Var [C(BS)} __n XY, —X,Y, 7 (13)

n—1 032,
(aBS) (BS) . . o
becauseVar [C } Var {Ci } Therefore, whereX,, = >"" | X;/n is the sample meaX'Y,, andY’,,

. 1 ) have the similar meaning.
Var[Z]] = B (1 — Px; Y») (1 + PeBs c<ﬂBSJ) Proof: It is necessary to show the condition for an unbiased
estimateF[a] = «* is true. Splitting the common part out of
-Var {C(BS)} <= Var [C(BS } (12) the double sum and the IID property of the random variables
at different compound Poisson sample pointsifer 1:n,
becauseﬁ( v;,>0and provided,,(ss) .55 <0. From (12), n n
BS C o Ela] = E ! XY ! XiY, !
02 < Var C( N/(2n) = 2/2. Th|s says the variance [a] = n—1 Z i i_gz LR Ry
Zn —1 —1 Y
1= Jj=

of ‘the Monte Carlo estlmate with antithetic and control
variates techniques is at most the half as the variance of
the elementary Monte Carlo estlmatepgum (@B3) <0.

[(1‘1))‘9‘“—1 ZX%]%
n n oy
J=1,5#1

Remark In a real market, the ratm/b will be close N
—1, that isb+a will be very small since the skewness -1 S (= 1EX Y] ZE[X IE[Y;] LQ
of the daily return distribution is not far away frofhand n(n —1)= J=157 Ty

the skewness is generated by the jump part of the jump-
diffusion model. For example, the skewness-i8.1952 for
1988-2003 S&P 500 daily return market data ant = 0
—1.08 and a +b = —0.002 [18]. In fact, in our Monte- Sincea depends ory; for ¢ = 1:n, the estimatex of o*
carlo algorithm, thep,xss) caPs) is about—0.83. So, we introduces a bias into the estimate

(E[XY]-E[X]E[Y]) /o3 =Cov[X,Y]/oy =a".

can get a lot of beneﬁt from the antithetic variate variance P 1 B

reduction method by equation (12). In fact, our simulations Zpy=— ZXi —a <— Z Y; — eAT"> . (14)
using uniformly distributed jump amplitudes confirms that i "=

COV[CZ-(BS),Q-(GBS)] < 0 in the range of the ratie-3.75 <  Fortunately, we can compute the bias which asymptoticly

a/b<—0.25 with a=—0.028 which is well within the range goes to zero at the ra®(1/n) as shown in the following
of market data. However, i&/a is far away from—1, the theorem.

correlation coefficientCov|C; (BS) C(“BS)] can be positive  Theorem 4.1: The estimateZ, of C(Sy,T) has bias

which will worsen the variance, though this range is not ~
realistic. ’ ’ B=E[Z,]—C(So, T) = Cov[X, (2py —Y))Y ]}/ (no}),

In general, we do not know the parameter exactly, SO where iy = E[Y;] = E[Y] = exp(\T.J), 0 = Var[Y;] =
some estimation is needed for it and we need the foIIowingar[y], Y has the same distribution as, for i = 1:n.

Lemma. Proof: Setn, = o2a(Y;, — puy). Then,
Lemma 4.1 sosn vy
- ~ . - XY i= j=1<vitj
Var [esi_i_esga)}:Q (e)\TJ_262ATJ+€>\T(8‘1“’71)) , e = <Z;1_ - ;(n]_i) ]> (Ye—py)
where J = (exp(2b) — exp(2a))/(2(b — a))—1 and J = _ 1 ZX Yoy, izt 2 XV
(exp(b) — exp(a))/(b — a)—1 from (3). n(n —1)
Proof: Using the properties of the antithetic p&i;,5*), by Zizl Xi¥i | By 2im1 2 XiYi
;S| §; 8@ S; & n n(n —1)
Cov { ,e } =E { e }—E [e } E {e } - XkYkz“‘Zi#k XY Ys
—E [e(aer)N(T)] _ER2 [e@] - n -
Zj;ék X3Y;Ye + Zi;ék XiYk2+Zi¢k Zj;éi,k XiY;Ye

U AT(etb—1)  oATJ
= e —e

n(n —1)
andvar[e 5 ‘= E[e25 1—-E2[e 5 i] = e T _ T — Var[esf(a)]. By i, XY + By Dics 2y XiYs
Thus, Var[ SiteS z( )]—Var[e ]+2Cov[e i esz( |+ Var[e s )] n n(n —1)

2Var[eSi|+2Cov[eS, 5" )]:2( NIT AT (D) 0 By the independence dfX;, Y;} and {X;,Y;} for j#i but
From Lemma 4.1,ay = Var[Y;] = Vai0.5(exp(S;) +  with identical distributionsg[n,] = (XY 2+(n—1)XY py ) /n—



TABLE |
NUMERICAL RESULTS OF ELEMENTARYMONTE CARLO METHOD
[ 0 [K/So| ¢ | P | e [t(sec)] evt |
0.9 | 13.76 0.67 | 0.055 2.640 | 0.090

((n— )X P py + (1= Dpux T2+ (0= 1) (0 — Dy ), (nln —
1) =py XY +p3 px = (XY2 = 2XY py —px Y2 +2px py) /n=
Cov[X, Y?]—2uy Cov]X,Y]/n=Cov[X,Y (Y —2uy)]/n, where

px = BIXi], py = E[Yi], XY = E[X;Y}], Y2 = E[Y7] 0.2 | TO[ 526 3.28[ 0035 2578] 0.056
and XY?2 = E[X;Y?]. Therefore, the biasB = E[Z,] — 11| 1.38| 849 0.014| 2562 0.022
C(So, T):E[—a(Yk—,uY)]:—E[U%fa(yk—uY)]/Cf?/:—E[le]/Cff/: 0.9 | 1599 2.90 | 0.048 2.562 | 0.077

0.4 1.0 8.45] 6.47] 0.033 2.578 | 0.053
1.1 4.07 | 11.18 | 0.020 2.531 ] 0.032
0.9 | 19.15| 6.03| 0.044 2.454 | 0.069

Cov[X,Y (2uy —Y)]/(nc¥). O

Remark: From Theorem 4.1, the corrected estimatéfo

. ; . A P 0.6 TO | 1179 | 9.81 | 0.033| 2500 | 0.052
Ii’f = Z, — B, whereB is an estimate o similar toa in 111 709 12211 0023 25001 0036
(13) . Option parametersK = 100, r = 0.1, T = 0.2, A = 64, a =
N 1 n , 1 n_on , 1 —0.028, E)B; 0.026. Simulation numbem = 10,000. Here,e =
B=| —= XY, - ———— XiY: | = 5 = .
n(n —1) ; n2(n —1) ;; 1) o2 75, =0V
1 XY, -X,.Y', TABLE I
:n -1 U% ’ 15 NUMERICAL RESULTS OFIMPROVEDMONTE CARLO WITH AOCV
r e = [ 0 [K/So| ¢ | P | e Jt(sec)] evt |
whereY; =Y;(2py—Y;), fori = 1:n, XY, X5, andY", are 00 13.73] 064 0004] 6875 0011
sample means. Then, the estim&eés an unbiased estimate 0.2 10T 523 32570008 68281 0021
of C(So, T). T1| 138 | 849 0.006| 6.781 0.016
; ; ; T 0.9 | 16.03| 2.94| 0.004| 7.031] 0.011
Finally, our MonFe Carlo algprlthm W|_th ant.|tr.1et|c and 04 v o e
control variates variance reduction techniques is: 11 406 [ 11171 0004 7218 | 0.01l
thm- 0.9 | 19.11| 6.02] 0.003| 6.797 | 0.008
Th? Monte Carlo Algorithm: 0.6 T0 | 11.81| 9.83| 0.003| 6.859 | 0.008
for i=1l:n 11| 7.12| 1423 0.003| 6.812 | 0.008
Random y generate Ni; Option parametersk = 100, r = 0.1, T' = 0.2, A = 64, a =
Random y generate I1D U;;, j=1:Ny; —0.028, b = 0.026. Simulation numbem = 10,000. Here,e =
Set ‘EZ =aN; + (b—a) Zj\f;l Ui j; oz, = oz/v/n.
Set 8 = (a+b)N; — Si;
set "% =) (Syexp (S = ATT), T); _ L _
@BS) _ ~(BS) (o) = _ but also increases the computing time by 2 to 3 times.
Set C; =C (SO xp (Si - )‘T‘]) ’T)' Therefore, we use standard error multiplying square root of
Set X, =05 (CfBS) + P9y, computng time:\/¢ as a benchmark for the trade-off between
Set V. =05 (exp(g_) +exp (3@)). the estimated variance and computing time, for a detailed
end for i ' explanation, see Boyle, Broadie and Glasserman [5]. Seen
Conpute @ according to (13); from these results, the Monte Carlo method with AOCV is
Set Zn =1 X, —a(Ay" Y — ), an overall the better estimate than the elementary Monte
Estimate bi a’?@ accor di nZg:lt 0 (15); Carlo method. Also, these results show that the European
Get European call 0= 2, —b: call option price is an increasing function ¢f; and the
Get European put P by (9). European put option is a decreasing function of it. Both
the call and put option prices increase as the volatiitgf
V. NUMERICAL RESULTS AND DISCUSSIONS stock price increase. The estimated model parameters used

In this section, some numerical results and discussions aeep=0.1626, 0 =0.1074, A=64.16, a=—0.028, b=0.026
given to illustrate the Monte Carlo algorithm. First of all,from our double-unform distribution paper [18] to compute
the elementary Monte Carlo method and the Monte Carliie Standard & Poor 500 index option prices. Also, we com-
method with antithetic and control variates techniques (atpute Black-Scholes call pria& %) (S,, T; K, 0%, ) and the
breviated as AOCV) are compared. The compound Poisspuit price P59 (Sy, T; K, 02,1) =CB9 (S, T; K, 02, 7) +
process is simulated by first using the inverse transfordy exp(—r7)—Sp as a rough estimation of the true values.
method given by Glasserman ([7]) for the jump countingrhe numerical results are listed in Table III.
component process®V; and then theN; jump amplitude The numerical results in Table 11l show that the estimated
antithetic pairs(s,,5(*) are simulated by a standard uni-call C and putP values by the Monte Carlo method with
form random number generator to get thig;. These are AOCYV are within thed5% confidence interval of the true call
implemented using MATLAB 6.5 and run them on the PQC* and putP* values, i.e.C € [C*—1.96¢,C*+1.96¢] or P €
with a Pentium4@1.6GHz CPU. The numerical test resulf®* — 1.96¢, P* + 1.96¢] by the central limit theorem. Also,
for elementary Monte Carlo method are listed in Table | and/e observe that the estimated European call and put option
the Monte carlo with AOCV'’s are listed in Table II. prices are bigger than the Black-Scholes call and put option

The results in Table | and Table Il show that the antiprices, respectively. This is a fact stated in the following
thetic variates combined with control variates can redudéeorem.
the standard error by a factor ranging from 2 to about 14, Theorem 5.1: The European call and put option prices



TABLE Il
NUMERICAL RESULTS FORS&P 500 CPTIONPRICES

(3]

N P e |ews [pBs)| o | pr (4]
0.8 | 26081] 00L| 2.6.3| 260.80] 2.66| 260.82] 0.02 [5]
0.0 | 132.36 | 1.45| 0.03 | 130.98] 0.07 | 132.39 | 147
10| 40.07 | 20.27 | 0.1 | 30.49 | 10.69| 40.05| 20.25
T1| 549 76.60| 0.06 | 113 | 72.24| 550 | 76.61 [6]
12| 031 | 147.17| 001 | 4.63| 14687 032 | 147.19

(7]
(8]

Option parameters’ = 1000, » = 0.1, " = 0.2, o = 0.1074, A =

64, a —0.028, b = 0.026. Simulation numbem = 10,000. Here,

e =0z = oz/+/n. The call and put values are estimated by the Monte
Carlo ‘method with AOCV. The* and P* values are obtained by more
simulations, say: = 400,000 sample points.

El

based on the jump-diffusion model in (1) are biggef10
than the Black-Scholes call and put option prices, respec-
tively, i.e.,C(So, T; K,02,7) > CB9(S,, T; K,0?,r), and
P(So, T; K,02,7) > PPB)(S,, T; K, 0%, 7). (1
Proof: Since the Black-Scholes call option pricing formula
CB9(S,T;K,0?,r) is a convex function abouf. By

Jensen’s inequality (see [9] for instance), we have [12]
(S0, T; K, 0277“)(2)E§(T) [C(BS) (Soeg(T)—AjT7T)} [13]
(BS) R S(T)=\JT
> €9 (Bgp)[Soe .7) »
= P9 (8,,T).
( 0, ) [15]
By put-call parity and the above proven inequality,
P(So, T; K,0°,7) =C(So, T; K,0°, 1)+ Ke™ "= S, [16]
> C(BS)(S(),T; K, 02,T)—|—K67TT—SO [17]
=P (S, T; K, 0%, 7).
P ( 0,4, , 0 7T) [18]

O

Remark: In the proof of the Theorem 5.1, no special
distribution of @ in the Jump-Diffusion model (1) is used.
Hence, this is a general result also suitable for log-normal
[17], log-double-exponential [15] and log-double-unifor
[18] jump amplitude models for jump-diffusions.

VI. CONCLUSION

The original SDE has been transformed to a risk-neutral
SDE by setting the stock price increases at the risk-neutral
interest rate. Based on this risk-neutral SDE, a reduced
European call option pricing formula is derived. Then, a
Monte Carlo algorithm with both antithetic and control vari
ate variance reduction techniques are applied. This adlgori
is easy to implement and the numerical results show that it
is also efficient, taking less than 8 seconds per case to get
the practical accuracy. Finally, we show that the European
call and put option prices based on the jump-diffusion model
in (1) are bigger than the Black-Scholes call and put option
prices, respectively.

REFERENCES

[1] C. A. Ball and W. N. Torous, “On Jumps in Common Stock Psice
and Their Impact on Call Option Prices)”Finance, vol. 40 (1), 1985,
pp. 155-173.

[2] M. Baxter and A. RennieFinancial Calculus. An Introduction to
Derivative Pricing, Cambridge University Press, Cambridge, UK,
1996.

F. Black and M. Scholes, “The Pricing of Options and Cogte
Liabilities,” J. Political Economy, vol. 81, 1973, pp. 637-659.

P. Boyle, “Options: A Monte Carlo ApproachJ. Financial Eco-
nomics, vol. 21, 1997, pp. 1267-1321.

P. Boyle, M. Broadie and P. Glasserman, “Monte Carlo roéthfor
security pricing,”J. Economic Dynamics and Control, vol. 4, 1977,
pp. 323-338.

R. Cont and P. Tankowvinancial Modelling with Jump Processes,
Chapman & Hall/CRC, London, 1964.

P. GlassermanMonte Carlo methods in Financial Engineering,
Springer, New York, 2004.

F. B. Hanson, J. J. Westman and Z. Zhu, “Multinomial Maxim
Likelihood Estimation of Market Parameters for Stock Jubiffusion
Models,” AMS Contemporary Mathematics, vol. 351, 2004, pp. 155-
169.

F. B. Hanson with J. J. Westma#pplied Stochastic Processes and
Control for Jump-Diffusions. Modeling, Analysis and Computation,
SIAM Books, Philadelphia, PA, to appear late 2005.

] F. B. Hanson and Z. Zhu, “Comparison of Market Paransefer

Jump-Diffusion Distributions Using Multinomial Maximum ikeli-
hood Estimation,”Proc. 43rd IEEE Conference on Decision and
Control, pp. 3919-3924, December 2004.

] D. J. Higham,An Introduction to Financial Option Valuation: Math-

ematics, Sochastics and Computation, Cambridge University Press,
Cambridge, UK, 2004.

J. C. Hull, Options, Futures, & Other Derivatives, 4th Edition,
Prentice-Hall, Englewood Cliffs, NJ, 2000.

R. A. Jarrow and E. R. Rosenfeld, “Jump Risks and therteeporal
Capital Asset Pricing ModelJ. Business, vol. 57 (3), 1984, pp. 337-
351.

P. Jorion, “On Jump Processes in the Foreign ExchangeStack
Markets,” Rev. Fin. Sudies, vol. 88 (4), 1989, pp. 427-445.

S. G. Kou and H. Wang, “Option Pricing Under a Double Exeutial
Jump Diffusion Model,” Management Science, vol. 50 (9), 2004,
pp. 1178-1192.

R. C. Merton, “Theory of Rational Option PricingBell J. Econ.
Mgmt. Sci., vol. 4, 1973, pp. 141-183.

R. C. Merton, “Option Pricing when Underlying Stock Rets are
Discontinuous,”J. Financial Economics, vol. 3, 1976, pp. 125-144.
Z. Zhu and F. B. Hanson, “A Log-Double-Uniform Jump-fD€ion
Model,” working paper, Dept. Math., Sat., and Comp. ci., U. Illinois
at Chicago, 2005.



